
Exercise 1

Generics and Assignments

Language with Generics
and Lots of Type Annotations

Simple language with this syntax
types: T ::= Int | Bool | T => T | [Ident]T
expressions: E ::= ident
 | { val ident:T = ident(ident); E }
 | { val ident:T = {(Ident:T)=>E}; E }
Initial environment
 plus : Int => (Int => Int) one : Int two : Int
 less : Int => (Int => Boolean)
A generic type [A]T can be used as T[A:=T’] ,
which we call an instance of [A]T. e.g. Int=>Int instance of [A](A=>A)
Example: { val f: [A](A => A) = {(x:A)=>x};
(type checks) { val x : Int = f(one);
1) give rules { val above : Int => Bool = less(one);
2) type check { val outcome : Bool = above(two);
 { val res : Bool = f(outcome); res }}}}}

Here are the interesting cases, involving instantiation and introduction of generic variables

Type equation here.

Adding Assignment Statements

expressions: E ::= ident
 | { var ident:T = ident(ident); E }

 | { var ident:T = {(Ident:T)=>E}; E }

 | { ident = ident; E }

Use same rules for ‘var’ as for ‘val’

Give rule for assignment statement that are as permissive as
possible, and still sound

Try to Type Check These Examples
1)
{ var f: [A](A => A) = {(x:A)=>x}
 var p : Int => Int = plus(one)
 f = p
 var above : Int => Bool = less(one)
 var outcome : Bool = above(two)
 var res : Bool = f(outcome); res }}}}} breaks
2)
{ var f: [A](A => A) = {(x:A)=>x}
 var p : Int => Int = plus(one)
 p = f
 var x : Int = p(one)
 var above : Int => Bool = less(x)
 var outcome : Bool = above(two)
 var res : Bool = f(outcome); res }}}}} works

Subtyping

• Suppose we wish to introduce subtyping rule
into the previous system

• There should be some sort of subtyping
relation between [Ident]T and its instance
T[Ident:=T’] .
Which type should be subtype of which?

Exercise 2

Computing Stack Depth

Control-Flow Graph with Bytecodes

• Consider assignment statements

• Right hand sides have only

– integer binary minus (-)

– integer multiplication (*)

– local variables

• We compile them into iload,istore,isub,imul

• Consider sequence of such statements as a
simple control-flow graph (a line)

CFG for Expression. Stack Depth

Assume x,y,z are in slots 1,2,3
Statement
 x = x*(x – y*z – z*x)
Compute for how many integers stack content increased after
every point, relative to initial size

Design data-flow analysis for CFG containing these bytecode
instructions that maintains interval of possible increases of
stack sizes (stack depth), starting from entry

Define analysis domain as arbitrary intervals of stack size, and
give transfer functions for iload,istore,isub,imul.

Run Analysis on This Program

x = y
while (x > 0) {
 x = y – x – z
}

What is the maximal number of steps for such analysis for:
 - arbitrary graphs with these bytecodes
 - graphs obtained by compiling Tool programs
(if the analysis is extended with all bytecode instructions)
Observation: we can use constant propagation to compute
places where stack depth is constant
Remark: JVM class loader ensures that stack depth for each
progrma poitn is constant, otherwise rejects the bytecode.

Constant Stack Depth

• Consider CFGs with bytecodes, generated
from Tool

• Suppose we wish to store local variables in the
memory and temporary variables in registers

• Give an upper bound on the number of
registers and a way to convert bytecodes
 iload,istore,isub,imul
into instructions that use registers

Exercise 3

Pattern Matching

Matching on Polymorphic Lists
Suppose we have language with these types:
 Int, Bool
 List[T] for any type T
 (T1,T2) if T1,T2 are types
Patterns have types:
 true,false : Bool integer constant : Int Nil[T]:List[T]
 (x :: xs) : List[T] where x:T and xs:List[T]
 (x,y) : Tx, Ty where x:Tx, y:Ty
Consider expressions containing the above constructs as
expressions, in addition to the expression of the kind:
 e match { case p1 => e1; … ; case pN => eN }
Give type checking rules for this language, and pay attention to
introducing and removing fresh variables into the scope. Type
rules should prevent the use of unbound variables.

Sketch of Solution: Constants

 |– e : T1 |– T1 { case pi => ei } : T for all i, 1 ≤ i ≤ N

__

 |– e match { case p1 => e1; … ; case pN => eN } : T

 |– e : T

 |– Bool { case true => e } : T

 |– e : T K is any integer literal, such as 42

 |– Int { case K => e } : T

Sketch of Solution: Non-nested lists

 |– e : T

 |– List[H] { case Nil[H] => e } : T

 {(x,H),(xs,List[H])} |– e : T

 |– List[H] { case (x::xs) => e } : T

From Nested Patterns to Tuples

 |– (T1,…,Tk,H,List[H]){case (x1,…,xk,p1,p2) => e }:T k ≥ 0

 |– (T1,…,Tk,List[H]){ case (x1,…,xk,(p1::p2)) => e }:T

Handling Tuples

 {(x1,T1),…,(xn,Tn)} |– e : T xi – all variables

 |– (T1,…,Tn) { case (x1,…,xn) => e } : T

 (also add rules to eliminate constant parts from a tuple)

