
Exercise 1 

Generics and Assignments 



Language with Generics 
and Lots of Type Annotations 

Simple language with this syntax 
types:  T ::= Int | Bool | T => T |  [Ident]T 
expressions: E ::= ident 
         | { val ident:T = ident(ident);   E }  
         | { val ident:T = {(Ident:T)=>E};  E }  
Initial environment 
   plus : Int => (Int => Int)  one : Int two : Int 
   less : Int => (Int => Boolean) 
A generic type [A]T can be used as  T[A:=T’] , 
which we call an instance of [A]T.  e.g. Int=>Int  instance of  [A](A=>A) 
Example:  { val f: [A](A => A) = {(x:A)=>x}; 
(type checks)    { val x : Int = f(one); 
1) give rules    { val above : Int => Bool = less(one); 
2) type check     { val outcome : Bool = above(two); 
       { val res : Bool = f(outcome);   res }}}}} 



Here are the interesting  cases, involving instantiation and introduction of generic variables 

Type equation here. 



Adding Assignment Statements 

expressions: E ::= ident 
         | { var ident:T = ident(ident);   E }  

         | { var ident:T = {(Ident:T)=>E};  E }  

         | { ident = ident; E } 

Use same rules for ‘var’ as for ‘val’ 

 

Give rule for assignment statement that are as permissive as 
possible, and still sound 



Try to Type Check These Examples 
1) 
{ var f: [A](A => A) = {(x:A)=>x} 
  var p : Int => Int = plus(one) 
  f = p 
  var above : Int => Bool = less(one) 
  var outcome : Bool = above(two) 
  var res : Bool = f(outcome);   res }}}}}  breaks 
2) 
{ var f: [A](A => A) = {(x:A)=>x} 
  var p : Int => Int = plus(one) 
  p = f 
  var x : Int = p(one) 
  var above : Int => Bool = less(x) 
  var outcome : Bool = above(two) 
  var res : Bool = f(outcome);   res }}}}}  works 



Subtyping 

• Suppose we wish to introduce subtyping rule 
into the previous system 

• There should be some sort of subtyping 
relation between [Ident]T  and its instance 
T[Ident:=T’] .  
Which type should be subtype of which? 



Exercise 2 

Computing Stack Depth 



Control-Flow Graph with Bytecodes 

• Consider assignment statements 

• Right hand sides have only  

– integer binary minus (-) 

– integer multiplication (*) 

– local variables 

• We compile them into iload,istore,isub,imul 

• Consider sequence of such statements as a 
simple control-flow graph (a line) 



CFG for Expression. Stack Depth 

Assume x,y,z are in slots 1,2,3 
Statement 
 x = x*(x – y*z – z*x) 
Compute for how many integers stack content increased after 
every point, relative to initial size 
 
Design data-flow analysis for CFG containing these bytecode 
instructions that maintains interval of possible increases of 
stack sizes (stack depth), starting from entry 
 
Define analysis domain as arbitrary intervals of stack size, and 
give transfer functions for iload,istore,isub,imul. 



Run Analysis on This Program 

x = y 
while (x > 0) { 
  x = y – x – z 
} 
 
What is the maximal number of steps for such analysis for: 
  - arbitrary graphs with these bytecodes 
  - graphs obtained by compiling Tool programs  
(if the analysis is extended with all bytecode instructions) 
Observation: we can use constant propagation to compute 
places where stack depth is constant 
Remark: JVM class loader ensures that stack depth for each 
progrma poitn is constant, otherwise rejects the bytecode. 



Constant Stack Depth 

• Consider CFGs with bytecodes, generated 
from Tool 

• Suppose we wish to store local variables in the 
memory and temporary variables in registers 

• Give an upper bound on the number of 
registers and a way to convert bytecodes 
 iload,istore,isub,imul  
into instructions that use registers 



Exercise 3 

Pattern Matching 



Matching on Polymorphic Lists 
Suppose we have language with these types:  
 Int, Bool 
 List[T] for any type T 
 (T1,T2) if T1,T2 are types 
Patterns have types: 
   true,false  :  Bool        integer constant  : Int     Nil[T]:List[T] 
   (x :: xs) : List[T]  where x:T and xs:List[T] 
   (x,y) : Tx, Ty  where x:Tx, y:Ty 
Consider expressions containing the above constructs as 
expressions, in addition to the expression of the kind: 
   e match { case p1 => e1; … ; case pN => eN } 
Give type checking rules for this language, and pay attention to 
introducing and removing fresh variables into the scope. Type 
rules should prevent the use of unbound variables. 



Sketch of Solution: Constants 

  |–  e : T1          |– T1   { case pi => ei } : T  for all i,  1 ≤ i ≤ N 

________________________________________________ 

  |–   e match { case p1 => e1; … ; case pN => eN }  : T 

 

   |–  e : T 

_________________________ 

 |– Bool   { case true => e } : T 

 

   |–  e : T  K is any integer literal, such as 42 

_________________________ 

  |– Int { case K => e } : T 

 



Sketch of Solution: Non-nested lists 

   |–  e : T 

_________________________ 

 |– List[H]   { case Nil[H] => e } : T 

 

      {(x,H),(xs,List[H])}  |–  e : T 

____________________________ 

 |– List[H]   { case (x::xs) => e } : T 

 



From Nested Patterns to Tuples 

 |– (T1,…,Tk,H,List[H]){case (x1,…,xk,p1,p2) => e }:T k ≥ 0 
_______________________________________ 
 |– (T1,…,Tk,List[H]){ case (x1,…,xk,(p1::p2)) => e }:T 
 

Handling Tuples 
 
   {(x1,T1),…,(xn,Tn)}  |–  e : T    xi – all variables 
_______________________________ 
 |– (T1,…,Tn)  { case (x1,…,xn) => e } : T 

 
 (also add rules to eliminate constant parts from a tuple) 


