
Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

Lexical analyzer (lexer) is specified using
regular expressions. Groups characters into
tokens and classifies them into token classes.

Lexical Analysis Summary
• lexical analyzer maps a stream of characters into a stream of tokens

– while doing that, it typically needs only bounded memory

• we can specify tokens for a lexical analyzers using regular expressions

• it is not difficult to construct a lexical analyzer manually
– we give an example

– for manually constructed analyzers, we often use the first character to decide on
token class; a notion first(L) = { a | aw in L }

• we follow the longest match rule: lexical analyzer should eagerly
accept the longest token that it can recognize from the current point

• it is possible to automate the construction of lexical analyzers; the
starting point is conversion of regular expressions to automata

– tools that automate this construction are part of compiler-compilers, such as
JavaCC described in the Tiger book

– automated construction of lexical analyzers from regular expressions is an
example of compilation for a domain-specific language

Formal Languages vs Scala

Formal language theory:

• A – alphabet

• A* - words over A

• w1 ∙ w2 or w1 w2

• ε – empty word

• c  A  c  A*

• |w| - word length

• wp..q = w(p)w(p+1) …w(q-1)

w = w(0)w(1) …w(|w|-1)

• L  A* - language

Scala representation:

• A – type

• List[A] (or Seq[A]...)

• w1 ::: w2

• List()

• if c:A then List(c):List[A]

• w.length

• w.slice(p,q)
w(i)

• L : List[List[A]] (for finite L)

Formal Languages vs Scala

Formal language theory:

L1  A* , L2  A*

L1∙L2 = {u1u2|u1L1 , u2L2 }

Scala (for finite languages)

type Lang[A] = List[List[A]]

def product[A](L1 : Lang[A],
 L2 : Lang[A]) : Lang[A] =

 for (w1 <- L1; w2 <- L2)

 yield (w1 ::: w2)

{ Peter, Paul, Mary} ∙ { France, Germany} =
 {PeterFrance, PeterGermany,
 PaulFrance, PaulGermany,
 MaryFrance,MaryGermany}

val p = product(List("Peter".toList, "Paul".toList, "Mary".toList),

 List("France".toList, "Germany".toList))

Fact about Indexing Concatenation

Concatenation of w and v has these letters:

w(0) … w(|w|-1) v(0) … v(|v|-1)

(wv)(i) = w(i) , if i < |w|

(wv)(i) = v(i-|w|) , if i ≥ |w|

Star of a Language. Exercise with Proof

L* = { w1 … wn | n ≥ 0, w1 … wn  L }

 = Un Ln where Ln+1
 = L Ln , L0 ={ε}. Obviously also Ln+1

 = Ln L

Exercise. Show that {a,ab}*= S where

 S = {w  {a,b}*|0i<|w|. if w(i) =b then: i > 0 and w(i-1)=a}

Proof. We show {a,ab}*S and S{a,ab}*.

1) {a,ab}*  S: We show that for all n, {a,ab}n  S, by induction on n

- Base case, n=0. {a,ab}0={ε}, so i<|w| is always false and '->' is true.

- Suppose {a,ab}n  S. Showing {a,ab}n+1  S. Let w{a,ab}n+1 .
Then w = vw’ where w’{a,ab}n, v{a,ab}. Let i < |w| and w(i)=b.
v(0)=a, so w(0) =a and thus w(0) !=b. Therefore i > 0. Two cases:
1.1) v=a. Then w(i)=w'(i-1) . By I.H. i-1>0 and w'(i-2)=a. Thus w(i-1)=a.
1.2) v=ab. If i=1, then w(i-1)=w(0)=a, as needed. Else, i>1 so
 w'(i-2)=b and by I.H. w'(i-3)=a. Thus w(i-1) =(vw')(i-1) = w'(i-3) =a.

Proof Continued

 S = {w  {a,b}*|0i<|w|. if w(i) =b then: i > 0 and w(i-1)=a}

For the second direction, we first prove:

(*) If wS and w=w'v then w'S.

Proof. Let i<|w'|, w'(i)=b. Then w(i)=b so w(i-1)=a and thus w'(i-1)=a.

2) S {a,ab}*. We prove, by induction on n, that for all n,

for all w, if wS and n=|w| then w{a,ab}*.

- Base case: n=0. Then w is empty string and thus in {a,ab}*.

- Let n>0. Suppose property holds for all k < n. Let wS, |w|=n.

There are two cases, depending on the last letter of w.

2.1) w=w'a. Then w'S by (*), so by IH w'{a,ab}*, so w{a,ab}*.

2.2) w=vb. By wS , w(|w|-2)=a, so w=w'ab. By (*), w'S, by IH
w'{a,ab}*, so w{a,ab}*.

In any case, w{a,ab}*. We proved the entire equality.

Regular Expressions

• One way to denote (often infinite) languages

• Regular expression is an expression built from:

– empty language 

– {ε}, denoted just ε

– {a} for a in Σ, denoted simply by a

– union, denoted | or, sometimes, +

– concatenation, as multiplication (dot), or omitted

– Kleene star * (repetition)

• E.g. identifiers: letter (letter | digit)*
 (letter,digit are shorthands from before)

Kleene (from Wikipedia)

Stephen Cole Kleene
(January 5, 1909, Hartford, Connecticut, United States –
January 25, 1994, Madison, Wisconsin) was an American
mathematician who helped lay the foundations for theoretical
computer science. One of many distinguished students of Alonzo
Church, Kleene, along with Alan Turing, Emil Post, and others, is best
known as a founder of the branch of mathematical logic known as
recursion theory. Kleene's work grounds the study of which
functions are computable. A number of mathematical concepts are
named after him: Kleene hierarchy, Kleene algebra, the Kleene
star (Kleene closure), Kleene's recursion theorem and the Kleene
fixpoint theorem. He also invented regular expressions, and was a
leading American advocate of mathematical intuitionism.

http://en.wikipedia.org/wiki/Hartford,_Connecticut
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Madison,_Wisconsin
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Emil_Post
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Kleene_hierarchy
http://en.wikipedia.org/wiki/Kleene_hierarchy
http://en.wikipedia.org/wiki/Kleene_hierarchy
http://en.wikipedia.org/wiki/Kleene_algebra
http://en.wikipedia.org/wiki/Kleene_algebra
http://en.wikipedia.org/wiki/Kleene_algebra
http://en.wikipedia.org/wiki/Kleene_star
http://en.wikipedia.org/wiki/Kleene_star
http://en.wikipedia.org/wiki/Kleene_star
http://en.wikipedia.org/wiki/Kleene's_recursion_theorem
http://en.wikipedia.org/wiki/Kleene's_recursion_theorem
http://en.wikipedia.org/wiki/Kleene's_recursion_theorem
http://en.wikipedia.org/wiki/Kleene_fixpoint_theorem
http://en.wikipedia.org/wiki/Kleene_fixpoint_theorem
http://en.wikipedia.org/wiki/Kleene_fixpoint_theorem
http://en.wikipedia.org/wiki/Kleene_fixpoint_theorem
http://en.wikipedia.org/wiki/Kleene_fixpoint_theorem
http://en.wikipedia.org/wiki/Regular_expressions
http://en.wikipedia.org/wiki/Mathematical_intuitionism

These RegExp extensions
preserve definable languages. Why?

• [a..z] = a|b|...|z (use ASCII ordering)

 (also other shorthands for finite languages)

• e? (optional expression)

• e+ (repeat at least once)

• ek..*
 = ek e* ep..q = ep (ε|e)q-p

• complement: !e (do not match) - need to go to automaton

• intersection: e1 & e1 (match both) = ! (e1|e1)

• quantification: can prove previous theorem automatically!

{a,ab}*= {w  {a,b}*|i. w(i) =b --> i > 0 & w(i-1)=a}

http://www.brics.dk/mona/

http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.brics.dk/mona/

While Language – Example Program

num = 13;
while (num > 1) {
 println("num = ", num);
 if (num % 2 == 0) {
 num = num / 2;
 } else {
 num = 3 * num + 1;
 }
}

Tokens (Words) of the While Language

Ident ::=
 letter (letter | digit)*

integerConst ::=
 digit digit*

stringConst ::=
 “ AnySymbolExceptQuote* “

keywords
 if else while println

special symbols
 () && < == + - * / % ! - { } ; ,

letter ::= a | b | c | … | z | A | B | C | … | Z
digit ::= 0 | 1 | … | 8 | 9

regular
expressions

Manually Constructing Lexers
by example

Lexer input and Output

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

Stream of Char-s
(lazy List[Char])

class CharStream(fileName : String){

 val file = new BufferedReader(

 new FileReader(fileName))

 var current : Char = ' '

 var eof : Boolean = false

 def next = {

 if (eof)

 throw EndOfInput("reading" + file)

 val c = file.read()

 eof = (c == -1)

 current = c.asInstanceOf[Char]

 }

 next // init first char

}

Stream of Token-s
sealed abstract class Token

case class ID(content : String) // “id3”

 extends Token

case class IntConst(value : Int) // 10

 extends Token

case class AssignEQ() ‘=‘

 extends Token

case class CompareEQ // ‘==‘

 extends Token

case class MUL() extends Token // ‘*’

case class PLUS() extends Token // +

case clas LEQ extends Token // ‘<=‘

case class OPAREN extends Token //(

case class CPAREN extends Token //)

...

case class IF extends Token // ‘if’

case class WHILE extends Token

case class EOF extends Token

 // End Of File

class Lexer(ch : CharStream) {

 var current : Token

 def next : Unit = {

 lexer code goes here

 }

}

Identifiers and Keywords

if (isLetter) {
 b = new StringBuffer
 while (isLetter || isDigit) {
 b.append(ch.current)
 ch.next
 }
 keywords.lookup(b.toString) {
 case None => token=ID(b.toString)
 case Some(kw) => token=kw
 }

}

Keywords look like identifiers,

but are simply indicated as

keywords in language

definition

A constant Map from strings to

keyword tokens

if not in map, then it is ordinary

identifier

regular expression for identifiers:

letter (letter|digit)*

Integer Constants and Their Value

if (isDigit) {
 k = 0
 while (isDigit) {
 k = 10*k + toDigit(ch.current)
 ch.next
 }
 token = IntConst(k)
}

regular expression for integers:

digit digit*

Deciding which Token

• How do we know when we are supposed to
analyze string, when integer sequence etc?

• Manual construction: use lookahead (next symbol
in stream) to decide on token class

• compute first(e) - symbols with which e can start

• check in which first(e) current token is

• If L is a language, then

first(L) = {a| v. a v  L}

first of a regexp
• Given regular expression e, how to compute first(e)?

– use automata (we will see this next)

– rules that directly compute them (also work for grammars,
we will see them for parsing)

• Examples of first(e) computation:

– first(ab*) = a

– first(ab*|c) = {a,c}

– first(a*b*c) = {a,b,c}

– first((cb|a*c*)d*e)) =

• Notion of nullable (r) - whether , that is, whether empty
string belongs to the regular language.

first symbols of words in a regexp
first : RegExp -> 2A first(e)  A

Define recursively:

 first() =

 first() =

 first(a) =

 first(e1 | e2) =

 first(e*) =

 first(e1 e2) =

Can regular expr derive empty word
nullable : RegExp -> {0,1}

Define recursively:

 nullable() =

 nullable() =

 nullable(a) =

 nullable(e1 | e2) =

 nullable(e*) =

 nullable(e1 e2) =

Converting Well-Behaved
Regular Expression into Programs

Regular Expression

• a

• r1 r2

• (r1|r2)

• r*

Code

• if (current=a) next else error

• (code for r1) ;
(code for r2)

• if (current in first(r1))
 code for r1
else
 code for r2

• while(current in first(r))
 code for r

Subtleties in General Case

• Sometimes first(e1) and first(e2) overlap for
two different token classes:

• Must remember where we were and go back,
or work on recognizing multiple tokens at the
same time

• Example: comment begins with division sign,
so we should not ‘drop’ division token when
checking for comment!

Decision Tree to Map Symbols to Tokens
ch.current match {

 case '(' => {current = OPAREN; ch.next; return}

 case ')' => {current = CPAREN; ch.next; return}

 case '+' => {current = PLUS; ch.next; return}

 case '/' => {current = DIV; ch.next; return}

 case '*' => {current = MUL; ch.next; return}

 case '=' => { // more tricky because there can be =, ==

 ch.next

 if (ch.current=='=') {ch.next; current = CompareEQ; return}

 else {current = AssignEQ; return}

 }

 case '<' => { // more tricky because there can be <, <=

 ch.next

 if (ch.current=='=') {ch.next; current = LEQ; return}

 else {current = LESS; return}

 }

}

Decision Tree to Map Symbols to Tokens
ch.current match {

 case '(' => {current = OPAREN; ch.next; return}

 case ')' => {current = CPAREN; ch.next; return}

 case '+' => {current = PLUS; ch.next; return}

 case '/' => {current = DIV; ch.next; return}

 case '*' => {current = MUL; ch.next; return}

 case '=' => { // more tricky because there can be =, ==

 ch.next

 if (ch.current == '=') {ch.next; current = CompareEQ; return}

 else {current = AssignEQ; return}

 }

 case '<' => { // more tricky because there can be <, <=

 ch.next

 if (ch.current == '=') {ch.next; current = LEQ; return}

 else {current = LESS; return}

 }

}

What happens if we omit it?
consider input '<= '

Skipping Comments

if (ch.current='/') {

 ch.next

 if (ch.current='/') {

 while (!isEOL && !isEOF) {

 ch.next

 }

 } else {

 }

}

Nested comments? /* foo /* bar */ baz */

// what do we set as the current token now?

Longest Match (Maximal Munch) Rule
• There are multiple ways to break input chars into tokens

• Consider language with identifiers - ID, <=, <, =

• Consider these input characters:

 interpreters <= compilers

• These are some ways to analyze it into tokens:

ID(interpreters) LEQ ID(compilers)

ID(inter) ID(preters) LESS AssignEQ ID(com) ID(pilers)

ID(i) ID(nte) ID(rpre) ID(ter) LESS AssignEQ ID(co) ID(mpi) ID(lers)

• This is resolved by longest match rule:

If multiple tokens could follow, take the longest token possible

Consequences of Longest Match Rule

• Consider language with three operators:

<, <=, =>

• For sequence '<=>' , lexer will report an error

– Why?

• In practice, this is not a problem

– we can always insert extra spaces

Longest Match Exercise
• Recall the maximal munch (longest match) rule: lexer should eagerly

accept the longest token that it can recognize from the current point

• Consider the following specification of tokens, the numbers in
parentheses gives the name of the token given by the regular
expression

 (1) a(ab)* (2) b*(ac)* (3) cba (4) c+

• Use the maximal munch rule to tokenize the following strings
according to the specification

– c a c c a b a c a c c b a b c

– c c c a a b a b a c c b a b c c b a b a c

• If we do not use the maximal munch rule, is another tokenization
possible?

• Give an example of a regular expression and an input string, where
the regular expression is able to split the input strings into tokens, but
it is unable to do so if we use the maximal munch rule.

Token Priority

• What if our token classes intersect?

• Longest match rule does not help

• Example: a keyword is also an identifier

• Solution - priority: order all tokens,
if overlap, take one with higher priority

• Example: if it looks both like keyword and like
identifier, then it is a keyword (we say so)

