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Id3 = 0 
while (id3 < 10) { 
  println(“”,id3); 
  id3 = id3 + 1 } 
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Lexical analyzer (lexer) is specified using  
regular expressions. Groups characters into  
tokens and classifies them into token classes. 



Lexical Analysis Summary 
• lexical analyzer maps a stream of characters into a stream of tokens 

– while doing that, it typically needs only bounded memory 

• we can specify tokens for a lexical analyzers using regular expressions 

• it is not difficult to construct a lexical analyzer manually 
– we give an example 

– for manually constructed analyzers, we often use the first character to decide on 
token class; a notion  first(L) = { a | aw in L } 

• we follow the longest match rule: lexical analyzer should eagerly 
accept the longest token that it can recognize from the current point 

• it is possible to automate the construction of lexical analyzers; the 
starting point is conversion of regular expressions to automata 

– tools that automate this construction are part of compiler-compilers, such as 
JavaCC described in the Tiger book 

– automated construction of lexical analyzers from regular expressions is an 
example of compilation for a domain-specific language 



Formal Languages vs Scala 

Formal language theory: 

• A – alphabet 

• A* - words over A 

• w1 ∙ w2    or   w1 w2 

• ε – empty word 

• c  A  c  A* 

• |w| - word length 

• wp..q  = w(p)w(p+1) …w(q-1) 

w = w(0)w(1) …w(|w|-1) 

• L  A* - language 

Scala representation: 

• A – type 

• List[A]   (or Seq[A]...) 

• w1 ::: w2 

• List() 

• if c:A  then List(c):List[A] 

• w.length 

• w.slice(p,q) 
w(i) 

• L : List[List[A]]  (for finite L) 

 



Formal Languages vs Scala 

Formal language theory: 

L1  A* , L2  A* 

L1∙L2 = {u1u2|u1L1 , u2L2 } 
 

Scala (for finite languages) 

type Lang[A] = List[List[A]] 

def product[A](L1 : Lang[A], 
                            L2 : Lang[A]) : Lang[A] = 

    for (w1 <- L1; w2 <- L2) 

      yield (w1 ::: w2) 

{ Peter, Paul, Mary} ∙ { France, Germany} =  
 {PeterFrance, PeterGermany,  
  PaulFrance, PaulGermany,  
  MaryFrance,MaryGermany} 

 

val p = product(List("Peter".toList, "Paul".toList, "Mary".toList),  

                            List("France".toList, "Germany".toList)) 



Fact about Indexing Concatenation 

Concatenation of w and v has these letters: 

w(0) … w(|w|-1)  v(0) … v(|v|-1) 

 

(wv)(i) = w(i)      , if i < |w| 

 

(wv)(i) = v(i-|w|) , if i ≥ |w| 

 



Star of a Language. Exercise with Proof 

L* = { w1 … wn | n ≥ 0, w1 … wn  L }  

     = Un Ln          where     Ln+1
 = L Ln , L0 ={ε}.  Obviously also Ln+1

 = Ln L 

Exercise. Show that {a,ab}*= S   where 

  S = {w  {a,b}*|0i<|w|. if w(i) =b then:  i > 0 and w(i-1)=a} 

Proof. We show {a,ab}*S and S{a,ab}*. 

1) {a,ab}*  S: We show that for all n, {a,ab}n  S, by induction on n 

- Base case, n=0. {a,ab}0={ε}, so i<|w| is always false and '->' is true. 

- Suppose {a,ab}n  S. Showing {a,ab}n+1  S. Let w{a,ab}n+1 .  
Then w = vw’ where w’{a,ab}n, v{a,ab}. Let i < |w| and w(i)=b. 
v(0)=a, so w(0) =a and thus w(0) !=b. Therefore i > 0. Two cases: 
1.1) v=a. Then w(i)=w'(i-1) . By I.H. i-1>0 and w'(i-2)=a. Thus w(i-1)=a. 
1.2) v=ab. If i=1, then w(i-1)=w(0)=a, as needed. Else, i>1 so  
       w'(i-2)=b and by I.H. w'(i-3)=a. Thus w(i-1) =(vw')(i-1) = w'(i-3) =a. 
 



Proof Continued 

 S = {w  {a,b}*|0i<|w|. if w(i) =b then:  i > 0 and w(i-1)=a} 

For the second direction, we first prove: 

(*) If wS and w=w'v then w'S.  

Proof. Let i<|w'|, w'(i)=b. Then w(i)=b so w(i-1)=a and thus w'(i-1)=a. 

2) S {a,ab}*. We prove, by induction on n, that for all n, 

for all w, if wS and n=|w| then w{a,ab}*. 

- Base case: n=0. Then w is empty string and thus in {a,ab}*. 

- Let n>0. Suppose property holds for all k < n. Let wS, |w|=n.  

There are two cases, depending on the last letter of w. 

2.1) w=w'a. Then w'S by (*), so by IH w'{a,ab}*, so w{a,ab}*. 

2.2) w=vb. By wS , w(|w|-2)=a, so w=w'ab. By (*), w'S, by IH 
w'{a,ab}*, so w{a,ab}*. 

In any case, w{a,ab}*. We proved the entire equality. 



Regular Expressions 

• One way to denote (often infinite) languages 

• Regular expression is an expression built from: 

– empty language   

– {ε},  denoted just ε 

– {a} for a in Σ, denoted simply by a 

– union, denoted | or, sometimes, + 

– concatenation, as multiplication (dot), or omitted 

– Kleene star * (repetition) 

• E.g. identifiers:  letter (letter | digit)* 
 (letter,digit are shorthands from before) 



Kleene (from Wikipedia) 

Stephen Cole Kleene  
(January 5, 1909, Hartford, Connecticut, United States –  
January 25, 1994, Madison, Wisconsin) was an American 
mathematician who helped lay the foundations for theoretical 
computer science. One of many distinguished students of Alonzo 
Church, Kleene, along with Alan Turing, Emil Post, and others, is best 
known as a founder of the branch of mathematical logic known as 
recursion theory. Kleene's work grounds the study of which 
functions are computable. A number of mathematical concepts are 
named after him: Kleene hierarchy, Kleene algebra, the Kleene 
star (Kleene closure), Kleene's recursion theorem and the Kleene 
fixpoint theorem. He also invented regular expressions, and was a 
leading American advocate of mathematical intuitionism. 
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These RegExp extensions 
preserve definable languages. Why? 

• [a..z] = a|b|...|z                (use ASCII ordering) 

 (also other shorthands for finite languages) 

• e? (optional expression) 

• e+ (repeat at least once) 

• ek..* 
  = ek e*       ep..q  = ep (ε|e)q-p 

• complement: !e   (do not match) - need to go to automaton 

• intersection: e1 & e1   (match both)      =  ! (e1|e1) 

 

• quantification: can prove previous theorem automatically! 

{a,ab}*= {w  {a,b}*|i. w(i) =b --> i > 0  &  w(i-1)=a} 

http://www.brics.dk/mona/ 

http://www.brics.dk/mona/
http://www.brics.dk/mona/
http://www.brics.dk/mona/


While Language – Example Program 

num = 13;  
while (num > 1) {  
  println("num = ", num);  
  if (num % 2 == 0) {  
    num = num / 2;  
  } else {  
    num = 3 * num + 1;  
  }  
}  



Tokens (Words) of the While Language 

Ident ::= 
 letter (letter | digit)* 

integerConst ::= 
 digit digit* 

stringConst ::= 
 “ AnySymbolExceptQuote* “ 

keywords 
 if  else  while  println 

special symbols 
 (  )   &&  <   ==  +  -  *  /  %  !  - {  }  ;  ,   

letter ::= a | b | c | … | z | A | B | C | … | Z 
digit ::= 0 | 1 | … | 8 | 9 

regular 
expressions 



Manually Constructing Lexers 
by example 



Lexer input and Output 

i 
d
3 
 

= 
 

0 
LF 

w 

id3 
= 
0 

while 
( 

id3 
< 

10 
) 

lexer 

Stream of Char-s 
( lazy List[Char] ) 

class CharStream(fileName : String){  

 val file = new BufferedReader( 

      new FileReader(fileName))  

  var current : Char = ' '  

  var eof : Boolean = false 

 

  def next = {  

    if (eof)  

     throw EndOfInput("reading" + file) 

    val c = file.read()  

    eof = (c == -1)  

    current = c.asInstanceOf[Char] 

  } 

 

  next // init first char 

} 

Stream of Token-s 
sealed abstract class Token  

case class ID(content : String) // “id3” 

 extends Token  

case class IntConst(value : Int) // 10 

 extends Token  

case class AssignEQ() ‘=‘ 

 extends Token  

case class CompareEQ // ‘==‘ 

 extends Token  

case class MUL() extends Token // ‘*’ 

case  class PLUS() extends Token // + 

case clas LEQ extends Token // ‘<=‘ 

case class OPAREN extends Token //( 

case class CPAREN extends Token //) 

... 

case class IF extends Token // ‘if’ 

case class WHILE extends Token 

case class EOF extends Token 

 // End Of File 

class Lexer(ch : CharStream) {  

  var current : Token  

  def next : Unit = {  

    lexer code goes here  

  } 

} 



Identifiers and Keywords 

if (isLetter) { 
  b = new StringBuffer 
  while (isLetter || isDigit) { 
     b.append(ch.current) 
     ch.next 
  } 
 keywords.lookup(b.toString) {  
  case None => token=ID(b.toString) 
  case Some(kw) => token=kw 
 } 

} 

Keywords look like identifiers, 

but are simply indicated as 

keywords in language 

definition 

 

A constant Map from strings to 

keyword tokens  

 

if not in map, then it is ordinary 

identifier 

regular expression for identifiers: 

letter (letter|digit)*  



Integer Constants and Their Value 

 

if (isDigit) { 
  k = 0 
  while (isDigit) { 
    k = 10*k + toDigit(ch.current) 
    ch.next 
  } 
  token = IntConst(k) 
} 

regular expression for integers: 

digit digit* 



Deciding which Token 

• How do we know when we are supposed to 
analyze string, when integer sequence etc?  

• Manual construction: use lookahead (next symbol 
in stream) to decide on token class  

• compute first(e) - symbols with which e can start 

• check in which first(e) current token is 

• If L is a language, then 

first(L) = {a| v. a v  L} 

 



first of a regexp 
• Given regular expression e, how to compute first(e)?  

– use automata (we will see this next) 

– rules that directly compute them (also work for grammars, 
we will see them for parsing) 

• Examples of first(e) computation:  

– first(ab*) = a 

– first(ab*|c) = {a,c} 

– first(a*b*c) = {a,b,c} 

– first( (cb|a*c*)d*e) ) =  

• Notion of nullable ( r ) - whether , that is, whether empty 
string belongs to the regular language.  



first symbols of words in a regexp 
first : RegExp -> 2A  first(e)  A 

Define recursively: 

 first() = 

 first() =  

 first(a) =  

 first(e1 | e2) =  

  

 first(e*) =  

 first(e1 e2) =  



Can regular expr derive empty word 
nullable : RegExp -> {0,1}   

Define recursively: 

 nullable() = 

 nullable() =  

 nullable(a) =  

 nullable(e1 | e2) =  

  

 nullable(e*) =  

 nullable(e1 e2) =  



Converting Well-Behaved  
Regular Expression into Programs 

Regular Expression 

• a 

• r1 r2 

 

• (r1|r2)  

 

 

 

 

• r* 

Code 

• if (current=a) next else error 

• (code for r1) ; 
(code for r2) 

• if (current in first(r1)) 
   code for r1 
else 
  code for r2 

 

• while(current in first(r)) 
  code for r 

 



Subtleties in General Case 

• Sometimes first(e1) and first(e2) overlap for 
two different token classes:  

• Must remember where we were and go back, 
or work on recognizing multiple tokens at the 
same time 

• Example: comment begins with division sign, 
so we should not ‘drop’ division token when 
checking for comment! 



Decision Tree to Map Symbols to Tokens 
ch.current match { 

  case '(' => {current = OPAREN; ch.next; return} 

  case ')' => {current = CPAREN; ch.next; return} 

  case '+' => {current = PLUS; ch.next; return} 

  case '/' => {current = DIV; ch.next; return} 

  case '*' => {current = MUL; ch.next; return} 

  case '=' => { // more tricky because there can be =, == 

    ch.next 

    if (ch.current=='=') {ch.next; current = CompareEQ; return}  

    else {current = AssignEQ; return} 

  } 

  case '<' => { // more tricky because there can be <, <= 

    ch.next 

    if (ch.current=='=') {ch.next; current = LEQ; return}  

    else {current = LESS; return} 

  } 

} 



Decision Tree to Map Symbols to Tokens 
ch.current match { 

  case '(' => {current = OPAREN; ch.next; return} 

  case ')' => {current = CPAREN; ch.next; return} 

  case '+' => {current = PLUS; ch.next; return} 

  case '/' => {current = DIV; ch.next; return} 

  case '*' => {current = MUL; ch.next; return} 

  case '=' => { // more tricky because there can be =, == 

    ch.next 

    if (ch.current == '=') {ch.next; current = CompareEQ; return}  

    else {current = AssignEQ; return} 

  } 

  case '<' => { // more tricky because there can be <, <= 

    ch.next 

    if (ch.current == '=') {ch.next;    current = LEQ; return}  

    else {current = LESS; return} 

  } 

} 

What happens if we omit it? 
consider input '<=  ' 



Skipping Comments 

if (ch.current='/') { 

  ch.next 

  if (ch.current='/') { 

     while (!isEOL && !isEOF) { 

       ch.next 

     } 

  } else {     

  } 

} 

 

Nested comments?        /* foo  /* bar */ baz */ 

// what do we set as the current token now? 



Longest Match (Maximal Munch) Rule 
• There are multiple ways to break input chars into tokens 

• Consider language with   identifiers - ID, <=, <, =  

• Consider these input characters:  

  interpreters <= compilers  

• These are some ways to analyze it into tokens:  

ID(interpreters)  LEQ  ID(compilers) 

ID(inter)  ID(preters)  LESS  AssignEQ   ID(com)  ID(pilers) 

ID(i)  ID(nte)  ID(rpre)  ID(ter)  LESS AssignEQ  ID(co)  ID(mpi) ID(lers) 

• This is resolved by longest match rule:  

 

If multiple tokens could follow, take the longest token possible 



Consequences of Longest Match Rule 

• Consider language with three operators:  

<, <=, => 

• For sequence '<=>' , lexer will report an error 

– Why? 

 

 

• In practice, this is not a problem 

– we can always insert extra spaces 

 



Longest Match Exercise 
• Recall the maximal munch (longest match) rule: lexer should eagerly 

accept the longest token that it can recognize from the current point 

• Consider the following specification of tokens, the numbers in 
parentheses gives the name of the token given by the regular 
expression 

 (1) a(ab)*  (2) b*(ac)*  (3) cba   (4) c+  

• Use the maximal munch rule to tokenize the following strings 
according to the specification  

– c a c c a b a c a c c b a b c 

– c c c a a b a b a c c b a b c c b a b a c 

• If we do not use the maximal munch rule, is another tokenization 
possible? 

• Give an example of a regular expression and an input string, where 
the regular expression is able to split the input strings into tokens, but 
it is unable to do so if we use the maximal munch rule. 



Token Priority 

• What if our token classes intersect?  

• Longest match rule does not help  

• Example: a keyword is also an identifier  

• Solution - priority: order all tokens,  
if overlap, take one with higher priority  

 

• Example: if it looks both like keyword and like 
identifier, then it is a keyword (we say so) 

 


