Exercise: Balanced Parentheses

Show that the following balanced parentheses grammar is ambiguous (by finding two parse trees for some input sequence) and find unambiguous grammar for the same language.

$$B ::= ε | (B) | B B$$

Remark

 The same parse tree can be derived using two different derivations, e.g.

$$B \rightarrow (B) \rightarrow (BB) \rightarrow ((B)B) \rightarrow ((B)) \rightarrow (())$$

$$B \rightarrow (B) \rightarrow (BB) \rightarrow ((B)B) \rightarrow (()B) \rightarrow (())$$

this correspond to different orders in which nodes in the tree are expanded

 Ambiguity refers to the fact that there are actually multiple parse trees, not just multiple derivations.

Towards Solution

- (Note that we must preserve precisely the set of strings that can be derived)
- This grammar:

B ::=
$$\epsilon \mid A$$

A ::= () | A A | (A)

solves the problem with multiple ϵ symbols generating different trees, but it is still ambiguous: string () () () has two different parse trees

Solution

Proposed solution:

$$B := \varepsilon \mid B(B)$$

- this is very smart! How to come up with it?
- Clearly, rule B::= B B generates any sequence of B's. We can also encode it like this:

 Now we express sequence using recursive rule that does not create ambiguity:

$$B ::= \varepsilon \mid C B$$
$$C ::= (B)$$

 but now, look, we "inline" C back into the rules for so we get exactly the rule

$$B := \varepsilon \mid B(B)$$

This grammar is not ambiguous and is the solution. We did not prove this fact (we only tried to find ambiguous trees but did not find any).

Exercise 2: Dangling Else

The dangling-else problem happens when the conditional statements are parsed using the following grammar.

S ::= S ; S

S ::= id **:=** E

S ::= **if** E **then** S

S ::= if E then S else S

Find an unambiguous grammar that accepts the same conditional statements and matches the else statement with the nearest unmatched if.

Discussion of Dangling Else

```
if (x > 0) then

if (y > 0) then

z = x + y

else x = -x
```

- This is a real problem languages like C, Java
 - resolved by saying else binds to innermost if
- Can we design grammar that allows all programs as before, but only allows parse trees where else binds to innermost if?

Sources of Ambiguity in this Example

- Ambiguity arises in this grammar here due to:
 - dangling else
 - binary rule for sequence (;) as for parentheses
 - priority between if-then-else and semicolon (;)

```
if (x > 0)

if (y > 0)

z = x + y;

u = z + 1 // last assignment is not inside if
```

Wrong parse tree -> wrong generated code

How we Solved It

We identified a wrong tree and tried to refine the grammar to prevent it, by making a copy of the rules. Also, we changed some rules to disallow sequences inside if-then-else and make sequence rule non-ambiguous. The end result is something like this:

At some point we had a useless rule, so we deleted it.

We also looked at what a practical grammar would have to allow sequences inside if-then-else. It would add a case for blocks, like this:

We could factor out some common definitions (e.g. define A in terms of A'), but that is not important for this problem.

Exercise: Unary Minus

1) Show that the grammar

A := -A

A := A - id

A := id

is ambiguous by finding a string that has two different syntax trees.

- 2) Make two different unambiguous grammars for the same language:
- a) One where prefix minus binds stronger than infix minus.
- b) One where infix minus binds stronger than prefix minus.
- 3) Show the syntax trees using the new grammars for the string you used to prove the original grammar ambiguous.

Exercise:

Left Recursive and Right Recursive

We call a production rule "left recursive" if it is of the form

$$A := A p$$

for some sequence of symbols p. Similarly, a "right-recursive" rule is of a form

$$A := q A$$

Is every context free grammar that contains both left and right recursive rule for a some nonterminal A ambiguous?

Answer: yes, if A is reachable from the top symbol and productive can produce a sequence of tokens

Making Grammars Unambiguous - some recipes -

Ensure that there is always only one parse tree

Construct the correct abstract syntax tree

Goal: Build Expression Trees

abstract class Expr

case class Variable(id : Identifier) extends Expr

case class Minus(e1 : Expr, e2 : Expr) extends Expr

case class Exp(e1 : Expr, e2 : Expr) extends Expr

different order gives different results:

Minus(e1, Minus(e2,e3)) e1 - (e2 - e3)

Minus(Minus(e1,e2),e3) (e1 - e2) - e3

Ambiguous Expression Grammar

```
expr ::= intLiteral | ident
| expr + expr | expr / expr
```

foo + 42 / bar + arg

Each node in parse tree is given by one grammar alternative.

Show that the input above has two parse trees!

1) Layer the grammar by priorities

expr ::= ident | expr - expr | expr ^ expr | (expr)

expr ::= term (- term)*

term ::= factor (^ factor)*

factor ::= id | (expr)

lower priority binds weaker, so it goes outside

2) Building trees: left-associative "-"

LEFT-associative operator

```
x-y-z \rightarrow (x-y)-z
                 Minus(Minus(Var("x"), Var("y")), Var("z"))
def expr : Expr = \{
 var e =term
  while (lexer.token == MinusToken) {
   lexer.next
   e = Minus(e, term)
```

3) Building trees: right-associative "^"

```
RIGHT-associative operator – using recursion
                         (or also loop and then reverse a list)
x \wedge y \wedge z \rightarrow x \wedge (y \wedge z)
                 Exp(Var("x"), Exp(Var("y"), Var("z")) )
def expr : Expr = \{
  val e = factor
  if (lexer.token == ExpToken) {
    lexer.next
    Exp(e, expr)
  } else e
```

Manual Construction of Parsers

- Typically one applies previous transformations to get a nice grammar
- Then we write recursive descent parser as set of mutually recursive procedures that check if input is well formed
- Then enhance such procedures to construct trees, paying attention to the associativity and priority of operators

Grammar Rules as Logic Programs

Consider grammar G: S::= a | b S

L(_) - language of non-terminal

L(G) = L(S) where S is the start non-terminal

$$L(S) = L(G) = \{ b^n a \mid n >= 0 \}$$

From meaning of grammars:

$$w \in L(S) \Leftrightarrow w=a \bigvee w \in L(b S)$$

To check left hand side, we need to check right hand side. Which of the two sides?

- restrict grammar, use current symbol to decide LL(1)
- use dynamic programming (CYK) for any grammar

Recursive Descent - LL(1)

See wiki for

- computing first, nullable, follow for non-terminals of the grammar
- construction of parse table using this information
- LL(1) as an interpreter for the parse table

Grammar vs Recursive Descent Parser

```
expr ::= term termList
termList ::= + term termList
           term termList
term ::= factor factorList
factorList ::= * factor factorList
            / factor factorList
factor ::= name | ( expr )
name ::= ident
```

```
def expr = { term; termList }
def termList =
 if (token==PLUS) {
  skip(PLUS); term; termList
 } else if (token==MINUS)
  skip(MINUS); term; termList
def term = { factor; factorList }
def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
  skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or )")
```

Rough General Idea


```
def A =
  if (token ∈ T1) {
    B<sub>1</sub> ... B<sub>p</sub>
  else if (token ∈ T2) {
    C<sub>1</sub> ... C<sub>q</sub>
  } else if (token ∈ T3) {
    D<sub>1</sub> ... D<sub>r</sub>
  } else error("expected T1,T2,T3")
```

where:

```
T1 = \mathbf{first}(\mathsf{B}_1 \dots \mathsf{B}_p)
T2 = \mathbf{first}(\mathsf{C}_1 \dots \mathsf{C}_q)
T3 = \mathbf{first}(\mathsf{D}_1 \dots \mathsf{D}_r)
\mathbf{first}(\mathsf{B}_1 \dots \mathsf{B}_p) = \{ a \in \Sigma \mid \mathsf{B}_1 \dots \mathsf{B}_p \implies aw \}
T1, T2, T3 \text{ should be } \mathbf{disjoint} \text{ sets of tokens.}
```

Computing first in the example

```
expr ::= term termList
termList ::= + term termList
            term termList
term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
factor ::= name | ( expr )
name ::= ident
```

```
first(name) = {ident}
first(( expr ) ) = { ( }
first(factor) = first(name)
             U first( ( expr ) )
            = {ident} U{ ( }
            = {ident, ( }
first(* factor factorList) = { * }
first(/ factor factorList) = { / }
first(factorList) = { *, / }
first(term) = first(factor) = {ident, ( }
first(termList) = { + , - }
first(expr) = first(term) = {ident, ( }
```

Algorithm for **first**

Given an arbitrary context-free grammar with a set of rules of the form $X := Y_1 ... Y_n$ compute first for each right-hand side and for each symbol.

How to handle

- alternatives for one non-terminal
- sequences of symbols
- nullable non-terminals
- recursion

Rules with Multiple Alternatives

$$A ::= B_1 ... B_p$$
 $| C_1 ... C_q$
 $| D_1 ... D_r$

$$A ::= B_1 ... B_p$$

 $| C_1 ... C_q$
 $| D_1 ... D_r$
first(A) = first(B_1 ... B_p)
U first(C_1 ... C_q)
U first(D_1 ... D_r)

Sequences

$$first(B_1...B_p) = first(B_1)$$

if not nullable(B₁)

$$first(B_1...B_p) = first(B_1) \cup ... \cup first(B_k)$$

if nullable(B_1), ..., nullable(B_{k-1}) and not nullable(B_k) or k=p

Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

```
expr ::= term termList
termList ::= + term termList

    term termList

term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
factor ::= name | ( expr )
name ::= ident
```

```
expr' = term'
termList' = {+}
          U {-}
term' = factor'
factorList' = {*}
           U { / }
factor' = name' U { ( )
name' = { ident }
```

nullable: termList, factorList

For this nice grammar, there is no recursion in constraints. Solve by substitution.

Example to Generate Constraints

terminals: a,b

non-terminals: S, X, Y, Z

reachable (from S):

productive:

nullable:

First sets of terminals:

 $S', X', Y', Z' \subseteq \{a,b\}$

Example to Generate Constraints

$$X ::= \mathbf{b} \mid S Y$$

$$Z := \varepsilon \mid \mathbf{a}$$

terminals: a,b

non-terminals: S, X, Y, Z

reachable (from S): S, X, Y, Z

productive: X, Z, S, Y

nullable: Z

These constraints are recursive.

How to solve them?

$$S', X', Y', Z' \subseteq \{a,b\}$$

How many candidate solutions

- in this case?
- for k tokens, n nonterminals?

Iterative Solution of **first** Constraints

- Start from all sets empty.
- Evaluate right-hand side and assign it to left-hand side.
- Repeat until it stabilizes.

Sets grow in each step

- initially they are empty, so they can only grow
- if sets grow, the RHS grows (U is monotonic), and so does LHS
- they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

Non-terminal is nullable if it can derive ε


```
S', X', Y', Z' ∈ {0,1}

0 - not nullable

1 - nullable

| - disjunction

& - conjunction
```

again monotonically growing

Computing first and nullable

- Given any grammar we can compute
 - for each non-terminal X whether nullable(X)
 - using this, the set first(X) for each non-terminal X
- General approach:
 - generate constraints over finite domains,
 following the structure of each rule
 - solve the constraints iteratively
 - start from least elements
 - keep evaluating RHS and re-assigning the value to LHS
 - stop when there is no more change

Rough General Idea


```
def A =

if (token ∈ T1) {

B_1 \dots B_p

else if (token ∈ T2) {

C_1 \dots C_q
} else if (token ∈ T3) {

D_1 \dots D_r
} else error("expected T1,T2,T3")
```

where:

```
T1 = first(B_1 ... B_p)
T2 = first(C_1 ... C_q)
T3 = first(D_1 ... D_r)
```

T1, T2, T3 should be **disjoint** sets of tokens.

Exercise 1

```
A ::= B EOF
B ::= \epsilon | B B | (B)
```

- Tokens: **EOF**, (,)
- Generate constraints and compute nullable and first for this grammar.
- Check whether first sets for different alternatives are disjoint.

Exercise 2

```
S ::= B EOF
B ::= \varepsilon | B (B)
```

- Tokens: **EOF**, (,)
- Generate constraints and compute nullable and first for this grammar.
- Check whether first sets for different alternatives are disjoint.

Exercise 3

Compute nullable, first for this grammar:

```
stmtList ::= ɛ | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends
```

Describe a parser for this grammar and explain how it behaves on this input:

beginof myPrettyCode

```
x = u;
y = v;
myPrettyCode ends
```

Problem Identified

```
stmtList ::= & | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
```

Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse ε that is, do nothing and return
- For nullable non-terminals, we must also compute what follows them

General Idea for nullable(A)


```
def A =
  if (token ∈ T1) {
    B<sub>1</sub> ... B<sub>p</sub>
  else if (token ∈ (T2 U T<sub>F</sub>)) {
    C<sub>1</sub> ... C<sub>q</sub>
  } else if (token ∈ T3) {
    D<sub>1</sub> ... D<sub>r</sub>
  } // no else error, just return
```

where:

```
T1 = \mathbf{first}(B_1 \dots B_p)
T2 = \mathbf{first}(C_1 \dots C_q)
T3 = \mathbf{first}(D_1 \dots D_r)
T_F = \mathbf{follow}(A)
```

Only one of the alternatives can be nullable (e.g. second) T1, T2, T3, T_F should be pairwise **disjoint** sets of tokens.

LL(1) Grammar - good for building recursive descent parsers

- Grammar is LL(1) if for each nonterminal X
 - first sets of different alternatives of X are disjoint
 - if nullable(X), first(X) must be disjoint from follow(X)
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not LL(1), we can sometimes transform it into equivalent LL(1) grammar

Computing if a token can follow

$$first(B_1 ... B_p) = \{a \in \Sigma \mid B_1 ... B_p \implies ... \implies aw \}$$
$$follow(X) = \{a \in \Sigma \mid S \implies ... Xa... \}$$

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Xa... (the token a follows the non-terminal X)

Rule for Computing Follow

Given
$$X := YZ$$
 (for reachable X)
then $first(Z) \subseteq follow(Y)$
and $follow(X) \subseteq follow(Z)$
now take care of nullable ones as well:

For each rule
$$X := Y_1 ... Y_p ... Y_q ... Y_r$$

follow(Y_p) should contain:

- first($Y_{p+1}Y_{p+2}...Y_r$)
- also follow(X) if nullable(Y_{p+1}Y_{p+2}Y_r)

Compute nullable, first, follow

```
stmtList ::= ɛ | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends
```

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

- nullable(stmtList)
- first(stmt) ∩ follow(stmtList) = {ID}

- If a recursive-descent parser sees ID, it does not know if it should
 - finish parsing stmtList or
 - parse another stmt

Table for LL(1) Parser: Example

$$B := \varepsilon \mid B(B)$$
(1) (2)

nullable: B

$$follow(S) = \{\}$$

empty entry: when parsing S, if we see), report error

Parsing table:

	EOF	()
S	{1}	{1}	
В	{1}	{1,2}	{1}

parse conflict - choice ambiguity: grammar not LL(1)

1 is in entry because (is in follow(B)2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

```
A ::= (1) B_1 ... B_p

| (2) C_1 ... C_q

| (3) D_1 ... D_r
```

```
\begin{split} &\text{if} \quad t \in \text{first}(C_1 \dots C_q) \quad \text{add 2} \\ &\quad \text{to choice}(A,t) \\ &\text{if} \quad t \in \text{follow}(A) \text{ add K to choice}(A,t) \\ &\text{where K is nullable alternative} \end{split}
```

For example, when parsing A and seeing token t choice(A,t) = $\{2\}$ means: parse alternative 2 (C_1 ... C_q) choice(A,t) = $\{1\}$ means: parse alternative 3 (D_1 ... D_r) choice(A,t) = $\{\}$ means: report syntax error choice(A,t) = $\{2,3\}$: not LL(1) grammar

Transform Grammar for LL(1)

S ::= B **EOF**
B ::=
$$\varepsilon \mid B(B)$$
(1) (2)

Transform the grammar so that parsing table has no conflicts.

S ::= B **EOF**
B ::=
$$\varepsilon \mid (B) B$$
(1) (2)

Left recursion is bad for LL(1)

Old parsing table:

	EOF	()
S	{1}	{1}	{}
В	{1}	{1,2}	{1}

conflict - choice ambiguity: grammar not LL(1)

1 is in entry because (is in follow(B) 2 is in entry because (is in first(B(B))

	EOF	()
S			
В			

choice(A,t)

Parse Table is Code for Generic Parser

```
var stack : Stack[GrammarSymbol] // terminal or non-terminal
stack.push(EOF);
stack.push(StartNonterminal);
var lex = new Lexer(inputFile)
while (true) {
X = stack.pop
t = lex.curent
 if (isTerminal(X))
  if (t==X) if (X==EOF) return success
            else lex.next // eat token t
  else parseError("Expected " + X)
 else { // non-terminal
  cs = choice(X)(t) // look up parsing table
  cs match { // result is a set
  case {i} => { // exactly one choice
   rhs = p(X,i) // choose correct right-hand side
   stack.push(reverse(rhs)) }
  case {} => parseError("Parser expected an element of " + unionOfAll(choice(X)))
  case _ => crash("parse table with conflicts - grammar was not LL(1)")
```

What if we cannot transform the grammar into LL(1)?

1) Redesign your language

2) Use a more powerful parsing technique