
Idea of Register Allocation
x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

Color Variables
Avoid Overlap of Same Colors

x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this program

Color Variables
Avoid Overlap of Same Colors

x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this 7-variable program

y yz
x

z xz

xy r

How to assign colors to variables?
x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a
point at which they are both alive.
Construct interference graph

y yz

x
z

xz xy

r

Edges between members of each set

x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a
point at which they are both alive.
Construct interference graph

y yz

x
z

xz xy

r

Final interference graph
x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a
point at which they are both alive.
Construct interference graph

y yz

x
z

xz xy

r

Coloring interference graph
x = m[0]; y = m[1]; xy = x*y; z = m[2]; yz = y*z; xz = x*z; r = xy + yz; m[3] = r + xz

x
y
z
xy
yz
xz
r

{} {x} {x,y} {y,x,xy} {y,z,x,xy} {x,z,xy,yz} {xy,yz,xz} {r,xz} {}

live variable analysis result:

program:

Need to assign colors (register numbers) to
nodes such that:
if there is an edge between nodes,
then those nodes have different colors.
 standard graph vertex coloring problem

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4

Idea of Graph Coloring

• Register Interference Graph (RIG):
– indicates whether there exists a point of time

where both variables are live

– look at the sets of live variables at all progrma
points after running live-variable analysis

– if two variables occur together, draw an edge

– we aim to assign different registers to such these
variables

– finding assignment of variables to K registers:
corresponds to coloring graph using K colors

All we need to do is
solve graph coloring problem

• NP hard
• In practice, we have heuristics that work for typical graphs
• If we cannot fit it all variables into registers,

perform a spill:
 store variable into memory and load later when needed

y yz

x
z

xz
xy

r

Heuristic for Coloring with K Colors
Simplify:
If there is a node with less than K neighbors, we will always be able to color it!
So we can remove such node from the graph (if it exists, otherwise remove other node)
 This reduces graph size. It is useful, even though incomplete
 (e.g. planar can be colored by at most 4 colors, yet can have nodes with many neighbors)

y yz

x
z

xz xy

r y yz

x
z

xz xy

y yz

x
z

xy

y

x
z

xy

y

z

xy

y

z z

Heuristic for Coloring with K Colors
Select
Assign colors backwards, adding nodes that were removed
If the node was removed because it had <K neighbors, we will always find a color
 if there are multiple possibilities, we can choose any color

y:2 yz:2

x:1
z:3

xz:3
xy:4

y:2 yz:2

x:1
z:3

xy:4

y:2

x:1
z:3

xy:4

y:2

z:3

xy:4

y:2

z:3 z:3

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4

Use Computed Registers

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

r = xy + yz

m[3] = res1 + xz

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4 R1 = m[0]

R2 = m[1]

R4 = R1*R2

R3 = m[2]

R2 = R2*R3

R3 = R1*R3

R4 = R4 + R2

m[3] = R4 + R3

Summary of Heuristic for Coloring
Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to color it!
so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them
we mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed

If we find a node that was spilled, we check if we are lucky, that we can color it.
if yes, continue

if not, insert instructions to save and load values from memory (actual spill).
 Restart with new graph (a graph is now easier to color as we killed a variable)

Conservative Coalescing
Suppose variables tmp1 and tmp2 are both assigned to the same register R
and the program has an instruction:

tmp2 = tmp1
which moves the value of tmp1 into tmp2. This instruction then becomes

R = R
which can be simply omitted!
How to force a register allocator to assign tmp1 and tmp2 to same
register?
 merge the nodes for tmp1 and tmp2 in the interference graph!
 this is called coalescing

But: if we coalesce non-interfering nodes when there are assignments,
then our graph may become more difficult to color, and we may in fact
need more registers!
Conservative coalescing: coalesce only if merged node of tmp1 and tmp2
will have a small degree so that we are sure that we will be able to color it
(e.g. resulting node has degree < K)

Run Register Allocation Ex.3
use 4 registers, coallesce j=i

i = 0

s = s + i

i = i + b

j = i

s = s + j + b

j = j + 1

Run Register Allocation Ex.3
use 3 registers, coallesce j=i

 {s,b}

i = 0

 {s,i,b}

s = s + i

 {s,i,b}

i = i + b

 {s,i,b}

j = i

 {s,j,b}

s = s + j + b

 {j}

j = j + 1

 {}

s i

j b

s i,j

b

coalesce

color

s:1 i,j:2

b:3

Run Register Allocation Ex.3
use 4 registers, coallesce j=i

i = 0

s = s + i

i = i + b

j = i // puf!

s = s + j + b

j = j + 1

R2 = 0

R1 = R1 + R2

R2 = R2 + R3

R1 = R1 + R2 + R3

R2 = R2 + 1

s:1 i,j:2

b:3

