Range Analysis Domain for BigInt

Domain values D include:

- bounded intervals of integers: [a,b]
- intervals unbounded from one side $(-\infty, b],[a, \infty)$
- empty set, denoted \perp
- the set of all integers, denoted T

Formally, if \mathbf{Z} denotes integers, then
$D=\{\perp, T\} \cup\{[a, b] \quad \mid a, b \in \mathbf{Z}\}$
$\cup\{(-\infty, b] \mid b \in \mathbf{Z}\}$
$U\{[a, \infty) \mid a \in Z\}$
D is an infinite set!

Sequences in Analysis

are Monotonically Growing

Transfer functions (describe how statements affect elements of D) should be monotonic:
if we start with a representation of a larger set of states, the representation of the resulting set of states should also be larger

$$
\left.\begin{array}{l}
x:[a, b] \quad V_{10} \quad \\
x=x+2 d_{1} \leq d_{2} \text { implies }[[x=x+2]]\left(d_{1}\right) \leq[[x=x+2]]\left(d_{2}\right) \\
\text { We start from } \perp \text { everywhere except entry } \\
\text { So in first step, the values can only grow } \\
\perp \leq d_{2} \text { implies }[[x=x+2]](\perp) \leq[[x=x+2]]\left(d_{2}\right) \\
\text { Values computed in second step are also bigger }
\end{array}\right\} \begin{aligned}
& \text { If } x_{n}=F^{n}(\perp) \text { then } x_{0}=\perp \leq x_{1} \\
& x_{n} \leq x_{n+1} / F \\
& F\left(x_{n}\right) \leq F\left(x_{n+1}\right) \text { i.e. } \quad x_{n+1} \leq x_{n+2}
\end{aligned}
$$

How Long Does Analysis Take?

- We explore this question by comparing
- range analysis: maintain intervals
- constant propagation: maintains indication whether the value is constant

Iterating Range Analysis

Find the number of updates range analysis needs to stabilize in the following code
$x=1$
$\mathrm{n}=1000$
while $(x<n)$ \{
$x=x+2$
\}

Iterating Range Analysis

Now, if we assume that any number can be entered from the user, what is now the number of steps?
$x=1$
$\mathrm{n}=$ readlnput() //anything, so n becomes T
while $(x<n)$ \{
$x=x+2$
$\}$
For unknown program inputs and unbounded domains, such analysis need not terminate!

One solution: "smaller" domain

Range Analysis with Finite Set of Endpoints

Pick a set W of "interesting" interval end-points Example:

$$
W=\{-128,0,127\}
$$

$D=\{\perp, T\} \cup\{[a, b] \quad \mid a, b \in W, a \leq b\}$

$$
\cup\{(-\infty, b] \mid b \in W\}
$$

$$
U\{[a, \infty) \quad \mid a \in W\}
$$

D is a finite set! How many elements does it have?

Domain Lattice Diagram for this W: 14 elements

Re-Run Analysis with Finite Endpoint Set

What is the number of updates?
$x=1$
$\mathrm{n}=1000$
while $(x<n)$ \{
$x=x+2$
$\}$
$x=1$
$\mathrm{n}=$ readInt()
while $(x<n)$ \{
$x=x+2$
\}

Constant Propagation Domain

Domain values D are:

- intervals [a,a], denoted simply 'a'
- empty set, denoted \perp and set of all integers T

Formally, if \mathbf{Z} denotes integers, then

$$
D=\{\perp, T\} \cup\{a \mid a \in \mathbf{Z}\}
$$

D is an infinite set

Constant Propagation Transfer Functions

Run Constant Propagation

What is the number of updates?

$$
\begin{aligned}
& x=1 \\
& n=1000 \\
& \text { while }(x<n)\{ \\
& x=x+2
\end{aligned}
$$

$$
x=1
$$

$$
\mathrm{n}=\text { readInt() }
$$

$$
\text { while }(x<n)\{
$$

$$
x=x+2
$$

$$
\}
$$

Observe

- Range analysis with $W=\{-128,0,127\}$ has a finite domain
- Constant propagation has infinite domain (for every integer constant, one element)
- Yet, constant propagation finishes sooner!
- it is not about the size of the domain
- it is about the height

Height of Lattice: Length of Max. Chain

height=5
size $=14$

height =2
size $=\infty$

Chain of Length n

- A set of elements $x_{0}, x_{1}, \ldots, x_{n}$ in D that are linearly ordered, that is $x_{0}<x_{1}<\ldots<x_{n}$
- A lattice can have many chains. Its height is the maximum n for all the chains
- If there is no upper bound on lengths of chains, we say lattice has infinite height
- Any monotonic sequence of distinct elements has length at most equal to lattice height
- including sequence occuring during analysis!
- such sequences are always monotonic

In constant propagation, each value can change only twice
height=2 size $=\infty$

consider value for x
$x=1$ before assignment

- Initially: \perp
- changes $1^{\text {st }}$ time to: 1
- change $2^{\text {nd }}$ time to: \perp total changes: two (height)
var facts : Map[Nodes,Map[VarNames,Element]]
Total number of changes bounded by: height•|Nodes|•|Vars|

Exercise

B_{32} - the set of all 32-bit integers
What is the upper bound for number of changes in the entire analysis for:

- 3 variables,
- 7 program points
for these two analyses:

1) constant propagation for constants from \mathbf{B}_{32}
2) The following domain D :

$$
D=\{\perp\} \cup\left\{[a, b] \mid a, b \in \mathbf{B}_{32}, a \leq b\right\}
$$

Height of B_{32}

$D=\{\perp\} \cup\left\{[a, b] \mid a, b \in \mathbf{B}_{32}, a \leq b\right\}$
One possible chain of maximal length:
\perp
[MinInt,MaxInt]

Initialization Analysis

first
initialization

initialized

What does javac say to this:

```
class Test {
    static void test(int p) {
        int n;
    p = p-1;
    if (p>0) {
    n = 100;
}
while (n != 0) {
    System.out.println(n);
    n = n - p;
}
    Test.java:8: variable n might not have been initialized
                                    while (n>0) {
                                    ^

\section*{Program that compiles in java}
```

class Test {
static void test(int p) {
int n;
p = p - 1;
if (p>0) {
n = 100;
}
else{
n = -100;
}
while (n != 0) {
System.out.println(n);
n=n-p;
}
}

We would like variables to be initialized on all execution paths.

Otherwise, the program execution could be undesirable affected by the value that was in the variable initially.

We can enforce such check using initialization analysis.

What does javac say to this?

```
static void test(int p) {
    int n;
    p = p-1;
    if (p>0) {
    n = 100;
}
System.out.println("Hello!");
if (p>0) {
        while (n != 0) {
            System.out.println(n);
            n = n - p;
        }
    }
}
```


Initialization Analysis

class Test \{
static void test(int p) \{ int n ;
$\mathrm{p}=\mathrm{p}-1$;
if $(p>0)$ \{
$\mathrm{n}=100$;
\}
else \{
$\mathrm{n}=-100 ;$
\}
while (n !=0) \{
System.out.printIn(n);

$$
n=n-p ;
$$

\}

T indicates presence of flow from states where variable was not initialized:

- If variable is possibly uninitialized, we use T
- Otherwise (initialized, or unreachable): \perp

If var occurs anywhere but left-hand side of assignment and has value T , report error

Sketch of Initialization Analysis

- Domain: for each variable, for each program point: $D=\{\perp, T\}$
- At program entry, local variables: T ; parameters: \perp
- At other program points: each variable: \perp
- An assignment $x=e$ sets variable x to \perp
- lub (join) of any value with T gives T
- uninitialized values are contagious along paths
$-\perp$ value for x means there is definitely no possibility for accessing uninitialized value of x

Run initialization analysis Ex. 1

int n ;
$p=p-1 ;$
if $(p>0)\{$
$\mathrm{n}=100 ;$
\}
while (n !=0) \{

$$
\mathrm{n}=\mathrm{n}-\mathrm{p} ;
$$

\}

Run initialization analysis Ex. 2

int n ;
$p=p-1 ;$
if $(p>0)\{$
$\mathrm{n}=100 ;$
\}
if $(p>0)\{$
$\mathrm{n}=\mathrm{n}-\mathrm{p} ;$
\}

Liveness Analysis

Variable is dead if its current value will not be used in the future. If there are no uses before it is reassigned or the execution ends, then the variable is surely dead at a given point.

What is Written and What Read

Example:

Purpose:

Register allocation:
find good way to decide which variable should go to which register at what point in time.

How Transfer Functions Look
L_{i}-set of live variables

$$
\overbrace{\substack{0 \\ L_{2} \\(s t)}}^{L_{2}}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{0}=L_{1} \cup\{x, y\} \\
\operatorname{read}(x, y) \\
L_{1}=L_{2} \backslash\{x\} \\
\mathfrak{b} \operatorname{rite}(x) \\
0 \\
L_{2}
\end{array}\right.
\end{aligned}
$$

$$
L_{0}=\left(L_{2} \backslash\{x\}\right) \cup\{x, y\}
$$

Generally

$$
L_{0}=\left(L_{2} \backslash \operatorname{def}(s t)\right) \cup \text { use }(s t)
$$

Initialization: Forward Analysis

while (there was change)
pick edge (v 1 ,statmt, v2) from CFG
such that facts(v1) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) \}

Liveness: Backward Analysis

while (there was change)
pick edge (v 1, statmt, v2) from CFG
such that facts(v2) has changed
facts(v1)=facts(v1) join transferFun(statmt, facts(v2))

Example

$$
\begin{aligned}
& x=m[0] \\
& y=m[1] \\
& x y=x^{*} y \\
& z=m[2] \\
& y z=y^{*} z \\
& x z=x^{*} z \\
& \operatorname{res} 1=x y+y z \\
& m[3]=\operatorname{res} 1+x z
\end{aligned}
$$

Data Representation Overview

Original and Target Program have Different Views of Program State

- Original program:
- local variables given by names (any number of them)
- each procedure execution has fresh space for its variables (even if it is recursive)
- fields given by names
- Java Virtual Machine
- local variables given by slots ($0,1,2, \ldots$), any number
- intermediate values stored in operand stack
- each procedure call gets fresh slots and stack
- fields given by names and object references
- Machine code: program state is a large arrays of bytes and a finite number of registers

Compilation Performs Automated Data Refinement

Inductive Argument for Correctness

s_{1}| $x \rightarrow 0$ |
| :--- |
| $y \rightarrow 5$ |
| $z \rightarrow 8$ |

C_{1}
$x=y+7^{*} z$
$[[x=y+7 * z]]$

s_{2}| $x \rightarrow 61$ |
| :--- |
| $y \rightarrow 5$ |
| $z \rightarrow 8$ |

C_{2}

	$y=z+1$
	$x \rightarrow 61$
S_{3}	$y \rightarrow 9$
	$z \rightarrow 8$

(R may need to be a relation, not just function)

A Simple Theorem

$P: S \rightarrow S \quad$ is a program meaning function
$P_{c}: C \rightarrow C \quad$ is meaning function for the compiled program
$\mathrm{R}: \mathrm{S} \rightarrow \mathrm{C} \quad$ is data representation function
Let $s_{n+1}=P\left(s_{n}\right), n=0,1, \ldots$ be interpreted execution
Let $\mathrm{c}_{\mathrm{n}+1}=\mathrm{P}\left(\mathrm{c}_{\mathrm{n}}\right), \mathrm{n}=0,1, \ldots$ be compiled execution

Theorem: If

$-\mathrm{c}_{0}=\mathrm{R}\left(\mathrm{s}_{0}\right)$

- for all $s, P_{c}(R(s))=R(P(s))$
then $c_{n}=R\left(c_{n}\right)$ for all n.
Proof: immediate, by induction. $\quad R$ is often called simulation relation.

Example of a Simple R

- Let the receiver, the parameters, and local variables, in their order of declaration, be $x_{1}, x_{2} \ldots x_{n}$
- Then R maps program state with only integers like this:

$$
\begin{array}{|c}
\left.\begin{array}{c}
x_{1} \rightarrow v_{1} \\
x_{2} \rightarrow v_{2} \\
x_{3} \rightarrow v_{3} \\
\cdots \\
x_{n} \rightarrow v_{n}
\end{array} \right\rvert\,-\begin{array}{ll}
0 & \rightarrow v_{1} \\
1 & \rightarrow v_{2} \\
2 & \rightarrow v_{3} \\
(n-1) \rightarrow v_{n}
\end{array} \\
\hline
\end{array}
$$

R for Booleans

- Let the received, the parameters, and local variables, in their order of declaration, be $x_{1}, x_{2} \ldots x_{n}$
- Then R maps program state like this, where x_{1} and x_{2} are integers but x_{3} and x_{4} are Booleans:

$$
\begin{array}{|l|}
\hline x_{1} \rightarrow 3 \\
x_{2} \rightarrow 9 \\
x_{3} \rightarrow \text { true } \\
x_{4} \rightarrow \text { false } \\
\hline
\end{array}
$$

R that depends on Program Point

Packing Variables into Memory

- If values are not used at the same time, we can store them in the same place
- This technique arises in
- Register allocation: store frequently used values in a bounded number of fast registers
- 'malloc' and 'free' manual memory management: free releases memory to be used for later objects
- Garbage collection, e.g. for JVM, and .NET as well as languages that run on top of them (e.g. Scala)

Register Machines

Better for most purposes than stack machines

- closer to modern CPUs (RISC architecture)
- closer to control-flow graphs
- simpler than stack machine

Example: $\underline{\text { ARM architecture }}$

Directly
Addressable RAM (large - GB, slow, even with caches)

Basic Instructions of Register Machines

$R_{i} \leftarrow \operatorname{Mem}\left[R_{j}\right] \quad$ load
$\operatorname{Mem}\left[R_{j}\right] \leftarrow R_{i} \quad$ store
$\mathrm{R}_{\mathrm{i}} \leftarrow \mathrm{R}_{\mathrm{j}} * \mathrm{R}_{\mathrm{k}} \quad$ compute: for an operation *

Efficient register machine code uses as few loads and stores as possible.

State Mapped to Register Machine

Both dynamically allocated heap and stack expand

- heap need not be contiguous; can request more memory from the OS if needed
- stack grows downwards

Heap is more general:

- Can allocate, read/write, and deallocate, in any order
- Garbage Collector does deallocation automatically
- Must be able to find free space among used one, group free blocks into larger ones (compaction),...
Stack is more efficient:
- allocation is simple: increment, decrement
- top of stack pointer (SP) is often a register
- if stack grows towards smaller addresses:
- to allocate N bytes on stack (push): SP := SP - N
- to deallocate N bytes on stack (pop): SP := SP + N
SP

Exact picture may depend on

JVM vs General Register Machine Code Naïve Correct Translation

JVM:
Register Machine:
imul

$$
\begin{aligned}
& R 1 \leftarrow \operatorname{Mem}[S P] \\
& S P=S P+4 \\
& R 2 \leftarrow \operatorname{Mem}[S P] \\
& R 2 \leftarrow R 1 * R 2 \\
& M e m[S P] \leftarrow R 2
\end{aligned}
$$

Register Allocation

How many variables?

$$
x, y, z, x y, x z, r e s 1
$$

Do we need 6 distinct registers if we wish to avoid load and stores?

$$
\begin{array}{ll}
x=m[0] & x=m[0] \\
y=m[1] & y=m[1] \\
x y=x^{*} y & x y=x^{*} y \\
z=m[2] & z=m[2] \\
y z=y^{*} z & y z=y^{*} z \\
x z=x^{*} z & y=x^{*} z \quad \\
\operatorname{res} 1=x y+y z & x=x y+y z \quad / / \text { reuse } y \\
m[3]=\operatorname{res} 1+x z & m[3]=x+y
\end{array}
$$

Idea of Graph Coloring

- Register Interference Graph (RIG):
- indicates whether there exists a point of time where both variables are live
- look at the sets of live variables at all progrma points after running live-variable analysis
- if two variables occur together, draw an edge
- we aim to assign different registers to such these variables
- finding assignment of variables to K registers: corresponds to coloring graph using K colors

Graph Coloring Algorithm

Simplify

If there is a node with less than K neighbors, we will always be able to color it!
so we can remove it from the graph
This reduces graph size (it is incomplete)
e.g.Every planar can be colored by at most 4 colors (yet can have nodes with 100 neighbors)

Spill

If every node has K or more neighbors, we remove one of them
we mark it as node for potential spilling
then remove it and continue

Select

Assign colors backwards, adding nodes that were removed
If we find a node that was spilled, we check if we are lucky that we can color it
if yes, continue
if no, insert instructions to save and load values from memory restart with new graph (now we have graph that is easier to color, we killed a variable)

Run Register Allocation Ex. 1 use 4 registers

$$
\begin{aligned}
& x=m[0] \\
& y=m[1] \\
& x y=x^{*} y \\
& z=m[2] \\
& y z=y^{*} z \\
& x z=x^{*} z \\
& \operatorname{res} 1=x y+y z \\
& m[3]=\operatorname{res} 1+x z
\end{aligned}
$$

Run Register Allocation Ex. 2 use 3 registers

$$
\begin{aligned}
& x=m[0] \\
& y=m[1] \\
& x y=x^{*} y \\
& z=m[2] \\
& y z=y^{*} z \\
& x z=x^{*} z \\
& \operatorname{res} 1=x y+y z \\
& m[3]=\operatorname{res} 1+x z
\end{aligned}
$$

Conservative Coalescing

Suppose variables tmp1 and tmp2 are both assigned to the same register R and the program has an instruction:

$$
\operatorname{tmp} 2=\operatorname{tmp} 1
$$

which moves the value of tmp1 into tmp2. This instruction then becomes

$$
R=R
$$

which can be simply omitted.

How to force a register allocator to assign tmp1 and tmp2 to same register? merge the nodes for tmp1 and tmp2 in the interference graph! this is called coalescing

But: if we coalesce non-interfering nodes when there are assignments, then our graph may become more difficult to color, and we may in fact need more registers!

Conservative coalescing: coalesce only if merged node of tmp1 and tmp2 will have a small degree so that we are sure that we will be able to color it.

Run Register Allocation Ex. 3 use 4 registers, coallesce $\mathrm{j}=\mathrm{i}$

$$
\begin{aligned}
& i=0 \\
& s=s+i \\
& i=i+b \\
& j=i \\
& s=s+j+b \\
& j=j+1
\end{aligned}
$$

