Abstract Interpretation

(Cousot, Cousot 1977)

also known as
Data-Flow Analysis

(Kildall 1973)

Goal of Data-Flow Analysis

Automatically compute information about the
program

e Use it to report errors to user (like type errors)
e Use it to optimize the program
Works on control-flow graphs:

(like flow-charts) o entry
Xx=1 ¥= L[V (x<i0)] ixit
while (x < 10) { 1 ”
X=X+2 «= %2 [7g<lo]
} v

o

int a, b, step, i;

boolean c;
a=0;
b=a+10;
step =-1;
if (step >0) {
i=a;
} else {
i=b;
}
c = true;
while (c) {
print(i);
i =i+ step;

if (step > 0) {

c=(i<b);
} else {

Why Constant Propagation

// can emit decrement

c = (i > a); // can emit better instruction here

}// insert here (a = a + step), redo analysis

}

Control-Flow Graphs: Like Flow Charts

A GUIDE TO
UNDERSTANDING FLOW CHARTS

PRESENTED IN FLOW CHART FORM

—— YES
Yee > GOOD

A

. HEY, T SHOULD
1:.}:1’5 GO| 6 DRNKS | NSTALLING
PRINK, FREEBSDY

1 You. http://imgs.xkcd.com/comics/flow charts.png

http://imgs.xkcd.com/comics/flow_charts.png
http://imgs.xkcd.com/comics/flow_charts.png

Control-Flow Graph: (V,E)

Set of nodes, V

Set of edges, which have statements on them
(v,st,v,) € E

means there is edge from v, to v, labeled with

statement st. Vo

x=1 ngz 5 S0\

while (x < 10) { 7w L4 (<o) ?
X=X+2 X =%x+2 [x<(0]

} Y

V.
V = {v,,Vy,V,,Vs} 2

E ={(vy,x=1,v,), (v,,[x<10],v,),
(Vo,Xx=x+2,v,), (v,,[1(x<10)],v;5)}

Interpretation and
Abstract Interpratation

* Control-Flow graph is similar to AST
* We can

— interpret control flow graph
— generate machine code from it (e.g. LLVM, gcc)

— abstractly interpret it: do not push values, but
approximately compute supersets of possible values
(e.g. intervals, types, etc.)

Compute Range of x at Each Point
o Vo

b

) 7oV
© 3

IV (<o)

\/

ov2

What we see today

. How to compile abstract syntax trees into
control-flow graphs

. Lattices, as structures that describe abstractly
sets of program states (facts)

. Transfer functions that describe how to
update facts

Generating Control-Flow Graphs

e Start with graph that has one entry and one
exit node and label is entire program

* Recursively decompose the program to have
more edges with simpler labels

 When labels cannot be decomposed further,
we are done

Flattening Expressions
for simplicity and ordering of side effects

E . %Z - com?\e\(expYessions
£, 4., -~ -(:T‘Q,SL\ uaw"icn\:)\es
) oL

0 £~
0

If-Then-Else

LE=E
V\ab
£ (E) o o
o = \ /
else 51 sL
s 1l o

Better translation uses the "branch" instruction
approach: have two destinations

o

o

| br’auc\« (el)

branch (E 22E) = -
lDrahc\‘ (E),\ 74
S\ Qsz S o \/ S2
|

o] J/ b= E.
whlle (E\,‘F > bL 'b
{$ 73 —_:> °

!.f &

Better translation uses the "branch" instruction

bmck (€)

Example 1: Convert to CFG

while (i < 10) {
println(j);
i=i+1;
j=j+2%i+1;
}

Example 1 Result

while (i < 10) {
println(j);
i=i+1;
j=j+2%i+1;
}

Example 2: Convert to CFG

InNt i =n;
while (i > 1) {

printin(i);

if (i%2==0){

i=i/2;

}else {

i=3%+1;

}
}

Example 2 Result

InNt i =n;
while (i > 1) { jenty
printIn(i); H“Qi”
if (i % 2 == 0) { e
i=i/2;
}else { 0
i = 3%+ 1; £z ¥
} ERTRE

}

Translation Functions

[S1 ’ S2] Vsource Vtarget =
[511 Vsource Viresn
[S2] V¥resh Vtarget

[branch(x<y)] v

source Vtrue Vfalse -

insert(v,, ..,[X<yl,Vie);

insert (v, stmt,v,)= insert(v,,, e, [(X<y)],Veaise)

cfg = cfg + (v,,stmt, v,)
[x=y+z] v, v, = insert(v x=y+z, v,)

when y,z are constants or variables

Analysis Domain (D)
Lattices

Abstract Intepretation
Generalizes Type Inference

Type Inference
* computes types

* typerules

— can be used to compute types
of expression from subtypes

e types fixed for a variable

Abstract Interpretation

e computes facts from a domain
— types
— intervals
— formulas
— set of initialized variables
— set of live variables

* transfer functions

— compute facts for one program
point from facts at previous
program points

* facts change as the values of vars
change (flow-sensitivity)

scalac computes types. Try in REPL:

class C

class D extends C
class E extends C
val p = false

val d = new D()

val e = new E()
valz=if (p) d else e

val u = if (p) (d,e) else (d,d)
val v =if (p) (d,e) else (e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
val f2 = if (p) ((d1:D) => d) else ((el:E) => e)

Finds "Best Type" for Expression

class C

class D extends C
class E extends C
val p = false

val d = new D()

val e = new E()
valz=if (p) d else e

val u = if (p) (d,e) else (d,d)
val v =if (p) (d,e) else (e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
val f2 = if (p) ((d1:D) => d) else ((el:E) => e)

//
//
/]

/]
/]

/]
/]

d:D
e:E
z:C

u:(D,C)
v:(C,C)

f1: (D with E) => Int)
£2: ((D with E) => C)

Subtyping Relation in this Example

(D ié_ E) product of two graphs: CC

7\
D E
\ /
bwf-l-laE

(v ME)

class C
class D extends C
class E extends C

each relation can be visualized in 2D
— two relations: naturally shown in 4D (hypercube)

we usually draw larger elements higher

Least Upper Bound (lub, join)

A A,B,C are all upper bounds on both D and E
| (they are above each of then in the picture,
B they are supertypes of D and supertypes of E).
| Among these upper bounds, C is the least one
C (the most specific one).
/ N\ We therefore say C is the least upper bound,

b S C=DUE

In any partial order <, if S is a set of elements (e.g. S={D,E}) then:
U is upper bound on S iff x< U for every xinS.
U, is the least upper bound (lub) of S, written U, = LIS, or Uy=lub(S) iff:
U, is upper bound and
if U is any upper bound on S, then U, < U

Greatest Lower Bound (glb, meet)

V), G‘ In the presence of traits or interfaces, there are
AN / multiple types that are subtypes of both D and E.
Dwidu E The type (D with E) is the largest of them.

|

|
Dot € witle T witle G DME

In any partial order <, if S is a set of elements (e.g. S={D,E}) then:
L is lower bound on S iff L <xforeveryxinS.
L, is the greatest upper bound (glb) of S, written L, =LIS, or L,=glb(S), iff:
m,is upper bound and
if m is any upper bound on S, then my<m

Computing lub and glb
for tuple and function types

LX‘)\"IJ U (levz\ = (X\U Xz, \1| U ‘12)

(y“\.{,) n (XZIYZ\ = (T 2, Y, n\f1\

&Xx ‘—”\’h) U (Xz’q\‘f?) = Q(\ m\‘h)"3 (il y,)
(x. = DT (xg 2) = (o Uy = LA

Lattice

Partial order: binary relation < (subset of some D?)
which is

— reflexive: x < x

— anti-symmetric: x<y /\ y<x -> x=y

— transitive: x<y /\ y<z > x<z
Lattice is a partial order in which every
two-element set has lub and glb

 Lemma: if (D, <) is lattice and D is finite,
then lub and glb exist for every finite set

ldea of Why Lemma Holds

lub(x,,lub(x,,...,lub(x__;,x.))) is lub({x,,...x.})

glb(x,,glb(x,,...,glb(x, 1,%,))) is glb({xy,...x.})
lub of all elements in D is maximum of D

— by definition, glb({}) is the maximum of D

glb of all elements in D is minimum of D
— by definition, lub({}) is the minimum of D

Graphs and Partial Orders

If the domain is finite, then partial order can be
represented by directed graphs

— if x <y then draw edge from xtoy
For partial order, no need to draw x < z if

X <y andy < z. So we only draw non-transitive
edges

Also, because always x < x, we do not draw those
self loops

Note that the resulting graph is acyclic: if we had
a cycle, the elements must to be equal

Defining Abstract Interpretation

Abstract Domain D describing which information
to compute — this is often a lattice

— inferred types for each variable: x:T1, y:T2
— interval for each variable x:[a,b], y:[a’,b’]

Transfer Functions, [[st]] for each statement st,

how this statement affects the facts

— Example: o A" Lq,b] 'K {c)cl]

Hﬁz X+2 :u (x:[Q,\:]))

= (% [q+2\b+2],.‘.) X = X+2

\ /4

o x.[atd, b2] y:[c,d]

Domain of Intervals [a,b] where
a,be{-M,-127,0,127,M-1}

[-M, nA)
- T~
-1, 127] [123, M-1]
/ ~ ~ N
[-M, 0] [-124 123) [0, m-1T]
/ ~ 7\

[-n-123] [-12% 0] [0,123] [123, M-1]

N\ \

(~-m,-n] L-ed -123] [o,0} L\u 127] [r-1, m-1]

For now, we consider

arbitrary integer bounds for intervals

Really ‘Int” should be BigInt, as in Haskell, Go

Often we must analyze machine integers

— need to correctly represent (and/or warn about) overflows
and underflows

— fundamentally same approach as for unbounded integers
For efficiency, many analysis do not consider arbitrary
intervals, but only a subset of them
For now, we consider as the domain

— empty set (denoted L, pronounced “bottom”)

— all intervals [a,b] where a,b are integers and a<b, or
where we allow a=-o¢ and/or b =oo

— set of all integers [-o< ,o°] is denoted T, pronounced “top”

Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If as)(éb C£\1£c!

o x:[ap] y: [c,d]
and we execute X= x+y

X= X-l'\’
o x:[a\0] y:[c Q'] then y = x4y
¥ =Y
So -
< x's
< \/‘ <

So we can let

a=a+c b’ =b+d
c’=c d =d

Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

. X [a.b] \‘("[Cnél If
4= X1 and we execute y= x-y
$pab] yindd'] then

So we can let
a’=a b'’=b
c=a-d d=b-c

Further transfer functions

e x=y*z (assigning product)

* X=Y (copy)

Transfer Functions for Tests

Tests e.g. [x>1] come from translating if,while into CFG

« :[~10,(0] ,(;o[-\o,\o]
if (x>1){ [x>|]/ \\D(”M
y=1/x WY S T
}else { ‘1=1X /\11"12
R A
y=42
} o x:[a,b] \1'.[C\d]
[x>Y]

Joining Data-Flow Facts

% [-1010] v [-10 00,1000]

. VL"’/O ool
if (x > 0) { CoD110] o JX:[0,0]

X AR

y=x+ 100
X: Y-
}else {
X 'K
y =-x—>50
& \".
} N
a v join L

[a\b] uled]= [wmin(a0), max(bd)]

Handling Loops: Iterate Until Stabilizes

Xx=1

p entry
while (x < 10) { X=| \
L[1(x<0)] exit
X=X+2 0 0
} (= Xt+2 [ﬁ <\O]

;

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change)
pick edge (v1,statmt,v2) from CFG
such that facts(vl) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1))

} L ?evltry

Order does not matter for the x= X o] ewit
end result, as long as we do not V2 v L% eAﬁ,
permanently neglect any edge

whose source was changed. e X2 [,g <10]

v

Ve

var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
def assign(vl:Node,d:Domain) = if (facts(v1)!=d) {
facts(vl)=d
for (stmt,v2) <- outEdges(vl) { worklist.add(v2) }
}

assign(entry, initialValues)

while (!worklist.isEmpty) {
var v2 = worklist.getAndRemoveFirst
update = facts(v2)
for (v1,stmt) <- inEdges(v2)
{ update = update join transferFun(facts(vl),stmt) }
assign(v2, update)
}

Work List Version

Run range analysis, prove error is unreachable
int M = 16;
int[M] a;
X :=0;
while (x < 10) {
X:=X+3;

} checks array accesses

Range analysis results

int M = 16; nsT xa T
int[M] a; n=16 _
x = 0; , T :“:“6"5], x— |
. N \
while (x < 10) { M-D606) o~ Mo [161€T xos [0,12]
X 1= X + 3; x=[0,17] ‘=R~ '
L= \O]
checks array accesses X>)0]"’
|f X >=0) / M- [ie l6 [sutﬂ 4
({ X =lo IZj? 29
if (x <=15) [>.].L/'
. X290 r
a[x]=7; M- (16,16] o Lx>|5] v
else X =T10,12]
error; L <) ¥
f > [1616) 0
}else { .{non] aiﬂs}
error, M- ['6,'6] o

} X - [10,12]

Simplified Conditions

int M =16;
int[M] a;

X :=0; , .',
. RN
while (x < 10){ M-li60e] 3%
X=X+ 3; =70, “=__~

<\Q

} checks array accesses L>]

'

T (x>=0) 1 M- [6, k]

if (x <= 15) X -[10,12]

[tme)
a[x]=7; PR

else % = [10,12]
error; (twe])
- [l616)0

}else { »—> (1013
error; ety

} X - [10,12]

|

M->T X->T

Il"l:lé

M=>11606], x—>T
X=0
M- [16,16] ¥ [0, 12]

[X>10]

(£a s} 1

o

e xYor

aix)?

Remove Trivial Edges, Unreachable Nodes

int M = 16; M>T, X=27
int[M] a; M=16
=0 T M=>11616] x>T
) 5((,)()(3 \ K:O
while (x < 10) { M=L1606] 50 Mo [1616] x> [0, 12]
X:=X+3; x>[0,%] ~—1
’ I <\O]
} checks array accesses X> \0]
'
if (x >=0) { / M- [] ﬁ/
if (x <= 15) X=l0.12]
a[x]=7; Benefits:
— - faster execution (no checks)
else - program cannot crash with error
error;
}else { aix1=1
error; Mo [l6/) o

} X - [10,12]

int a, b, step, i;

boolean c;

a=0;

b=a+10;

step =-1;

if (step >0) {
i = a;

} else {
i=b;

}

c = true;

while (c) {
process(i);
i =i+ step;
if (step > 0) {
c=(i<b);
} else {
c=(i>a);

}

Apply Range Anlalysis and Sjrmplify

For booleans, use this lattice: D, = { {}, {fise}, {true}, {false,true}}
with ordering given by set subset relation.

