Abstract Interpretation

(Cousot, Cousot 1977)

also known as
 Data-Flow Analysis

(Kildall 1973)

Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs:
(like flow-charts)
$\mathrm{x}=1$
while $(x<10)$ \{

$$
x=x+2
$$

\}


```
int a, b, step, i;
boolean c;
a = 0;
b = a + 10;
step = -1;
if (step > 0) {
    i = a;
} else {
    i = b;
}
c = true;
while (c) {
    print(i);
    i = i + step; // can emit decrement
    if (step > 0) {
        c = (i < b);
    } else {
        c = (i>a); // can emit better instruction here
    } // insert here (a = a + step), redo analysis
}
```


Why Constant Propagation

``` \(b=a+10 ;\)
```


Control-Flow Graphs: Like Flow Charts

Control-Flow Graph: (V,E)

Set of nodes, V
Set of edges, which have statements on them

$$
\left(\mathrm{v}_{1}, \mathrm{st}, \mathrm{v}_{2}\right) \in \mathrm{E}
$$

means there is edge from v_{1} to v_{2} labeled with statement st.
$\mathrm{x}=1$
while $(x<10)$ \{
$\mathbf{x}=\mathrm{x}+2$
\}

$$
\begin{aligned}
V= & \left\{v_{0}, v_{1}, v_{2}, v_{3}\right\} \\
E= & \left\{\left(v_{0}, x=1, v_{1}\right),\left(v_{1},[x<10], v_{2}\right),\right. \\
& \left.\left(v_{2}, x=x+2, v_{1}\right),\left(v_{1},[!(x<10)], v_{3}\right)\right\}
\end{aligned}
$$

Interpretation and Abstract Interpratation

- Control-Flow graph is similar to AST
- We can
- interpret control flow graph
- generate machine code from it (e.g. LLVM, gcc)
- abstractly interpret it: do not push values, but approximately compute supersets of possible values (e.g. intervals, types, etc.)

Compute Range of x at Each Point

What we see today

1. How to compile abstract syntax trees into control-flow graphs
2. Lattices, as structures that describe abstractly sets of program states (facts)
3. Transfer functions that describe how to update facts

Generating Control-Flow Graphs

- Start with graph that has one entry and one exit node and label is entire program
- Recursively decompose the program to have more edges with simpler labels
- When labels cannot be decomposed further, we are done

Flattening Expressions for simplicity and ordering of side effects
E_{1}, E_{2}-complex expressions
t_{1}, t_{2} - fresh variables

$$
\prod_{0}^{0} x=E_{1} * E_{2} \quad \Rightarrow \quad \begin{aligned}
& \int_{0}^{0} t_{1}=E_{1} \\
& \prod_{0}^{i} t_{2}=E_{2} \\
& \downarrow_{0}^{0} x=t_{1} * t_{2}
\end{aligned}
$$

If-Then-Else

Better translation uses the "branch" instruction approach: have two destinations

While

Better translation uses the "branch" instruction

Example 1: Convert to CFG

while ($\mathrm{i}<10$) \{ println(j);
$\mathrm{i}=\mathrm{i}+1$;
$j=j+2 * i+1 ;$
\}

Example 1 Result

$$
\begin{aligned}
& \text { while }(\mathrm{i}<10)\{ \\
& \text { print } \ln (\mathrm{j}) \text {; } \\
& \mathrm{i}=\mathrm{i}+1 \text {; } \\
& \mathrm{j}=\mathrm{j}+2^{*} \mathrm{i}+1 \text {; } \\
& \}
\end{aligned}
$$

Example 2: Convert to CFG

int $\mathrm{i}=\mathrm{n}$;
while ($\mathrm{i}>1$) \{
println(i);
if ($\mathrm{i} \% 2==0$) $\{$
$\mathrm{i}=\mathrm{i} / 2$;
\} else \{
$\mathrm{i}=3 * \mathrm{i}+1$;
\}
\}

Example 2 Result

int $\mathrm{i}=\mathrm{n}$;
while ($\mathrm{i}>1$) \{ println(i); if $(\mathrm{i} \% 2=0)\{$ i = i / 2;
\} else \{

$$
i=3 * i+1 ;
$$

\}

Translation Functions

```
[ \(\mathrm{s}_{1} ; \mathrm{s}_{2}\) ] \(\mathrm{v}_{\text {source }} \mathrm{v}_{\text {target }}=\)
        [ \(\left.s_{1}\right] v_{\text {source }} v_{\text {fresh }}\)
        \(\left[s_{2}\right] v_{\text {fresh }} v_{\text {target }}\)
```

insert $\left(v_{s}, s t m t, v_{t}\right)=$ $\mathrm{cfg}=\mathrm{cfg}+\left(v_{s}, \mathrm{stmt}, \mathrm{v}_{\mathrm{t}}\right)$
[branch $(x<y)$] $v_{\text {source }} v_{\text {true }} v_{\text {false }}=$ insert $\left(\mathrm{v}_{\text {source }},[\mathrm{x}<\mathrm{y}], \mathrm{v}_{\text {true }}\right)$; insert $\left(v_{\text {source }},[!(x<y)], v_{\text {false }}\right)$
$[x=y+z] v_{s} v_{t}=\operatorname{insert}\left(v_{s}, x=y+z, v_{t}\right)$
when y, z are constants or variables

Analysis Domain (D) Lattices

Abstract Intepretation Generalizes Type Inference

Type Inference

- computes types
- type rules
- can be used to compute types of expression from subtypes
- types fixed for a variable

Abstract Interpretation

- computes facts from a domain
- types
- intervals
- formulas
- set of initialized variables
- set of live variables
- transfer functions
- compute facts for one program point from facts at previous program points
- facts change as the values of vars change (flow-sensitivity)

scalac computes types. Try in REPL:

class C

class D extends C
class E extends C
val $p=$ false
val $d=$ new $D()$
val $\mathrm{e}=$ new E()
val $z=$ if $(p) d$ else e
val $u=$ if (p) (d, e) else (d, d)
val $v=$ if $(p)(d, e)$ else ($e, d)$
val $f 1=$ if $(p)((d 1: D)=>5)$ else ((e1:E) $=>5)$
val $\mathrm{f} 2=$ if $(p)((d 1: D)=>d)$ else ((e1:E) $=>e)$

Finds "Best Type" for Expression

```
class C
class D extends C
class E extends C
val p = false
val d = new D()
val e = new E()
val z = if (p)d else e
val u = if (p) (d,e) else (d,d)
val v = if (p) (d,e) else (e,d)
val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
// f1: ((D with E) => Int)
val f2 = if (p) ((d1:D) => d) else ((e1:E) => e)
// u:(D,C)
// d:D
// e:E
// z:C
// v:(C,C)
// f2: ((D with E) => C)
```


Subtyping Relation in this Example

 (DUE)

D with E
($D \sqcap E$)
class C class D extends C class E extends C

each relation can be visualized in 2D

- two relations: naturally shown in 4D (hypercube) we usually draw larger elements higher

Least Upper Bound (lub, join)

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are all upper bounds on both D and E (they are above each of then in the picture, they are supertypes of D and supertypes of E). Among these upper bounds, C is the least one (the most specific one).
We therefore say C is the least upper bound,

$$
C=D \sqcup E
$$

In any partial order \leq, if S is a set of elements (e.g. $S=\{D, E\}$) then:
U is upper bound on S iff $x \leq U$ for every x in S.
U_{0} is the least upper bound (lub) of S, written $U_{0}=\bigsqcup S$, or $U_{0}=\operatorname{lub}(S)$ iff:
U_{0} is upper bound and
if U is any upper bound on S, then $U_{0} \leq U$

Greatest Lower Bound (gIb, meet)

 multiple types that are subtypes of both D and E .
Dwith $E \quad$ The type (D with E) is the largest of them.
D with E with F
D with E with F with G

$D \sqcap E$

In any partial order \leq, if S is a set of elements (e.g. $S=\{D, E\}$) then:
L is lower bound on S iff $L \leq x$ for every x in S.
L_{0} is the greatest upper bound (gIb) of S, written $L_{0}=\left\lfloor S\right.$, or $L_{0}=g \mid b(S)$, iff:
m_{0} is upper bound and
if m is any upper bound on S, then $m_{0} \leq m$

Computing lub and gIb for tuple and function types

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \cup\left(x_{2}, y_{2}\right)=\left(x_{1} \sqcup x_{2}, y_{1} \cup y_{2}\right) \\
& \left(x_{1}, y_{1}\right) \sqcap\left(x_{2}, y_{2}\right)=\left(x_{1} \sqcap x_{2}, y_{1} \sqcap y_{2}\right) \\
& \left(x_{2} \rightarrow y_{1}\right) \cup\left(x_{2} \rightarrow y_{2}\right)=\left(x_{1} \sqcap y_{1}\right) \rightarrow\left(y_{1} \sqcup y_{2}\right) \\
& \left(x_{1} \rightarrow y_{1}\right) \sqcap\left(x_{2} \rightarrow y_{2}\right)=\left(x_{1} \cup y_{1}\right) \rightarrow\left(y_{1} \sqcap y_{2}\right)
\end{aligned}
$$

Lattice

Partial order: binary relation \leq (subset of some D^{2}) which is

- reflexive: $\mathrm{x} \leq \mathrm{x}$
- anti-symmetric: $x \leq y / \backslash y \leq x->x=y$
- transitive: $x \leq y / \wedge y \leq z->x \leq z$

Lattice is a partial order in which every two-element set has lub and glb

- Lemma: if (D, \leq) is lattice and D is finite, then lub and glb exist for every finite set

Idea of Why Lemma Holds

- $\operatorname{lub}\left(x_{1}, \operatorname{lub}\left(x_{2}, \ldots, \operatorname{lub}\left(x_{n-1}, x_{n}\right)\right)\right)$ is $\operatorname{lub}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)$
- $\operatorname{glb}\left(x_{1}, g \operatorname{lb}\left(x_{2}, \ldots, g \operatorname{lb}\left(x_{n-1}, x_{n}\right)\right)\right)$ is $\operatorname{glb}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)$
- lub of all elements in D is maximum of D
- by definition, $\mathrm{glb}(\})$ is the maximum of D
- glb of all elements in D is minimum of D
- by definition, lub(\{\}) is the minimum of D

Graphs and Partial Orders

- If the domain is finite, then partial order can be represented by directed graphs
- if $x \leq y$ then draw edge from x to y
- For partial order, no need to draw $x \leq z$ if $x \leq y$ and $y \leq z$. So we only draw non-transitive edges
- Also, because always $x \leq x$, we do not draw those self loops
- Note that the resulting graph is acyclic: if we had a cycle, the elements must to be equal

Defining Abstract Interpretation

Abstract Domain D describing which information to compute - this is often a lattice

- inferred types for each variable: $\mathrm{x}: \mathrm{T1}, \mathrm{y}: \mathrm{T2}$
- interval for each variable $\mathrm{x}:[\mathrm{a}, \mathrm{b}], \mathrm{y}:\left[\mathrm{a}, \mathrm{b}^{\prime}\right]$

Transfer Functions, [[st]] for each statement st, how this statement affects the facts

- Example:
$\llbracket x=x+2 \rrbracket(x:[a, b], \ldots)$

$=(x:[a+2, b+2], \ldots)$

$$
\begin{aligned}
& x:[a, b] \quad y:[c, d] \\
& x=x+2 \\
& 0 x:[a+2, b+2], y:[c, d]
\end{aligned}
$$

Domain of Intervals [abb] where $a, b \in\{-M,-127,0,127, M-1\}$

For now, we consider

arbitrary integer bounds for intervals

- Really 'Int’ should be BigInt, as in Haskell, Go
- Often we must analyze machine integers
- need to correctly represent (and/or warn about) overflows and underflows
- fundamentally same approach as for unbounded integers
- For efficiency, many analysis do not consider arbitrary intervals, but only a subset of them
- For now, we consider as the domain
- empty set (denoted \perp, pronounced "bottom")
- all intervals [a,b] where a, b are integers and $a \leq b$, or where we allow $\mathrm{a}=-\infty$ and/or $\mathrm{b}=\infty$
- set of all integers $[-\infty, \infty]$ is denoted T, pronounced "top"

Find Transfer Function: Plus
Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } a \leqslant x \leqslant b \quad c \leqslant y \leqslant d \\
x=x+y & & \text { and we execute } x=x+y \\
x:\left[a^{\prime}, b^{\prime}\right] & y:\left[c^{\prime}, d^{\prime}\right] & \text { then } x^{\prime}=x+y \\
& & y^{\prime}=y \\
& & \text { so } \quad \\
& & \\
& & x^{\prime} \leqslant \\
& &
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a+c & b^{\prime}=b+d \\
c^{\prime}=c & d^{\prime}=d
\end{array}
$$

Find Transfer Function: Minus

Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } \\
y=x-y & \text { and we execute } y=x-y \\
x:\left[a^{\prime}, b^{\prime}\right] \quad y:\left[c^{\prime}, d^{\prime}\right] & \text { then }
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a & b^{\prime}=b \\
c^{\prime}=a-d & d^{\prime}=b-c
\end{array}
$$

Further transfer functions

- $x=y^{*} z \quad$ (assigning product)
- $x=y$ (copy)

Transfer Functions for Tests
Tests e.g. [$x>1$] come from translating if, while into CFG

$$
\begin{gathered}
x:[-10,10] \\
\text { if }(x>1)\{ \\
x: \\
y=1 / x
\end{gathered}
$$

\} else \{

$$
y=42
$$

$$
\}
$$

$$
\int_{0}^{x:[a, b] y:[c, d]} \begin{aligned}
& {[x>y]}
\end{aligned}
$$

Joining Data-Flow Facts

$x:[-10,10] \quad y:[-1000,1000]$ if $(x>0)$ \{ x : $y=x+100$ x : \} else \{ x :

$$
y=-x-50
$$

$$
x:
$$

\}
4:

Handling Loops: Iterate Until Stabilizes

$x=1$
while $(x<10)$ \{
$x=x+2$
\}

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty) facts(entry) = initialValues
while (there was change) pick edge (v 1, statmt, v2) from CFG such that facts(v1) has changed facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) \} $\quad 4$ Order does not matter for the end result, as long as we do not permanently neglect any edge whose source was changed.


```
var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
    def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
        facts(v1)=d
        for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }
}
assign(entry, initialValues)
while (!worklist.isEmpty) {
    var v2 = worklist.getAndRemoveFirst
    update = facts(v2)
    for (v1,stmt) <- inEdges(v2)
        { update = update join transferFun(facts(v1),stmt) }
    assign(v2, update)
}
```


Run range analysis, prove error is unreachable

```
int M = 16;
int[M] a;
x := 0;
while (x<10) {
    x := x + 3;
} checks array accesses
if (x>=0) {
    if (x<= 15)
        a[x]=7;
    else
        error;
} else {
    error;
}
```

Range analysis results

Simplified Conditions

$$
\begin{aligned}
& \operatorname{int} M=16 ; \\
& \operatorname{int}[M] a ; \\
& x:=0 ;
\end{aligned}
$$

while $(x<10)$ \{

$$
x:=x+3
$$ $\mathrm{a}[\mathrm{x}]=7$;

else
\qquad
\} else \{ error;
\}

Remove Trivial Edges, Unreachable Nodes

int a, b, step, i; boolean c;

$$
\begin{aligned}
& a=0 ; \\
& b=a+10 ;
\end{aligned}
$$

step = -1;
if (step >0) \{
i = a;

$$
\text { \} else \{ }
$$

i = b;

$$
\}
$$

c = true;
while (c) \{
process(i);
i = i + step;
if (step > 0) \{

$$
c=(i<b) ;
$$

$$
\text { \} else \{ }
$$

$$
c=(i>a) ;
$$

$$
\}
$$

\}

Apply Range Analysis and Simplify

For booleans, use this lattice: $\mathrm{D}_{\mathrm{b}}=\{$ \{\}, \{false\}, \{true\}, \{false,true\} \} with ordering given by set subset relation.

