
Abstract Interpretation
(Cousot, Cousot 1977)

also known as
Data-Flow Analysis

(Kildall 1973)

Goal of Data-Flow Analysis

Automatically compute information about the
program

• Use it to report errors to user (like type errors)

• Use it to optimize the program

Works on control-flow graphs:
(like flow-charts)

 x = 1
 while (x < 10) {
 x = x + 2
 }

Why Constant Propagation
 int a, b, step, i;

 boolean c;

 a = 0;

 b = a + 10;

 step = -1;

 if (step > 0) {

 i = a;

 } else {

 i = b;

 }

 c = true;

 while (c) {

 print(i);

 i = i + step; // can emit decrement

 if (step > 0) {

 c = (i < b);

 } else {

 c = (i > a); // can emit better instruction here

 } // insert here (a = a + step), redo analysis

}

Control-Flow Graphs: Like Flow Charts

http://imgs.xkcd.com/comics/flow_charts.png

http://imgs.xkcd.com/comics/flow_charts.png
http://imgs.xkcd.com/comics/flow_charts.png

Control-Flow Graph: (V,E)
Set of nodes, V

Set of edges, which have statements on them
 (v1,st,v2)  E
means there is edge from v1 to v2 labeled with
statement st.

x = 1
while (x < 10) {
 x = x + 2
}

V = {v0,v1,v2,v3}
E = {(v0,x=1,v1), (v1,[x<10],v2),
 (v2,x=x+2,v1), (v1,[!(x<10)],v3)}

Interpretation and
Abstract Interpratation

• Control-Flow graph is similar to AST

• We can

– interpret control flow graph

– generate machine code from it (e.g. LLVM, gcc)

– abstractly interpret it: do not push values, but
approximately compute supersets of possible values
(e.g. intervals, types, etc.)

Compute Range of x at Each Point

What we see today

1. How to compile abstract syntax trees into
control-flow graphs

2. Lattices, as structures that describe abstractly
sets of program states (facts)

3. Transfer functions that describe how to
update facts

Generating Control-Flow Graphs

• Start with graph that has one entry and one
exit node and label is entire program

• Recursively decompose the program to have
more edges with simpler labels

• When labels cannot be decomposed further,
we are done

Flattening Expressions
for simplicity and ordering of side effects

If-Then-Else

Better translation uses the "branch" instruction
approach: have two destinations

While

Better translation uses the "branch" instruction

Example 1: Convert to CFG

while (i < 10) {

 println(j);

 i = i + 1;

 j = j +2*i + 1;

}

Example 1 Result

while (i < 10) {

 println(j);

 i = i + 1;

 j = j +2*i + 1;

}

Example 2: Convert to CFG
int i = n;

while (i > 1) {

 println(i);

 if (i % 2 == 0) {

 i = i / 2;

 } else {

 i = 3*i + 1;

 }

}

Example 2 Result
int i = n;

while (i > 1) {

 println(i);

 if (i % 2 == 0) {

 i = i / 2;

 } else {

 i = 3*i + 1;

 }

}

Translation Functions
[s1 ; s2] vsource vtarget =

 [s1] vsource vfresh

 [s2] vfresh vtarget

insert (vs,stmt,vt)=

 cfg = cfg + (vs,stmt, vt)

[x=y+z] vs vt = insert(vs,x=y+z, vt)

 when y,z are constants or variables

[branch(x<y)] vsource vtrue vfalse =

 insert(vsource,[x<y],vtrue);

 insert(vsource,[!(x<y)],vfalse)

Analysis Domain (D)
Lattices

Abstract Intepretation
Generalizes Type Inference

Type Inference

• computes types

• type rules
– can be used to compute types

of expression from subtypes

• types fixed for a variable

Abstract Interpretation
• computes facts from a domain

– types

– intervals

– formulas

– set of initialized variables

– set of live variables

• transfer functions
– compute facts for one program

point from facts at previous
program points

• facts change as the values of vars
change (flow-sensitivity)

scalac computes types. Try in REPL:
class C

class D extends C

class E extends C

val p = false

val d = new D()

val e = new E()

val z = if (p) d else e

val u = if (p) (d,e) else (d,d)

val v = if (p) (d,e) else (e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)

val f2 = if (p) ((d1:D) => d) else ((e1:E) => e)

Finds "Best Type" for Expression
class C

class D extends C

class E extends C

val p = false

val d = new D() // d:D

val e = new E() // e:E

val z = if (p) d else e // z:C

val u = if (p) (d,e) else (d,d) // u:(D,C)

val v = if (p) (d,e) else (e,d) // v:(C,C)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5) // f1: ((D with E) => Int)

val f2 = if (p) ((d1:D) => d) else ((e1:E) => e) // f2: ((D with E) => C)

Subtyping Relation in this Example
product of two graphs:

class C
class D extends C
class E extends C

each relation can be visualized in 2D
– two relations: naturally shown in 4D (hypercube)

we usually draw larger elements higher

CC

DC EC

FC
CF

DF EF

FF

CD

DD ED

FD

CE

DE EE

FE

Least Upper Bound (lub, join)

A,B,C are all upper bounds on both D and E
(they are above each of then in the picture,
they are supertypes of D and supertypes of E).
Among these upper bounds, C is the least one
(the most specific one).
We therefore say C is the least upper bound,

In any partial order , if S is a set of elements (e.g. S={D,E}) then:
 U is upper bound on S iff x  U for every x in S.
 U0 is the least upper bound (lub) of S, written U0 = S , or U0=lub(S) iff:
 U0 is upper bound and
 if U is any upper bound on S, then U0  U

Greatest Lower Bound (glb, meet)

In any partial order , if S is a set of elements (e.g. S={D,E}) then:
 L is lower bound on S iff L  x for every x in S.
 L0 is the greatest upper bound (glb) of S, written L0 = S, or L0=glb(S), iff:
 m0 is upper bound and
 if m is any upper bound on S, then m0  m

In the presence of traits or interfaces, there are
multiple types that are subtypes of both D and E.
The type (D with E) is the largest of them.

Computing lub and glb
for tuple and function types

Lattice

Partial order: binary relation  (subset of some D2)
which is

– reflexive: x  x

– anti-symmetric: xy /\ yx -> x=y

– transitive: xy /\ yz -> xz

Lattice is a partial order in which every
two-element set has lub and glb
• Lemma: if (D, ) is lattice and D is finite,

then lub and glb exist for every finite set

Idea of Why Lemma Holds

• lub(x1,lub(x2,...,lub(xn-1,xn))) is lub({x1,...xn})

• glb(x1,glb(x2,...,glb(xn-1,xn))) is glb({x1,...xn})

• lub of all elements in D is maximum of D

– by definition, glb({}) is the maximum of D

• glb of all elements in D is minimum of D

– by definition, lub({}) is the minimum of D

Graphs and Partial Orders
• If the domain is finite, then partial order can be

represented by directed graphs
– if x  y then draw edge from x to y

• For partial order, no need to draw x  z if
x  y and y  z. So we only draw non-transitive
edges

• Also, because always x  x , we do not draw those
self loops

• Note that the resulting graph is acyclic: if we had
a cycle, the elements must to be equal

Defining Abstract Interpretation
Abstract Domain D describing which information
to compute – this is often a lattice

– inferred types for each variable: x:T1, y:T2

– interval for each variable x:[a,b], y:[a’,b’]

Transfer Functions, [[st]] for each statement st,
how this statement affects the facts

– Example:

Domain of Intervals [a,b] where
a,b{-M,-127,0,127,M-1}

For now, we consider
arbitrary integer bounds for intervals

• Really ‘Int’ should be BigInt, as in Haskell, Go
• Often we must analyze machine integers

– need to correctly represent (and/or warn about) overflows
and underflows

– fundamentally same approach as for unbounded integers

• For efficiency, many analysis do not consider arbitrary
intervals, but only a subset of them

• For now, we consider as the domain
– empty set (denoted  , pronounced “bottom”)
– all intervals [a,b] where a,b are integers and a ≤ b, or

where we allow a= -∞ and/or b = ∞
– set of all integers [-∞ ,∞] is denoted T , pronounced “top”

Find Transfer Function: Plus

If

and we execute x= x+y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a+c b’ = b+d
 c’=c d’ = d

Find Transfer Function: Minus

If

and we execute y= x-y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a b’ = b
 c’= a - d d’ = b - c

Further transfer functions

• x=y*z (assigning product)

• x=y (copy)

Transfer Functions for Tests

if (x > 1) {

 y = 1 / x
} else {

 y = 42
}

Tests e.g. [x>1] come from translating if,while into CFG

Joining Data-Flow Facts

if (x > 0) {

 y = x + 100

} else {

 y = -x – 50

}

join

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < 10) {

 x = x + 2

 }

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) has changed
 facts(v2)=facts(v2) join transferFun(statmt, facts(v1))
}

Order does not matter for the
end result, as long as we do not
permanently neglect any edge
whose source was changed.

Work List Version

var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
 def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
 facts(v1)=d
 for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }
 }
assign(entry, initialValues)
while (!worklist.isEmpty) {
 var v2 = worklist.getAndRemoveFirst
 update = facts(v2)
 for (v1,stmt) <- inEdges(v2)
 { update = update join transferFun(facts(v1),stmt) }
 assign(v2, update)
}

Run range analysis, prove error is unreachable
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Range analysis results
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Simplified Conditions
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Remove Trivial Edges, Unreachable Nodes
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

 x := x + 3;

}

if (x >= 0) {

 if (x <= 15)

 a[x]=7;

 else

 error;

} else {

 error;
}

checks array accesses

Benefits:
 - faster execution (no checks)
 - program cannot crash with error

Apply Range Analysis and Simplify int a, b, step, i;

 boolean c;

 a = 0;

 b = a + 10;

 step = -1;

 if (step > 0) {

 i = a;

 } else {

 i = b;

 }

 c = true;

 while (c) {

 process(i);

 i = i + step;

 if (step > 0) {

 c = (i < b);

 } else {

 c = (i > a);

 }

 }

For booleans, use this lattice: Db = { {}, {false}, {true}, {false,true} }
with ordering given by set subset relation.

