
Abstract Interpretation 
(Cousot, Cousot 1977) 

also known as 
Data-Flow Analysis 

(Kildall 1973) 



Goal of Data-Flow Analysis 

Automatically compute information about the 
program 

• Use it to report errors to user (like type errors) 

• Use it to optimize the program 

Works on control-flow graphs: 
(like flow-charts) 

   x = 1 
   while (x < 10) { 
     x = x + 2 
   } 



Why Constant Propagation 
 int a, b, step, i; 

  boolean c; 

  a = 0; 

  b = a + 10; 

  step = -1; 

  if (step > 0) { 

    i = a; 

  } else { 

    i = b; 

  } 

  c = true; 

  while (c) { 

    print(i); 

    i = i + step;    // can emit decrement 

    if (step > 0) { 

      c = (i < b); 

    } else { 

      c = (i > a); // can emit better instruction here 

   } // insert here (a = a + step), redo analysis 

} 



Control-Flow Graphs: Like Flow Charts 

http://imgs.xkcd.com/comics/flow_charts.png  

http://imgs.xkcd.com/comics/flow_charts.png
http://imgs.xkcd.com/comics/flow_charts.png


Control-Flow Graph: (V,E) 
Set of nodes, V 

Set of edges, which have statements on them 
 (v1,st,v2)  E 
means there is edge from v1 to v2 labeled with 
statement st. 

x = 1 
while (x < 10) { 
   x = x + 2 
} 

V = {v0,v1,v2,v3}  
E = {(v0,x=1,v1), (v1,[x<10],v2), 
        (v2,x=x+2,v1), (v1,[!(x<10)],v3)} 



Interpretation and  
Abstract Interpratation 

• Control-Flow graph is similar to AST 

• We can 

– interpret control flow graph 

– generate machine code from it (e.g. LLVM, gcc) 

– abstractly interpret it: do not push values, but 
approximately compute supersets of possible values 
(e.g. intervals, types, etc.) 



Compute Range of x at Each Point 



What we see today 

1. How to compile abstract syntax trees into 
control-flow graphs 

2. Lattices, as structures that describe abstractly 
sets of program states (facts) 

3. Transfer functions that describe how to 
update facts 
 



Generating Control-Flow Graphs 

• Start with graph that has one entry and one 
exit node and label is entire program 

• Recursively decompose the program to have 
more edges with simpler labels 

• When labels cannot be decomposed further, 
we are done 



Flattening Expressions 
for simplicity and ordering of side effects 



If-Then-Else 

Better translation uses the "branch" instruction 
approach: have two destinations 



While 

Better translation uses the "branch" instruction 



Example 1: Convert to CFG 

while (i < 10) { 

  println(j); 

  i = i + 1; 

  j = j +2*i + 1; 

} 



Example 1 Result 

while (i < 10) { 

  println(j); 

  i = i + 1; 

  j = j +2*i + 1; 

} 



Example 2: Convert to CFG 
int i = n; 

while (i > 1) { 

  println(i); 

  if (i % 2 == 0) { 

    i = i / 2; 

  } else { 

    i = 3*i + 1; 

  } 

} 



Example 2 Result 
int i = n; 

while (i > 1) { 

  println(i); 

  if (i % 2 == 0) { 

    i = i / 2; 

  } else { 

    i = 3*i + 1; 

  } 

} 



Translation Functions 
[ s1 ; s2 ] vsource vtarget =  

 [ s1 ] vsource  vfresh  

 [ s2 ] vfresh  vtarget 

 

 

insert (vs,stmt,vt)= 

 cfg = cfg + (vs,stmt, vt) 

 

[ x=y+z ] vs vt = insert(vs,x=y+z, vt) 

 

  when y,z are constants or variables 

[ branch(x<y) ] vsource vtrue vfalse =  

  insert(vsource,[x<y],vtrue); 

  insert(vsource,[!(x<y)],vfalse) 



Analysis Domain (D) 
Lattices 



Abstract Intepretation  
Generalizes Type Inference 

Type Inference 

• computes types 

 

 

 

 

• type rules 
– can be used to compute types 

of expression from subtypes 

 

• types fixed for a variable 

Abstract Interpretation 
• computes facts from a domain 

– types 

– intervals 

– formulas 

– set of initialized variables 

– set of live variables 

• transfer functions 
– compute facts for one program 

point from facts at previous 
program points 

• facts change as the values of vars 
change (flow-sensitivity) 



scalac computes types. Try in REPL: 
class C 

class D extends C 

class E extends C 

val p = false 

val d = new D() 

val e = new E() 

val z = if (p) d else e 

 

val u = if (p) (d,e) else (d,d) 

val v = if (p) (d,e) else (e,d) 

 

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5) 

val f2 = if (p) ((d1:D) => d) else ((e1:E) => e) 



Finds "Best Type" for Expression 
class C 

class D extends C 

class E extends C 

val p = false 

val d = new D()     //   d:D 

val e = new E()     //   e:E 

val z = if (p) d else e    //   z:C 

 

val u = if (p) (d,e) else (d,d)   //   u:(D,C) 

val v = if (p) (d,e) else (e,d)   //   v:(C,C) 

 

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5) //   f1: ((D with E) => Int) 

val f2 = if (p) ((d1:D) => d) else ((e1:E) => e) //   f2: ((D with E) => C) 



Subtyping Relation in this Example 
product of two graphs: 

class C 
class D extends C 
class E extends C 

each relation can be visualized in 2D 
– two relations: naturally shown in 4D (hypercube) 

we usually draw larger elements higher 
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Least Upper Bound (lub, join) 

A,B,C are all upper bounds on both D and E 
(they are above each of then in the picture, 
they are supertypes of D and supertypes of E). 
Among these upper bounds, C is the least one 
(the most specific one). 
We therefore say C is the least upper bound, 

In any partial order , if S is a set of elements (e.g. S={D,E}) then: 
  U is upper bound on S  iff   x  U  for every x in S. 
  U0 is the least upper bound (lub) of S, written U0 =     S , or U0=lub(S) iff:  
  U0 is upper bound and 
  if U is any upper bound on S, then U0  U 



Greatest Lower Bound (glb, meet) 

In any partial order , if S is a set of elements (e.g. S={D,E}) then: 
  L is lower bound on S  iff   L  x for every x in S. 
  L0 is the greatest upper bound (glb) of S, written L0 =   S, or L0=glb(S), iff:  
  m0 is upper bound and 
  if m is any upper bound on S, then m0  m 

In the presence of traits or interfaces, there are  
multiple types that are subtypes of both D and E. 
The type (D with E) is the largest of them. 



Computing lub and glb  
for tuple and function types 



Lattice 

Partial order: binary relation  (subset of some D2) 
which is 

– reflexive: x  x 

– anti-symmetric: xy /\ yx -> x=y 

– transitive:   xy /\ yz  ->  xz 

Lattice is a partial order in which every  
two-element set has lub and glb 
• Lemma: if (D, ) is lattice and D is finite,  

then lub and glb exist for every finite set 



Idea of Why Lemma Holds 

• lub(x1,lub(x2,...,lub(xn-1,xn)))   is  lub({x1,...xn})  

• glb(x1,glb(x2,...,glb(xn-1,xn)))   is  glb({x1,...xn})  

• lub of all elements in D is maximum of D 

– by definition, glb({}) is the maximum of D 

• glb of all elements in D is minimum of D 

– by definition, lub({}) is the minimum of D 

 



Graphs and Partial Orders 
• If the domain is finite, then partial order can be 

represented by directed graphs 
– if x  y then draw edge from x to y 

• For partial order, no need to draw x  z if 
x  y and y  z. So we only draw non-transitive 
edges 

• Also, because always x  x , we do not draw those 
self loops 

• Note that the resulting graph is acyclic: if we had 
a cycle, the elements must to be equal 



Defining Abstract Interpretation 
Abstract Domain D describing which information 
to compute – this is often a lattice 

– inferred types for each variable: x:T1, y:T2 

– interval for each variable   x:[a,b], y:[a’,b’] 

Transfer Functions, [[st]] for each statement st,  
how this statement affects the facts 

– Example:  



Domain of Intervals [a,b] where 
a,b{-M,-127,0,127,M-1} 



For now, we consider  
arbitrary integer bounds for intervals 

• Really ‘Int’ should be BigInt, as in Haskell, Go 
• Often we must analyze machine integers 

– need to correctly represent (and/or warn about) overflows 
and underflows 

– fundamentally same approach as for unbounded integers 

• For efficiency, many analysis do not consider arbitrary 
intervals, but only a subset of them 

• For now, we consider as the domain 
– empty set (denoted  , pronounced “bottom”) 
– all intervals [a,b] where a,b are integers and  a ≤ b, or 

where we allow a= -∞   and/or  b = ∞ 
– set of all integers [-∞ ,∞] is denoted T , pronounced “top” 



Find Transfer Function: Plus 

If 

and we execute x= x+y 

then  

Suppose we have only two integer variables: x,y 

So we can let 

  a’= a+c      b’ = b+d 
  c’=c          d’ = d 



Find Transfer Function: Minus 

If 

and we execute y= x-y 

then  

Suppose we have only two integer variables: x,y 

So we can let 

  a’= a          b’ = b 
  c’= a - d     d’ = b - c 



Further transfer functions 

• x=y*z (assigning product) 

 

 

 

• x=y  (copy) 

 



Transfer Functions for Tests 

if (x > 1) { 
 
   y = 1 / x 
} else { 
 
   y = 42 
} 

Tests e.g. [x>1] come from translating if,while into CFG 



Joining Data-Flow Facts 

if (x > 0) { 
 
   y = x + 100 

 
} else { 
 
   y = -x – 50 

 
} 

join 



Handling Loops: Iterate Until Stabilizes 

   x = 1 
 
   while (x < 10) { 
 
     x = x + 2 
 
   } 
 



Analysis Algorithm 

var facts : Map[Node,Domain] = Map.withDefault(empty) 
facts(entry) = initialValues 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v1) has changed 
   facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) 
} 

Order does not matter for the  
end result, as long as we do not  
permanently neglect any  edge  
whose source was changed. 



Work List Version 

var facts : Map[Node,Domain] = Map.withDefault(empty) 
var worklist : Queue[Node] = empty 
  def assign(v1:Node,d:Domain) = if (facts(v1)!=d) { 
    facts(v1)=d 
    for (stmt,v2) <- outEdges(v1) { worklist.add(v2) } 
 } 
assign(entry, initialValues) 
while (!worklist.isEmpty) { 
   var v2 = worklist.getAndRemoveFirst 
   update = facts(v2) 
   for (v1,stmt) <- inEdges(v2)  
      { update = update join transferFun(facts(v1),stmt) } 
   assign(v2, update) 
} 



Run range analysis, prove error is unreachable 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Range analysis results 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Simplified Conditions 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 



Remove Trivial Edges, Unreachable Nodes 
int M = 16; 
int[M] a; 

x := 0; 

while (x < 10) { 

  x := x + 3; 

} 

if (x >= 0) { 

  if (x <= 15) 

    a[x]=7;  

  else 

     error; 

} else { 

   error; 
} 

checks array accesses 

Benefits: 
 - faster execution (no checks) 
 - program cannot crash with error 



Apply Range Analysis and Simplify   int a, b, step, i; 

  boolean c; 

  a = 0; 

  b = a + 10; 

  step = -1; 

  if (step > 0) { 

    i = a; 

  } else { 

    i = b; 

  } 

  c = true; 

  while (c) { 

    process(i); 

    i = i + step; 

    if (step > 0) { 

      c = (i < b); 

    } else { 

      c = (i > a); 

    } 

  } 

For booleans, use this lattice: Db = { {}, {false}, {true}, {false,true} } 
with ordering given by set subset relation. 


