Exercise 1

$$
\forall T . T \times \operatorname{list}[T] \Rightarrow \operatorname{List}[T]
$$

$$
\begin{aligned}
& \text { def CONS[T] (x:T, lst:List[T]):List[T]=\{...\} } \\
& \text { def listInt() : List[Int] = \{...\} } \\
& \text { def listBool() : List[Bool] = \{...\} }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (baz(f,listInt), baz(g,listBool)) } \\
& T A=(T B \Rightarrow T C) \quad T_{1} \times \text { List }\left[T_{1}\right] \Rightarrow \text { List }\left[T_{1}\right] \\
& =T^{\prime \prime} C \times T B \Rightarrow T D^{\prime \prime} \\
& T B=\operatorname{List}\left[T_{1}\right] \quad T D=\operatorname{List}\left[T_{1}\right] \\
& T C=T_{1}
\end{aligned}
$$

Solving 'baz'

def CONS[T](x:T, Ist:List[T]) : List[T] = \{...\} def baz(a:TA, b:TB):TD = CONS(a(b):TC, b:TB):TD
$T A=(T B=>T C)$
CONS : $\mathrm{T}_{1} \times \operatorname{List}\left[\mathrm{T}_{1}\right]=>\operatorname{List}\left[\mathrm{T}_{1}\right]$
TC $=\mathrm{T}_{1}$
$\mathrm{TB}=\operatorname{List}\left[\mathrm{T}_{1}\right]$
$\mathrm{TD}=\operatorname{List}\left[\mathrm{T}_{1}\right]$
$\mathrm{TA}=\left(\operatorname{List}\left[\mathrm{T}_{1}\right]=>\mathrm{T}_{1}\right)$
Solved form. Generalize over T_{1}
def baz[T1](a: List[T1]=>T1,b:List[T1]):List[T1] =
CONS[T1](a(b),b)

Using generalized 'baz'

def baz[T1](a: List[T1]=>T1,b:List[T1]):List[T1] = CONS[T1](a(b),b)
def test(f,g) = (baz(f,listlnt), baz(g,listBool))

Example 2:

$$
\text { def } b a z(a, b)=a(b):: b
$$

The operator :: concatenates a list (type List[A]) with an element of the appropriate type A .

Example 3:

```
def twice(f) = (x) => f(f(x))
def succ(x) = x + 1
twice(succ)(5)
```


Example 4

def selfApp(f) $=f(f)$

Physical Units Type Inference: 1

def coulomb(k, q1, q2,r) = \{ (k* q1 * q2)/(r*r)
\}

Physical Units Type Inference: 2

def energy $(m, g, h, v)=\{$

$$
m * g * h+m * v * v / 2
$$

\}

Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs:
$x=1$
while $(x<10)$ \{

$$
x=x+2
$$

\}

How We Define It

- Abstract Domain D (Data-Flow Facts): which information to compute?
- Example: interval for each variable $x:[a, b], y:\left[a^{\prime}, b^{\prime}\right]$
- Transfer Functions [[st]] for each statement st, how this statement affects the facts
- Example:

$$
\begin{aligned}
{[x=x+2] } & (x:[a, b], \ldots) \\
& =(x:[a+2, b+2], \ldots)
\end{aligned}
$$

Find Transfer Function: Plus
Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } a \leqslant x \leqslant b \quad c \leqslant y \leqslant d \\
x=x+y & & \text { and we execute } x=x+y \\
x:\left[a^{\prime}, b^{\prime}\right] & y:\left[c^{\prime}, d^{\prime}\right] & \text { then } x^{\prime}=x+y \\
& & y^{\prime}=y \\
& & \text { so } \quad \\
& & \\
& & x^{\prime} \leqslant \\
& &
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a+c & b^{\prime}=b+d \\
c^{\prime}=c & d^{\prime}=d
\end{array}
$$

Find Transfer Function: Minus

Suppose we have only two integer variables: x, y

$$
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } \\
y=x-y & \text { and we execute } y=x-y \\
x:\left[a^{\prime}, b^{\prime}\right] \quad y:\left[c^{\prime}, d^{\prime}\right] & \text { then }
\end{array}\right.
$$

So we can let

$$
\begin{array}{ll}
a^{\prime}=a & b^{\prime}=b \\
c^{\prime}=a-d & d^{\prime}=b-c
\end{array}
$$

Transfer Functions for Tests

$$
\begin{gathered}
x:[-10,10] \\
\text { if }(x>1)\{ \\
x: \\
y=1 / x
\end{gathered}
$$

\} else \{

$$
x:[
$$

$$
y=42
$$

$$
\}
$$

$$
\int_{0}^{x:[a, b] y:[c, d]} \begin{aligned}
& {[x>y]}
\end{aligned}
$$

Merging Data-Flow Facts

Handling Loops: Iterate Until Stabilizes

Compiler learned some facts! ©
$x=1$
$x \in[1,1]$
while $(x<10)$ \{

$$
\begin{aligned}
& x \in[1,9] \\
& x=x+2 \\
& \} \\
& x \in[3,11] \\
& x \in[10,11]
\end{aligned}
$$

$$
\begin{aligned}
& {[1,1] \cup[3,3]=[1,3]} \\
& {[1,1] \cup[3,5]=[1,5]}
\end{aligned}
$$

Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty) facts(entry) = initialValues // change
while (there was change) pick edge (v 1, statmt, v2) from CFG

$$
\begin{aligned}
& {[1,1] \cup[3,3]=[1,3]} \\
& {[1,1] \cup[3,5]=[1,5]}
\end{aligned}
$$ such that facts(v1) was changed

facts(v2)=facts(v2) join [[statmt]](facts(v1)) o entry
Order does not matter for the end result, as long as we do not permanently neglect any edge whose source was changed.

Handling Loops: Iterate Until Stabilizes

Compiler learns
some facts, but only after long time
$x=1$
$\mathrm{n}=100000$
while $(x<n)$ \{

$$
x=x+2
$$

\}

Handling Loops: Iterate Until Stabilizes

For unknown program inputs it may be practically

 impossible to know how long it takesvar x : Biglnt = 1
var n : Biglnt = readInput()
while $(x<n)$ \{
$x=x+2$
\}
Solutions

- smaller domain, e.g. only certain intervals
$[a, b]$ where a, b in $\{-\infty,-127,-1,0,1,127, \infty\}$
- widening techniques (make it less precise on demand)

Size of analysis domain

Interval analysis:

$$
D_{1}=\{[a, b] \mid a \leq b, a, b \in\{-M,-127,-1,0,1,127, M-1\}\} \cup\{\perp\}
$$

Constant propagation:
$D_{2}=\{[a, a] \mid a \in\{-M,-(M-1), \ldots,-2,-1,0,1,2,3, \ldots, M-1\}\} \cup\{\perp\}$ suppose M is 2^{63}
$\left|D_{1}\right|=$
$\left|D_{2}\right|=$

$$
x=x+2 \underbrace{x=1}_{0} \prod_{0}^{0}[x<10]
$$

How many steps does the analysis take

 to finish (converge)?Interval analysis:
$D_{1}=\{[a, b] \mid a \leq b, a, b \in\{-M,-127,-1,0,1,127, M-1\}\} \cup\{\perp\}$
Constant propagation:
$D_{2}=\{[a, a] \mid a \in\{-M,-(M-1), \ldots,-2,-1,0,1,2,3, \ldots, M-1\}\} \cup\{\perp\}$ suppose M is 2^{63}
With D_{1} takes at most steps.

Termination Given by Length of Chains

Interval analysis:

$$
D_{1}=\{[a, b] \mid a \leq b, a, b \in\{-M,-127,-1,0,1,127, M-1\}\} \cup\{\perp\}
$$

Constant propagation:

$$
D_{2}=\{[a, a] \mid a \in\{-M, \ldots,-2,-1,0,1,2,3, \ldots, M-1\}\} \cup\{\perp\} \cup\{T\}
$$ suppose M is 2^{63}

$$
[-M,-M] \underset{\sim}{\ldots}[-2,-2][-1,1],[0,0]=[1,1][2,2] \ldots[m-1, M-1]
$$

Domain is a lattice. Maximal chain length = lattice height

Lattice for intervals [abb] where

