Exercise 1

$$fT. T \times \text{List}[T] \Rightarrow \text{List}[T]$$

$$def CONS[T] (x:T, lst:List[T]):List[T]={...}$$

$$def listInt() : List[Int] = {...}$$

$$def listBool() : List[Bool] = {...}$$

$$fA :TB = TD$$

$$(baz (a, b) = CONS (a (b), b)$$

$$def test (f,g) = TC - TB.$$

$$(baz (f, listInt), baz (g, listBool))$$

$$TA = (TB \Rightarrow TC) \qquad T_1 \times \text{List}[T_1] \Rightarrow \text{List}[T_1]$$

$$= TC \times TB \Rightarrow TD$$

$$TB = \text{List}[T_1] \quad TD = \text{List}[T_1]$$

•

Solving 'baz'

```
def CONS[T](x:T, lst:List[T]) : List[T] = {...}
def baz(a:TA, b:TB):TD = CONS(a(b):TC, b:TB):TD
TA = (TB => TC)
CONS : T_1 \times \text{List}[T_1] => \text{List}[T_1]
TC = T_1
TB = List[T_1]
TD = List[T_1]
```

```
TA = (List[T<sub>1</sub>]=>T<sub>1</sub>)
    Solved form. Generalize over T<sub>1</sub>
def baz[T1](a: List[T1]=>T1,b:List[T1]):List[T1] =
    CONS[T1](a(b),b)
```

Using generalized 'baz'

def baz[T1](a: List[T1]=>T1,b:List[T1]):List[T1] =
 CONS[T1](a(b),b)

def test(f,g) = (baz(f,listInt), baz(g,listBool))

Example 2:

```
def baz(a, b) = a(b) :: b
```

The operator :: concatenates a list (type List[A]) with an element of the appropriate type A.

Example 3:

```
def twice(f) = (x) \Rightarrow f(f(x))
def succ(x) = x + 1
twice(succ)(5)
```

Example 4

def selfApp(f) = f(f)

Physical Units Type Inference: 1

def coulomb(k, q1, q2,r) = {
 (k* q1 * q2)/(r*r)
}

Physical Units Type Inference: 2

def energy(m,g,h,v) = { m*g*h + m*v*v/2

}

Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs:

How We Define It

 Abstract Domain **D** (Data-Flow Facts): which information to compute?

- **Example**: interval for each variable x:[a,b], y:[a',b']

 Transfer Functions [[st]] for each statement st, how this statement affects the facts

- Example: $\begin{bmatrix} x = x+2 \end{bmatrix} (x:[a,b],...) \\ = (x:[a+2,b+2],...) \\ 0 x:[a+2,b+2], y:[c,d]$

Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If $a \le x \le b$ $c \le y \le d$ and we execute x = x + ythen x' = x + yy' = yso $\le x' \le$ $\le y' \le$

So we can let

$$a'=a+c$$
 $b'=b+d$
 $c'=c$ $d'=d$

Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

So we can let

$$a'=a$$
 $b'=b$
 $c'=a-d$ $d'=b-c$

Transfer Functions for Tests X: [-10,10] x:[-10,10] if (x > 1) { [!(x>1)] [x>I] X÷ N. ×:[X:E y = 1 / x4=42 } else { Y=1/x *: y = 42 , x:[a,b] y:[c,d] [x > y]

Merging Data-Flow Facts

Handling Loops: Iterate Until Stabilizes

Compiler learned some facts! ③

 $[1,1] \sqcup [3,3] = [1,3]$ $[1,1] \sqcup [3,5] = [1,5]$

Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues // change

while (there was change) $[1,1] \sqcup [3,3] = [1,3]$ **pick** edge (v1,statmt,v2) from CFG [1,1] L [3,5] = [1,5] such that facts(v1) was changed facts(v2)=facts(v2) join [[statmt]](facts(v1)) } Order does not matter for the [1,1] [1,3] [1,5] end result, as long as we do not [3,5] permanently neglect any edge whose source was changed.

Handling Loops: Iterate Until Stabilizes

Compiler learns some facts, but only after long time

x = 1 n = 100000 while (x < n) { x = x + 2 }

Handling Loops: Iterate Until Stabilizes

For unknown program inputs it may be practically impossible to know how long it takes

```
var x : BigInt = 1
var n : BigInt = readInput()
while (x < n) {
    x = x + 2
}</pre>
```

Solutions

smaller domain, e.g. only certain intervals
[a,b] where a,b in {-∞,-127,-1,0,1,127,∞}
widening techniques (make it less precise on demand)

Size of analysis domain

Interval analysis:

 $D_1 = \{ [a,b] \mid a \le b, a,b \in \{-M,-127,-1,0,1,127,M-1\} \} \cup \{ \perp \}$ Constant propagation:

D₂ = { [a,a] | a ∈ {-M,-(M-1),...,-2,-1,0,1,2,3,...,M-1}} U {⊥}
suppose M is
$$2^{63}$$

 $|D_1| =$

|D₂| =

How many steps does the analysis take to finish (converge)?

Interval analysis:

 $D_1 = \{ [a,b] \mid a \le b, a,b \in \{-M,-127,-1,0,1,127,M-1\} \} \cup \{ \perp \}$ **Constant propagation:**

x= x+2

X=1

With D_1 takes at most steps.

With D₂ takes at most steps.

Termination Given by Length of Chains

Interval analysis:

 $D_1 = \{ [a,b] \mid a \le b, a,b \in \{-M,-127,-1,0,1,127,M-1\} \} \cup \{ \perp \}$ **Constant propagation:** $D_2 = \{ [a,a] \mid a \in \{-M, ..., -2, -1, 0, 1, 2, 3, ..., M-1\} \} \cup \{ \bot \} \cup \{T \}$ suppose M is 2⁶³ r-m."m-17 [-M,-M] [-2,-2] [-1,-1] [0,0] [1,1] [2,2] [M-1,M-1]

Domain is a **lattice**. Maximal chain length = **lattice height**

