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Java Virtual Machine 
(JVM) Bytecode 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
simplified Java-like 
language 

 21: iload_2  
  22: iconst_2  
  23: iload_1  
  24: imul  
  25: iadd  
  26: iconst_1  
  27: iadd  
  28: istore_2  
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Compiler              
(scalac, gcc)                   

 
 
 
 
 

machine code 
(e.g. x86, ARM) 

efficient to execute 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
(e.g. Scala, Java,C) 
easy to write 

mov R1,#0 
mov R2,#40 
mov R3,#3 
jmp +12 
mov (a+R1),R3 
add R1, R1, #4 
add R3, R3, #7 
cmp R1, R2 
blt -16 
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code gen 

optimizer 

type  
check 

idea 

real compiler:  
1) more complex analyses 
    (types, data-flow) 
2) lower-level code 
3) more optimizations 



Program Analysis 

auxiliary information 
(hints, pragmas, extra types) 

Can come from the  
compiler or the user 

Goal: 
Automatically computes potentially useful information about the program. 

efficiency of code 

correctness (warnings) 

helps with 



Uses of Program Analysis 

Compute information about the program; use it for: 

• efficiency (codegen): Program transformation 

– Use the information in compiler to transform the 
program, make it more efficient (“optimization”) 
  bipush 9; bipush 7; imul    
  bipush 63 

• correctness: Program verification 

– Provide feedback to developer about possible errors in 
the program 
  a[k] = v  
warning: out of-bounds reference possible for k=100 



Example Transformations 

• Common sub-expression elimination using available 
expression analysis 
– avoid re-computing (automatically or manually generated) 

identical expressions: 
 a[c[k]] = a[c[k]] + a[k]   
 { val x1  = c[k];  a[x1] = a[x1] + a[k] } 

• Constant propagation 
– use constants instead of variables if variable value known 

• Copy propagation 
– use another variable with the same name 

• Dead code elimination 
– remove code that is never reached 

• Automatically generate good code for parallel machines 



Examples of Verification Questions 

Example questions in analysis and verification 
• Will the program crash? 

– null dereference, array bounds, exception 

• Does it compute the correct result? 
– satisfy given assertions, numerical value close enough 

• Does it leak private information? 
– sends passwords over the network? 

• How long does it take to run? 
– will airplane controller react fast enough 

• How much power does it consume? 
– which version of code consumes less power? 



French Guyana, June 4, 1996 
t = 0 sec 

t = 40 sec 
$800 million software failure 

Space Missions 



Arithmetic Overflow 

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));  

if L_M_BV_32 > 32767 then  

  P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;  

elsif L_M_BV_32 < -32768 then  

  P_M_DERIVE(T_ALG.E_BV) := 16#8000#;  

else  

  P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));  

end if;  

P_M_DERIVE(T_ALG.E_BH) :=  

  UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH))); 

According to a presentation by Jean-Jacques Levy (who was part of the team who  
searched for the source of the problem), the source code in Ada that caused the 
problem was as follows: 

http://en.wikipedia.org/wiki/Ariane_5_Flight_501 

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501


 Air Transport 



ASTREE Analyzer 

“In Nov. 2003, ASTRÉE [analyzer] was able to 
prove completely automatically the absence of 
any run-time errors in the primary flight control 
software of the Airbus A340 fly-by-wire system, 
a program of 132,000 lines of C analyzed in 1h20 
on a 2.8 GHz 32-bit PC using 300 Mb of memory 
(and 50mn on a 64-bit AMD Athlon™ 64 using 
580 Mb of memory).”  

• http://www.astree.ens.fr/ 

http://www.astree.ens.fr/
http://www.astree.ens.fr/


AbsInt 

• 7 April 2005. AbsInt contributes to 
guaranteeing the safety of the A380, the 
world's largest passenger aircraft. The 
Analyzer is able to verify the proper response 
time of the control software of all 
components by computing the worst-case 
execution time (WCET) of all tasks in the flight 
control software. This analysis is performed on 
the ground as a critical part of the safety 
certification of the aircraft. 

 

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm


Coverity Prevent 

• SAN FRANCISCO - January 8, 2008 - Coverity®, 
Inc., the leader in improving software quality and 
security, today announced that as a result of its 
contract with US Department of Homeland 
Security (DHS), potential security and quality 
defects in 11 popular open source software 
projects were identified and fixed. The 11 
projects are Amanda, NTP, OpenPAM, OpenVPN, 
Overdose, Perl, PHP, Postfix, Python, Samba, 
and TCL. 

 

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/


Microsoft’s Static Driver Verifier 
Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool 
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to 
be encountered even in thorough testing. SDV systematically analyzes the 
source code of Windows drivers that are written in the C language. SDV uses a 
set of interface rules and a model of the operating system to determine 
whether the driver interacts properly with the Windows operating system.  
SDV can verify device drivers (function drivers, filter drivers, and bus drivers) 
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework 
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the 
development cycle. You should run SDV as soon as the basic structure of a 
driver is in place, and continue to run it as you make changes to the driver. 
Development teams at Microsoft use SDV to improve the quality of the WDM, 
KMDF, and NDIS miniport drivers that ship with the operating system and the 
sample drivers that ship with the Windows Driver Kit (WDK). 
SDV is included in the Windows Driver Kit (WDK) and supports all x86-based 
and x64-based build environments. 

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx


Further Reading on Verification 

• Recent Research Highlights from the Communications 
of the ACM 
– A Few Billion Lines of Code Later: Using Static Analysis to 

Find Bugs in the Real World 

– Retrospective: An Axiomatic Basis for Computer 
Programming 

– Model Checking: Algorithmic Verification and Debugging 

– Software Model Checking Takes Off 

– Formal Verification of a Realistic Compiler 

– seL4: Formal Verification of an Operating-System Kernel 

(click on the links to see pointers to papers) 

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext


Type Inference 



Example Analysis: Type Inference 

• Reduce the need to write type declarations, 
yet detect type errors statically 

– best of static and dynamic typing 

• Infer types that programmer is not willing to 
write (e.g. more precise types) 

• Today: a simple example: inferring types that 
can be: simple values, pairs, or functions 

– we assume no subtyping in this part 



Hindley-Milner Type Inference 

J. Roger Hindley (1938-) 

 

 

 

 

 

 

 

 
http://www.users.waitrose.com/~hindley/  

Arthur John Robin Gorell Milner 
13 January 1934 – 20 March 2010 

http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/


A Small Language 
• Int, Bool (could be any finite set of base types) 

– Disjoint – no overlap between values 

• functions on primitive types given by declarations 
– +, - :  Int x Int -> Int    <,> : +, - :  Int x Int -> Boolean 

– &&, || : Boolean x Boolean -> Boolean 

• Pairs:   (7,9) : (Int,Int)   Pair[A,B] 
– records - same: { f = 7, g = false } : { f : Int, g : Boolean } 

• Lists: List(1,2,3) : List[Int],    List[true,false] : List[Bool] 

• User-defined functions  Function[A,B] 
– including anonymous functions:   (x=> x*x + 1): (Int => Int) 

• val-s and blocks similar to Scala: { val x:T= x0 ; body} 



Example 
object Main { 

  val a = 2 * 3 

  val b = a < 2 

  val c = sumOfSquares(a) 

  val d = if(b) c(3) else square(a)  

} 

 

def square(z) = z * z 

def sumOfSquares(x) = { 

  (y) => square(x) + square(y) 

} 
anonymous function 
without argument type 
declaration 

named function without 
parameter type declaration 



Can we assign types so it type checks? 
object Main { 

  val a = 2 * 3 

  val b = a < 2 

  val c = sumOfSquares(a) 

  val d = if(b) c(3) else square(a)  

} 

 

def square(z) =(z * z) 

def sumOfSquares(x) = { 

  (y) => square(x) + square(y) 

} 

a:Int 
b:Bool Int 

x: Int 

Int 

z: Int 

:Int 

Int Int 

Int 

Int => Int 

y:Int 

y:Int 

c : Int => Int 

Int Int 

d : Int 



Introduce type variables for unknown types 

object Main { 

  val a: TA = 2 * 3 

  val b: TB = a < 2 

  val c: TC = sumOfSquares(a) 

  val d: TD = if(b) c(3) else square(a)  

} 

 

def square(x: TE): TF = x * x 

 

def sumOfSquares(x: TG): TH = { 

  (y: TI) => square(x) + square(y) 

} 



Write relationships (constraints)  
between variables – here a subset written 

object Main { 

  val a: TA = 2 * 3 

  val b: TB = a < 2 

  val c: TC = sumOfSquares(a: TA) 

  val d: TD =  

 if(b) c(3): S1 else square(a): S2  

} 

 

def square(x: TE): TF = x * x 

 

def sumOfSquares(x: TG): TH = { 

  (y: TI) => (square(x) + square(y)): S3 

} 

TA = Int 
TB = Bool 

TE = TG 
TE = TI 
TF = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
TA = TE 
S2 = TF 
TC = (Int => S1) 

TC = TH 
TA = TG 

* : Int x Int => Int 
TF = Int 
TE = Int 



Generated type constraints: 
no program expressions, only types 

TA = Int 
TB = Bool 

TE = TG 
TE = TI 
TF = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
TA = TE 
S2 = TF 
TC = (Int => S1) 

TC = TH 
TA = TG 

 
TF = Int 
TE = Int 

If left side is a variable, 
replace left side by right 
everywhere 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

TE = TG 
TE = TI 
TF = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
TA = TE 
S2 = TF 
TC = (Int => S1) 

TC = TH 
TA = TG 

 
TF = Int 
TE = Int 

If left side is a variable, 
replace left side by right 
everywhere 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

TE = TG 
TE = TI 
TF = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
Int = TE 
S2 = TF 
TC = (Int => S1) 

TC = TH 
Int = TG 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere 

2) if right side is a variable, 
swap left and right 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

TE = TG 
TE = TI 
TF = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
TE = Int 
S2 = TF 
TC = (Int => S1) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

Like Gaussian elimination 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

Int = Int 
Int = TI 
Int = Int 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
Int = Int 
S2 = Int 
TH = (Int => S1) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
TH = (TI => S3) 

TD = S1 
TD = S2 
 
S2 = Int 
TH = (Int => S1) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
TH = (TI => S3) 

TD = S1 
S1 = S2 
 
S2 = Int 
TH = (Int => S1) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
TH = (TI => S3) 

TD = S2 
S1 = S2 
 
S2 = Int 
TH = (Int => S2) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
TH = (TI => S3) 

TD = Int 
S1 = Int 
 
S2 = Int 
TH = (Int => Int) 

TC = TH 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
 

TD = Int 
S1 = Int 
 
S2 = Int 
TH = (Int => Int) 

 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 

(Int => Int) = (TI => S3) 

TC = (Int => Int) 

4) decompose complex types: 



Decompose Types 

(Int => Int) = (TI => S3) 4) decompose complex types: 

(A => B) = (A’ => B’) 
if and only if 

A=A’  and  B=B’ 

Int = TI     and   Int = S3 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
 

TD = Int 
S1 = Int 
 
S2 = Int 
TH = (Int => Int) 

 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 

Int = TI       Int = S3 

TC = (Int => Int) 

4) decompose complex types: 



Solving (Equality) Constraints 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
 

TD = Int 
S1 = Int 
 
S2 = Int 
TH = (Int => Int) 

 
TG = Int 

 
TF = Int 
TE = Int 

1) If left side is a variable, 
replace left side by right 
everywhere (RHS can be any) 

2) if right side is a variable, 
swap left and right  
(so you can apply 1) again 

3) delete equations of form T=T 

Int = Int       Int = Int 

TC = (Int => Int) 

4) decompose complex types 



Substitute back solution into the program 

object Main { 

  val a: TA = 2 * 3 

  val b: TB = a < 2 

  val c: TC = sumOfSquares(a: TA) 

  val d: TD =  

 if(b) c(3): S1 else square(a): S2  

} 

 

def square(x: TE): TF = x * x 

 

def sumOfSquares(x: TG): TH = { 

  (y: TI) => (square(x) + square(y)): S3 

} 

TA = Int 
TB = Bool 

 
TI = Int 
 
S3 = Int 
 

TD = Int 
S1 = Int 
 
S2 = Int 
TH = (Int => Int) 

 
TG = Int 

 
TF = Int 
TE = Int 

TC = (Int => Int) 



Obtained program fully annotated with types! 

object Main { 

  val a: Int = 2 * 3 

  val b: Bool = a < 2 

  val c: (Int => Int) = sumOfSquares(a) 

  val d: Int =  

 if(b) c(3): Int else square(a): Int  

} 

 

def square(x: Int): Int = x * x 

 

def sumOfSquares(x: Int): Int = { 

  (y: Int) => (square(x) + square(y)): Int 

} 



Hindley-Milner Algorithm Sketch 

1. Generate type constraints 
- introduce type variable for each sub-tree 
- applicable type rule for the tree node gives a  
  constraint between type variables in the tree 

2. Solve type constraints 

– systematically use rules for equality (substitution) 

– decomposition handles cases when both sides are 
non-variables 

3. If constraints have solution, put it into tree, 
otherwise report a type error 



From Type Rule to Constraint: * 

e1 : Int e2 : Int 

e1 * e2 : Int 

type rule: 

equivalent constraint form 
 (each subtree has a distinct type variable) 

e1 : T1 e2 : T2 

e1 * e2 : T3 
T1=Int, T2=Int, T3=Int 

“where clause” 
of the type rule 



From Type Rule to Constraint: if 

c : Bool e2 : T 

(if ( c ) e1 else e2) : T 

type rule: 

equivalent constraint form: 

T1=Bool, T2=T3, T4=T2 

e1 : T 

c : T1 e2 : T3 

(if ( c ) e1 else e2) : T4 

e1 : T2 

Type variables are local for each rule application. 
T1,T2,T3,T4 for one “if” expression have nothing to do 
with those variables for another “if”  



General Function Application Rule 

e1 : T1    … en : Tn 

f(e1,…en) : T 

equivalent constraint form: 

f : Tf 
Tf = ((T1 x … x Tn) => T) 

e1 : T1    … en : Tn 

f(e1,…en) : T 

f : ((T1 x … x Tn) => T 



Variable Rule 

(x,T) ∈ Γ 

 Γ ⊦ x : T 

equivalent constraint form: 

(x,T1) ∈ Γ 

x : T2 

T1 = T2 



These Rules Cover Primitives, Too 

e1 : T1    … en : Tn 

f(e1,…en) : T 

f : Tf 
Tf = ((T1 x … x Tn) => T) 

Now assume  (f, Int x Int => Int) ∈ Γ (f is e.g. *) 

e1 : T1 e2 : T2 

f(e1,en): T 

f : Tf 
Tf = ((T1 x T2) => T) 

(f, Int x Int => Int) ∈ Γ 

x : Tf 

Tf =  (Int x Int => Int) 

(Int x Int => Int) = ((T1 x T2) => T) 

((Int x Int)=(T1 x T2)     Int=T 

Int = T1 

Int = T2 
Int = T 



Equality between Types 
(A=>B)=(A’=>B’)  iff A=A’   and  B=B’ 
(A x B) = (A’ x B’)  iff A=A’   and  B=B’ 
List[A] = List[A’]  iff A=A’ 
(A=>B) = (C x D)  iff  false 
(A => B) = List[C]  iff  false 
Type constructor: constructs types from types 
Unary: List[A] – one type argument 
A => B (Function[A,B]),  AxB (Pair[A,B])  - two type args 

f(t1,…,tn) – type constructor applied to types 
f(t1,…,tn) = f(t’1,…t’n)  iff t1=t’1 and … and tn = t’n 

f(t1,…,tn) = g(t’1,…t’m) iff  false  (f != g) 
 



Unification 

Finds a solution (substitution) to a set of equations 
• works for any constraint set of equalities between (type) 

constructors 

• finds the most general solution 

Definition 
A set of equations is in solved form (compare to Gaussian 
elimination!) if it is of the form 

{x1 = t1, … xn = tn} and variables xi do not appear in 

terms ti, that is  {x1,…,xn}∩(FV(t1)∪…∪FV(tn)) = ∅ 
In what follows,  

• x denotes a type variable  (like TA, TB before) 

• t, ti, si denote terms that may contain type variables 



Unification Algorithm 
We obtain a solved form in finite time using the non-deterministic algorithm that 
applies the following rules as long as no clash is reported and as long as the 
equations are not in solved form.  

Orient:    Select t = x, t ≠ x and replace it with x = t. 

Delete:    Select x = x, remove it. 

Eliminate:   Select x = t where x does not occur in t, put it aside, 
   substitute x with t in all remaining equations 

Occurs Check: Select x = t, where x occurs in t, report clash. 

Decomposition:  Select f(t1, …, tn) = f(s1, …, sn),  

    replace with t1 = s1, …, tn = sn. 

  e.g.  (T1 x T2) = (S1 x S2)  becomes T1 = S1 , T2 = S2 

Decomposition Clash: f(t1,…,tn) = g(s1,…,sn), f ≠ g,   report clash. 

 e.g.  (T1 x T2) = (S1 -> S2)  is  f(T1,T2) = g(S1,S2)  so it is a clash 

f and g can denote x, ->, as well as constructor of polymorphic containers: 
 

  Pair[A, B] = Pair[C, D] will be replaced by A = C and B = D 



Example 2 
Construct and Solve Constraints 

def twice(f) = (x => f(f(x))) 



Example 2 

def twice(f) = (x => f(f(x))) 

add type variables: 

def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB 

constraints: 

TA=TX->TB,  TF=TX=>TR,  TF=TR=>TB 

consequences derived: 

TX=TR, TR=TB 

replace TR,TB with TX: 

TR=TX, TB=TX, TA=TX=>TX, TF=TX=>TX 

twice: TT = TF=>TA = (TX=>TX)=>(TX=>TX) 



Most General Solution 
What is the general solution for 

 

def f(x) = x 

def g(a) = f( f( a)) 

 

Example solution:    a:Int,  f,g : Int -> Int 

 

Are there others? How do all solutions look like? 



Instantiating Type Variables 
def f(x) = x 

def test() = if (f(true)) f(30)  

   else f(42) 

 

Generate and solve constraints. 

Is result different if we clone f for each invocation? 

def f1(x) = x 

def f2(x) = x  

def f3(x) = x  

def test() = if (f1(true)) f2(30)  

   else f3(42) 

 



Generalization Rule 

• If after inferring top-level (immutable) function 
definitions certain variables remain 
unconstrained, then generalize these variables 
and make them into type parameters T: 

def f[T](…)  if T was not constrained 

• When applying a function with generalized 
variables, rename these variables into fresh ones 

def f(x) = x 

def test() = if (f(true)) f(3) else f(4) 

 



Exercise 

 

def CONS[T](x:T, lst:List[T]):List[T]={...} 

def listInt() : List[Int] = {...} 

def listBool() : List[Bool] = {...} 

 

def baz(a, b) = CONS(a(b), b) 

def test(f,g) =  

 (baz(f,listInt), baz(g,listBool)) 



Data-Flow Analysis 



Goal of Data-Flow Analysis 

Automatically compute information about the 
program 

• Use it to report errors to user (like type errors) 

• Use it to optimize the program 

Works on control-flow graphs: 

   x = 1 
   while (x < 10) { 
     x = x + 2 
   } 



How We Define It 

• Abstract Domain D (Data-Flow Facts): 
which information to compute? 

– Example: interval for each variable   x:[a,b], y:[a’,b’] 

• Transfer Functions [[st]] for each statement st,  
how this statement affects the facts 

– Example:  



Find Transfer Function: Plus 

If 

and we execute x= x+y 

then  

Suppose we have only two integer variables: x,y 

So we can let 

  a’= a+c      b’ = b+d 
  c’=c          d’ = d 



Find Transfer Function: Minus 

If 

and we execute y= x-y 

then  

Suppose we have only two integer variables: x,y 

So we can let 

  a’= a          b’ = b 
  c’= a - d     d’ = b - c 



Transfer Functions for Tests 

if (x > 1) { 
 
   y = 1 / x 
} else { 
 
   y = 42 
} 



Merging Data-Flow Facts 

if (x > 0) { 
 
   y = x + 100 

 
} else { 
 
   y = -x – 50 

 
} 

join 



Handling Loops: Iterate Until Stabilizes 

   x = 1 
 
   while (x < 10) { 
 
     x = x + 2 
 
   } 
 

Compiler learned 
some facts!  



Data-Flow Analysis Algorithm 

var facts : Map[Vertex,Domain] = Map.withDefault(empty) 
facts(entry) = initialValues // change 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v1) was changed 
   facts(v2)=facts(v2) join [[statmt]](facts(v1)) 
} 

Order does not matter for the  
end result, as long as we do not  
permanently neglect any  edge  
whose source was changed. 



Handling Loops: Iterate Until Stabilizes 

   x = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

Compiler learns 
some facts, but only after long time 

n = 100000 



Handling Loops: Iterate Until Stabilizes 

   var x : BigInt = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

For unknown program inputs it may be practically 
impossible to know how long it takes 

var n : BigInt = readInput() 

Solutions 
  - smaller domain, e.g. only certain intervals 
    [a,b] where a,b in {-∞,-127,-1,0,1,127,∞} 
  - widening techniques (make it less precise on demand) 



Size of analysis domain 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
Constant propagation: 
  D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {} 
 suppose M is 263

 

|D1| =  
 
|D2| =  



How many steps does the analysis take 
to finish (converge)? 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
Constant propagation: 
  D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {} 
 suppose M is 263

 

With D1 takes at most       steps. 
 
With D2 takes at most       steps. 



Termination Given by Length of Chains 

Interval analysis: 
  D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {} 
 
 
 
Constant propagation: 
  D2 = { [a,a] | a{-M,…,-2,-1,0,1,2,3,…,M-1}} U {} U {T} 
 suppose M is 263

 

Domain is a lattice. Maximal chain length = lattice height 



Lattice for intervals [a,b] where 
a,b{-M,-127,0,127,M-1} 


