

Your

Compiler

Java Virtual Machine
(JVM) Bytecode

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
simplified Java-like
language

 21: iload_2
 22: iconst_2
 23: iload_1
 24: imul
 25: iadd
 26: iconst_1
 27: iadd
 28: istore_2

Covered!

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen
type
check

Compiler
(scalac, gcc)

machine code
(e.g. x86, ARM)

efficient to execute

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
(e.g. Scala, Java,C)
easy to write

mov R1,#0
mov R2,#40
mov R3,#3
jmp +12
mov (a+R1),R3
add R1, R1, #4
add R3, R3, #7
cmp R1, R2
blt -16

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

control-flow
graphs

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen

optimizer

type
check

idea

real compiler:
1) more complex analyses
 (types, data-flow)
2) lower-level code
3) more optimizations

Program Analysis

auxiliary information
(hints, pragmas, extra types)

Can come from the
compiler or the user

Goal:
Automatically computes potentially useful information about the program.

efficiency of code

correctness (warnings)

helps with

Uses of Program Analysis

Compute information about the program; use it for:

• efficiency (codegen): Program transformation

– Use the information in compiler to transform the
program, make it more efficient (“optimization”)
 bipush 9; bipush 7; imul
 bipush 63

• correctness: Program verification

– Provide feedback to developer about possible errors in
the program
 a[k] = v
warning: out of-bounds reference possible for k=100

Example Transformations

• Common sub-expression elimination using available
expression analysis
– avoid re-computing (automatically or manually generated)

identical expressions:
 a[c[k]] = a[c[k]] + a[k]
 { val x1 = c[k]; a[x1] = a[x1] + a[k] }

• Constant propagation
– use constants instead of variables if variable value known

• Copy propagation
– use another variable with the same name

• Dead code elimination
– remove code that is never reached

• Automatically generate good code for parallel machines

Examples of Verification Questions

Example questions in analysis and verification
• Will the program crash?

– null dereference, array bounds, exception

• Does it compute the correct result?
– satisfy given assertions, numerical value close enough

• Does it leak private information?
– sends passwords over the network?

• How long does it take to run?
– will airplane controller react fast enough

• How much power does it consume?
– which version of code consumes less power?

French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions

Arithmetic Overflow

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));

if L_M_BV_32 > 32767 then

 P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;

elsif L_M_BV_32 < -32768 then

 P_M_DERIVE(T_ALG.E_BV) := 16#8000#;

else

 P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));

end if;

P_M_DERIVE(T_ALG.E_BH) :=

 UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH)));

According to a presentation by Jean-Jacques Levy (who was part of the team who
searched for the source of the problem), the source code in Ada that caused the
problem was as follows:

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

 Air Transport

ASTREE Analyzer

“In Nov. 2003, ASTRÉE [analyzer] was able to
prove completely automatically the absence of
any run-time errors in the primary flight control
software of the Airbus A340 fly-by-wire system,
a program of 132,000 lines of C analyzed in 1h20
on a 2.8 GHz 32-bit PC using 300 Mb of memory
(and 50mn on a 64-bit AMD Athlon™ 64 using
580 Mb of memory).”

• http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

AbsInt

• 7 April 2005. AbsInt contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all
components by computing the worst-case
execution time (WCET) of all tasks in the flight
control software. This analysis is performed on
the ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Coverity Prevent

• SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to
be encountered even in thorough testing. SDV systematically analyzes the
source code of Windows drivers that are written in the C language. SDV uses a
set of interface rules and a model of the operating system to determine
whether the driver interacts properly with the Windows operating system.
SDV can verify device drivers (function drivers, filter drivers, and bus drivers)
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the
development cycle. You should run SDV as soon as the basic structure of a
driver is in place, and continue to run it as you make changes to the driver.
Development teams at Microsoft use SDV to improve the quality of the WDM,
KMDF, and NDIS miniport drivers that ship with the operating system and the
sample drivers that ship with the Windows Driver Kit (WDK).
SDV is included in the Windows Driver Kit (WDK) and supports all x86-based
and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

Further Reading on Verification

• Recent Research Highlights from the Communications
of the ACM
– A Few Billion Lines of Code Later: Using Static Analysis to

Find Bugs in the Real World

– Retrospective: An Axiomatic Basis for Computer
Programming

– Model Checking: Algorithmic Verification and Debugging

– Software Model Checking Takes Off

– Formal Verification of a Realistic Compiler

– seL4: Formal Verification of an Operating-System Kernel

(click on the links to see pointers to papers)

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext

Type Inference

Example Analysis: Type Inference

• Reduce the need to write type declarations,
yet detect type errors statically

– best of static and dynamic typing

• Infer types that programmer is not willing to
write (e.g. more precise types)

• Today: a simple example: inferring types that
can be: simple values, pairs, or functions

– we assume no subtyping in this part

Hindley-Milner Type Inference

J. Roger Hindley (1938-)

http://www.users.waitrose.com/~hindley/

Arthur John Robin Gorell Milner
13 January 1934 – 20 March 2010

http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/
http://www.users.waitrose.com/~hindley/

A Small Language
• Int, Bool (could be any finite set of base types)

– Disjoint – no overlap between values

• functions on primitive types given by declarations
– +, - : Int x Int -> Int <,> : +, - : Int x Int -> Boolean

– &&, || : Boolean x Boolean -> Boolean

• Pairs: (7,9) : (Int,Int) Pair[A,B]
– records - same: { f = 7, g = false } : { f : Int, g : Boolean }

• Lists: List(1,2,3) : List[Int], List[true,false] : List[Bool]

• User-defined functions Function[A,B]
– including anonymous functions: (x=> x*x + 1): (Int => Int)

• val-s and blocks similar to Scala: { val x:T= x0 ; body}

Example
object Main {

 val a = 2 * 3

 val b = a < 2

 val c = sumOfSquares(a)

 val d = if(b) c(3) else square(a)

}

def square(z) = z * z

def sumOfSquares(x) = {

 (y) => square(x) + square(y)

}
anonymous function
without argument type
declaration

named function without
parameter type declaration

Can we assign types so it type checks?
object Main {

 val a = 2 * 3

 val b = a < 2

 val c = sumOfSquares(a)

 val d = if(b) c(3) else square(a)

}

def square(z) =(z * z)

def sumOfSquares(x) = {

 (y) => square(x) + square(y)

}

a:Int
b:Bool Int

x: Int

Int

z: Int

:Int

Int Int

Int

Int => Int

y:Int

y:Int

c : Int => Int

Int Int

d : Int

Introduce type variables for unknown types

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a)

 val d: TD = if(b) c(3) else square(a)

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => square(x) + square(y)

}

Write relationships (constraints)
between variables – here a subset written

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a: TA)

 val d: TD =

 if(b) c(3): S1 else square(a): S2

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => (square(x) + square(y)): S3

}

TA = Int
TB = Bool

TE = TG
TE = TI
TF = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
TA = TE
S2 = TF
TC = (Int => S1)

TC = TH
TA = TG

* : Int x Int => Int
TF = Int
TE = Int

Generated type constraints:
no program expressions, only types

TA = Int
TB = Bool

TE = TG
TE = TI
TF = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
TA = TE
S2 = TF
TC = (Int => S1)

TC = TH
TA = TG

TF = Int
TE = Int

If left side is a variable,
replace left side by right
everywhere

Solving (Equality) Constraints

TA = Int
TB = Bool

TE = TG
TE = TI
TF = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
TA = TE
S2 = TF
TC = (Int => S1)

TC = TH
TA = TG

TF = Int
TE = Int

If left side is a variable,
replace left side by right
everywhere

Solving (Equality) Constraints

TA = Int
TB = Bool

TE = TG
TE = TI
TF = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
Int = TE
S2 = TF
TC = (Int => S1)

TC = TH
Int = TG

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere

2) if right side is a variable,
swap left and right

Solving (Equality) Constraints

TA = Int
TB = Bool

TE = TG
TE = TI
TF = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
TE = Int
S2 = TF
TC = (Int => S1)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere

2) if right side is a variable,
swap left and right
(so you can apply 1) again

Like Gaussian elimination

Solving (Equality) Constraints

TA = Int
TB = Bool

Int = Int
Int = TI
Int = Int
S3 = Int
TH = (TI => S3)

TD = S1
TD = S2
Int = Int
S2 = Int
TH = (Int => S1)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int
TH = (TI => S3)

TD = S1
TD = S2

S2 = Int
TH = (Int => S1)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int
TH = (TI => S3)

TD = S1
S1 = S2

S2 = Int
TH = (Int => S1)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int
TH = (TI => S3)

TD = S2
S1 = S2

S2 = Int
TH = (Int => S2)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int
TH = (TI => S3)

TD = Int
S1 = Int

S2 = Int
TH = (Int => Int)

TC = TH
TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int

TD = Int
S1 = Int

S2 = Int
TH = (Int => Int)

TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

(Int => Int) = (TI => S3)

TC = (Int => Int)

4) decompose complex types:

Decompose Types

(Int => Int) = (TI => S3) 4) decompose complex types:

(A => B) = (A’ => B’)
if and only if

A=A’ and B=B’

Int = TI and Int = S3

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int

TD = Int
S1 = Int

S2 = Int
TH = (Int => Int)

TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Int = TI Int = S3

TC = (Int => Int)

4) decompose complex types:

Solving (Equality) Constraints

TA = Int
TB = Bool

TI = Int

S3 = Int

TD = Int
S1 = Int

S2 = Int
TH = (Int => Int)

TG = Int

TF = Int
TE = Int

1) If left side is a variable,
replace left side by right
everywhere (RHS can be any)

2) if right side is a variable,
swap left and right
(so you can apply 1) again

3) delete equations of form T=T

Int = Int Int = Int

TC = (Int => Int)

4) decompose complex types

Substitute back solution into the program

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a: TA)

 val d: TD =

 if(b) c(3): S1 else square(a): S2

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => (square(x) + square(y)): S3

}

TA = Int
TB = Bool

TI = Int

S3 = Int

TD = Int
S1 = Int

S2 = Int
TH = (Int => Int)

TG = Int

TF = Int
TE = Int

TC = (Int => Int)

Obtained program fully annotated with types!

object Main {

 val a: Int = 2 * 3

 val b: Bool = a < 2

 val c: (Int => Int) = sumOfSquares(a)

 val d: Int =

 if(b) c(3): Int else square(a): Int

}

def square(x: Int): Int = x * x

def sumOfSquares(x: Int): Int = {

 (y: Int) => (square(x) + square(y)): Int

}

Hindley-Milner Algorithm Sketch

1. Generate type constraints
- introduce type variable for each sub-tree
- applicable type rule for the tree node gives a
 constraint between type variables in the tree

2. Solve type constraints

– systematically use rules for equality (substitution)

– decomposition handles cases when both sides are
non-variables

3. If constraints have solution, put it into tree,
otherwise report a type error

From Type Rule to Constraint: *

e1 : Int e2 : Int

e1 * e2 : Int

type rule:

equivalent constraint form
 (each subtree has a distinct type variable)

e1 : T1 e2 : T2

e1 * e2 : T3
T1=Int, T2=Int, T3=Int

“where clause”
of the type rule

From Type Rule to Constraint: if

c : Bool e2 : T

(if (c) e1 else e2) : T

type rule:

equivalent constraint form:

T1=Bool, T2=T3, T4=T2

e1 : T

c : T1 e2 : T3

(if (c) e1 else e2) : T4

e1 : T2

Type variables are local for each rule application.
T1,T2,T3,T4 for one “if” expression have nothing to do
with those variables for another “if”

General Function Application Rule

e1 : T1 … en : Tn

f(e1,…en) : T

equivalent constraint form:

f : Tf
Tf = ((T1 x … x Tn) => T)

e1 : T1 … en : Tn

f(e1,…en) : T

f : ((T1 x … x Tn) => T

Variable Rule

(x,T) ∈ Γ

 Γ ⊦ x : T

equivalent constraint form:

(x,T1) ∈ Γ

x : T2

T1 = T2

These Rules Cover Primitives, Too

e1 : T1 … en : Tn

f(e1,…en) : T

f : Tf
Tf = ((T1 x … x Tn) => T)

Now assume (f, Int x Int => Int) ∈ Γ (f is e.g. *)

e1 : T1 e2 : T2

f(e1,en): T

f : Tf
Tf = ((T1 x T2) => T)

(f, Int x Int => Int) ∈ Γ

x : Tf

Tf = (Int x Int => Int)

(Int x Int => Int) = ((T1 x T2) => T)

((Int x Int)=(T1 x T2) Int=T

Int = T1

Int = T2
Int = T

Equality between Types
(A=>B)=(A’=>B’) iff A=A’ and B=B’
(A x B) = (A’ x B’) iff A=A’ and B=B’
List[A] = List[A’] iff A=A’
(A=>B) = (C x D) iff false
(A => B) = List[C] iff false
Type constructor: constructs types from types
Unary: List[A] – one type argument
A => B (Function[A,B]), AxB (Pair[A,B]) - two type args

f(t1,…,tn) – type constructor applied to types
f(t1,…,tn) = f(t’1,…t’n) iff t1=t’1 and … and tn = t’n

f(t1,…,tn) = g(t’1,…t’m) iff false (f != g)

Unification

Finds a solution (substitution) to a set of equations
• works for any constraint set of equalities between (type)

constructors

• finds the most general solution

Definition
A set of equations is in solved form (compare to Gaussian
elimination!) if it is of the form

{x1 = t1, … xn = tn} and variables xi do not appear in

terms ti, that is {x1,…,xn}∩(FV(t1)∪…∪FV(tn)) = ∅
In what follows,

• x denotes a type variable (like TA, TB before)

• t, ti, si denote terms that may contain type variables

Unification Algorithm
We obtain a solved form in finite time using the non-deterministic algorithm that
applies the following rules as long as no clash is reported and as long as the
equations are not in solved form.

Orient: Select t = x, t ≠ x and replace it with x = t.

Delete: Select x = x, remove it.

Eliminate: Select x = t where x does not occur in t, put it aside,
 substitute x with t in all remaining equations

Occurs Check: Select x = t, where x occurs in t, report clash.

Decomposition: Select f(t1, …, tn) = f(s1, …, sn),

 replace with t1 = s1, …, tn = sn.

 e.g. (T1 x T2) = (S1 x S2) becomes T1 = S1 , T2 = S2

Decomposition Clash: f(t1,…,tn) = g(s1,…,sn), f ≠ g, report clash.

 e.g. (T1 x T2) = (S1 -> S2) is f(T1,T2) = g(S1,S2) so it is a clash

f and g can denote x, ->, as well as constructor of polymorphic containers:

 Pair[A, B] = Pair[C, D] will be replaced by A = C and B = D

Example 2
Construct and Solve Constraints

def twice(f) = (x => f(f(x)))

Example 2

def twice(f) = (x => f(f(x)))

add type variables:

def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB

constraints:

TA=TX->TB, TF=TX=>TR, TF=TR=>TB

consequences derived:

TX=TR, TR=TB

replace TR,TB with TX:

TR=TX, TB=TX, TA=TX=>TX, TF=TX=>TX

twice: TT = TF=>TA = (TX=>TX)=>(TX=>TX)

Most General Solution
What is the general solution for

def f(x) = x

def g(a) = f(f(a))

Example solution: a:Int, f,g : Int -> Int

Are there others? How do all solutions look like?

Instantiating Type Variables
def f(x) = x

def test() = if (f(true)) f(30)

 else f(42)

Generate and solve constraints.

Is result different if we clone f for each invocation?

def f1(x) = x

def f2(x) = x

def f3(x) = x

def test() = if (f1(true)) f2(30)

 else f3(42)

Generalization Rule

• If after inferring top-level (immutable) function
definitions certain variables remain
unconstrained, then generalize these variables
and make them into type parameters T:

def f[T](…) if T was not constrained

• When applying a function with generalized
variables, rename these variables into fresh ones

def f(x) = x

def test() = if (f(true)) f(3) else f(4)

Exercise

def CONS[T](x:T, lst:List[T]):List[T]={...}

def listInt() : List[Int] = {...}

def listBool() : List[Bool] = {...}

def baz(a, b) = CONS(a(b), b)

def test(f,g) =

 (baz(f,listInt), baz(g,listBool))

Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the
program

• Use it to report errors to user (like type errors)

• Use it to optimize the program

Works on control-flow graphs:

 x = 1
 while (x < 10) {
 x = x + 2
 }

How We Define It

• Abstract Domain D (Data-Flow Facts):
which information to compute?

– Example: interval for each variable x:[a,b], y:[a’,b’]

• Transfer Functions [[st]] for each statement st,
how this statement affects the facts

– Example:

Find Transfer Function: Plus

If

and we execute x= x+y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a+c b’ = b+d
 c’=c d’ = d

Find Transfer Function: Minus

If

and we execute y= x-y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a b’ = b
 c’= a - d d’ = b - c

Transfer Functions for Tests

if (x > 1) {

 y = 1 / x
} else {

 y = 42
}

Merging Data-Flow Facts

if (x > 0) {

 y = x + 100

} else {

 y = -x – 50

}

join

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < 10) {

 x = x + 2

 }

Compiler learned
some facts!

Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues // change

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) was changed
 facts(v2)=facts(v2) join [[statmt]](facts(v1))
}

Order does not matter for the
end result, as long as we do not
permanently neglect any edge
whose source was changed.

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < n) {
 x = x + 2
 }

Compiler learns
some facts, but only after long time

n = 100000

Handling Loops: Iterate Until Stabilizes

 var x : BigInt = 1

 while (x < n) {
 x = x + 2
 }

For unknown program inputs it may be practically
impossible to know how long it takes

var n : BigInt = readInput()

Solutions
 - smaller domain, e.g. only certain intervals
 [a,b] where a,b in {-∞,-127,-1,0,1,127,∞}
 - widening techniques (make it less precise on demand)

Size of analysis domain

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {}
 suppose M is 263

|D1| =

|D2| =

How many steps does the analysis take
to finish (converge)?

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {}
 suppose M is 263

With D1 takes at most steps.

With D2 takes at most steps.

Termination Given by Length of Chains

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}

Constant propagation:
 D2 = { [a,a] | a{-M,…,-2,-1,0,1,2,3,…,M-1}} U {} U {T}
 suppose M is 263

Domain is a lattice. Maximal chain length = lattice height

Lattice for intervals [a,b] where
a,b{-M,-127,0,127,M-1}

