
Translate This While Loop
using Rules that Explicitly Put Booleans on Stack

static void count(int from,
 int to,
 int step) {

 int counter = from;

 while (counter < to) {

 counter = counter + step;

 }

}

Towards More Efficient Translation
Compiling by Passing Destinations

Macro ‘branch’ instruction

Introduce an imaginary big instruction

branch(c,nThen,nElse)

Here

 c is a potentially complex Java boolean expression,
 that is the main reason why branch is not a real instruction

 nThen is label to jump to when c evaluates to true

 nFalse is label to jump to when c evaluates to false

 no “fall through” – always jumps (for symmetry)

We show how to:

• use branch to compile if, while, etc.

• expand branch recursively into concrete bytecodes

Using branch in Compilation

[if (c) t else e] =

[while (c) s] =

nThen: [t]

 goto nAfter

nElse: [e]

nAfter:

 branch(c,nThen,nElse)
lBegin: branch(c,start,lExit)

start: [s]

 goto lBegin

lExit:

Decomposing branch

branch(!c,nThen,nElse) =

branch(c1 && c2,nThen,nElse) =

branch(c1 || c2,nThen,nElse) =

branch(true,nThen,nElse) =

branch(false,nThen,nElse) =

boolean var b with slot N

 branch(b,nThen,nElse) =

 branch(c,nElse,nThen)

 branch(c1,nNext,nElse)

 nNext: branch(c2,nThen,nElse)

 branch(c1,nThen,nNext)

 nNext: branch(c2,nThen,nElse)

 goto nThen

 goto nElse

iload_N

ifeq nElse

goto nThen

Compiling Relations

branch(e1 R e2,nThen,nElse) =

 [e1]

 [e2]

 if_cmpR nThen

 goto nElse

Putting boolean variable on the stack

Consider storing x = c

where x,c are boolean and c has &&,||

How to put result of branch on stack to allow istore?

[c] = branch(c,nThen,nElse)

nThen: iconst_1

 goto nAfter

nElse: iconst_0

nAfter:

Compare Two Translations
of This While Loop

while (counter < to) {

 counter = counter + step;

 }

nbegin: iload #counter

 iload #to

 if_icmplt ntrue

 iconst_0

 goto nafter

ntrue: iconst_1

nafter: ifeq nexit

 iload #counter

 iload #step

 iadd

 istore #counter

 goto nbegin

nexit:

old one:

Complex Boolean Expression: Compare

Old code for assignment

 y = (x && y) && !z

New code:

Code Compiled with javac static int k = 0;

static boolean action(int si,
 boolean ob,
 int sm, int pr) {

 if (sm + 2*pr > 10 &&

 !(si <= 5 && ob)) {

 k++; return true;

 } else {

 return false;

 } }

Compared to our current translation:

if 'sm+2*pr > 10' false, immediately ireturns

if 'si > 5' is true, immediately goes to 'then' part

no intermediate result for if condition - do
branches directly

negation sign eliminated and pushed through

only one iconst_0 and one iconst_1

 0: iload_2

 1: iconst_2

 2: iload_3

 3: imul

 4: iadd

 5: bipush 10

 7: if_icmple 29

 10: iload_0

 11: iconst_5

 12: if_icmpgt 19

 15: iload_1

 16: ifne 29

 19: getstatic #2; //Field k

 22: iconst_1

 23: iadd

 24: putstatic #2; //Field k

 27: iconst_1

 28: ireturn

 29: iconst_0

 30: ireturn

Implementing branch

• Option 1: emit code using branches, then
rewrite

• Option 2: branch is a compilation function in the
compiler that expands

 branch(c,nTrue,nFalse)

def compileBranch(c:Expression,
 nTrue : Label, nFalse : Label) : List[Bytecode] =

{ … }

More Complex Control Flow

break statement

A common way to exit from a loop is to use a 'break' statement e.g.

while (true) {

 code1

 if (cond) break

 cond2

}

Consider a language that has expressions, assignments, the {…}
blocks, 'if' statements, while, and a 'break' statement. The 'break'
exits the innermost loop and can appear inside arbitrarily complex
blocks and if conditions. How would translation scheme for such
construct look like?

Destination Parameters in Compilation

• To compilation functions […] pass the label to which
instructions should jump when they finish.

– No fall-through

[x = e] dest = // new parameter dest

 [e]

 istore_slot(x)

 goto dest // at the end jump to it

[s1 ; s2] dest brk =

 [s1] freshL

 freshL: [s2] dest
we could have any junk in here
because ([s1] freshL) jumps

More Control,
More Destination Paramameters

[s1 ; s2] dest brk =

 [s1] freshL brk

 freshL: [s2] dest brk

[x = e] dest brk =

 [e]

 istore_slot(x)

 goto dest

[break] dest brk =

 goto brk

[while (c) s] dest brk =

test: branch(c,body,dest)
body: [s] dest dest

this is where the second
parameter gets bound to
the exit of the loop

break and continue statements?

• Describe how to modify previous translation

Some High-Level Instructions for JVM

Method Calls

Invoking methods (arguments pushed onto stack)

 invokestatic

 invokevirtual

Returning value from methods:

 ireturn – take integer from stack and return it

 areturn – take reference from stack and return it

 return – return from a method returning ‘void’

invokestatic
invokestatic

indexbyte1

indexbyte2

Operand Stack ..., [arg1, [arg2 ...]] → ...

The unsigned indexbyte1 and indexbyte2 are used to construct

an index into the run-time constant pool of the current class
(§2.6), where the value of the index is

(indexbyte1 << 8) | indexbyte2. The run-time constant pool
item at that index must be a symbolic reference to a method
(§5.1), which gives the name and descriptor (§4.3.3) of the
method as well as a symbolic reference to the class in which the
method is to be found. The named method is resolved (§5.4.3.3).
The resolved method must not be an instance initialization
method (§2.9) or the class or interface initialization method
(§2.9). It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared
the resolved method is initialized (§5.5) if that class has not
already been initialized.

The operand stack must contain nargs argument values, where
the number, type, and order of the values must be consistent with
the descriptor of the resolved method.

If the method is synchronized, the monitor associated with the
resolved Class object is entered or reentered as if by execution of
a monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values are
popped from the operand stack. A new frame is created
on the Java Virtual Machine stack for the method being
invoked. The nargs argument values are consecutively
made the values of local variables of the new frame,
with arg1 in local variable 0 (or, if arg1 is of type long or
double, in local variables 0 and 1) and so on. Any
argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java Virtual
Machine, that is done. The nargs argument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being
passed as a parameter. The parameters are passed and the code is
invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

 If the native method is synchronized, the monitor associated
with the resolved Class object is updated and possibly exited as if
by execution of a monitorexit instruction (§monitorexit) in the
current thread.

 If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

invokevirtual
invokevirtual

indexbyte1

indexbyte2

..., objectref, [arg1, [arg2 ...]] →

...

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and
descriptor (§4.3.3) of the method as well as a symbolic reference
to the class in which the method is to be found. The named
method is resolved (§5.4.3.3). The resolved method must not be
an instance initialization method (§2.9) or the class or interface
initialization method (§2.9). Finally, if the resolved method is
protected (§4.6), and it is a member of a superclass of the current
class, and the method is not declared in the same run-time
package (§5.3) as the current class, then the class of objectref
must be either the current class or a subclass of the current class.

If the resolved method is not signature polymorphic (§2.9), then
the invokevirtual instruction proceeds as follows.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

 If C contains a declaration for an instance method m that
overrides (§5.4.5) the resolved method, then m is the method to
be invoked, and the lookup procedure terminates.

 Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C; the method
to be invoked is the result of the recursive invocation of this
lookup procedure.

 Otherwise, an AbstractMethodError is raised.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the descriptor of the selected instance
method.

If the method is synchronized, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new
frame is created on the Java Virtual Machine stack for
the method being invoked. The objectref and the
argument values are consecutively made the values of
local variables of the new frame, with objectref in local
variable 0, arg1 in local variable 1 (or, if arg1 is of type
long or double, in local variables 1 and 2), and so on. Any

argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

...

Translation Rule for Method Calls

[x = objExpr.myMethodName(e1,e2)] =

 [objExpr]
 [e1]

 [e2]

 invokevirtual #13

 istore #x

constant pool area:

 0: "hello, world"

 1:

 ...

13: className.myMethodName/(II)I

 ...

Objects and References

ifnull label - consume top-of-stack reference and jump if it is null

ifnonnull label - consume top-of-stack reference, jump if not null

new #className - create fresh object of class pointed to by the offset
 #className in the constant pool
 (does not invoke any constructors)

getfield #field – consume object reference from stack,
 then dereference the field of that object given
 by (field,class) stored in the #field pointer in the constant pool
 and put the value of the field on the stack

putfield #field - consume an object reference obj and a value v
 from the stack and store v it in the #field of obj
“If the field descriptor type is boolean, byte, char, short, or int, then the value must
be an int.”

Array Manipulation

a = reference - “address” arrays

i = int arrays (and some other int-like value types)

Selected array manipulation operations:

 newarray, anewarray, multianewarray – allocate an
 array object and put a reference to it on the stack

 aaload, iaload – take: a reference to array and index from stack
 load the value from array and push it onto the stack

 aastore, iastore – take: a reference to array, an index, a value
 from stack, store the value into the array index

 arraylength – retrieve length of the array

Java arrays store the size of the array and its time, which enables
run-time checking of array bounds and object types.

There are Floating Point Operations…
• fadd

• faload (for floating point arrays)

• fastore (for floating point arrays)

• fcmp<op>

• fconst_<f>

• fdiv

• fload

• fload_<n>

• fmul

• fneg

• frem

• freturn

• fstore

• fstore_<n>

• fsub

When needed,
READ THE JVM Spec

Your

Compiler

Java Virtual Machine
(JVM) Bytecode

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
simplified Java-like
language

 21: iload_2
 22: iconst_2
 23: iload_1
 24: imul
 25: iadd
 26: iconst_1
 27: iadd
 28: istore_2

Covered!

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen
type
check

Compiler
(scalac, gcc)

machine code
(e.g. x86, ARM)

efficient to execute

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
(e.g. Scala, Java,C)
easy to write

mov R1,#0
mov R2,#40
mov R3,#3
jmp +12
mov (a+R1),R3
add R1, R1, #4
add R3, R3, #7
cmp R1, R2
blt -16

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

control-flow
graphs

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen

optimizer

type
check

idea

real compiler:
- more complex analyses
 (types, data-flow)
- lower-level code
- more optimizations

Program Analysis

auxiliary information
(hints, proof steps, types)

Can come
from compiler or user

Goal:
Automatically computes potentially useful information about the program.

efficiency

correctness

use it to help

Uses of Program Analysis

Compute information about the program and
use it for:

• efficiency (codegen): Program transformation

– Use the information in compiler to transform the
program, make it more efficient (“optimization”)

• correctness: Program verification

– Provide feedback to developer about possible
errors in the program

Example Transformations

• Common sub-expression elimination using available
expression analysis
– avoid re-computing (automatically or manually generated)

identical expressions

• Constant propagation
– use constants instead of variables if variable value known

• Copy propagation
– use another variable with the same name

• Dead code elimination
– remove unnecessary code

• Automatically generate code for parallel machines

Examples of Verification Questions

Example questions in analysis and verification
(with sample links to tools or papers):

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002

French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions

Arithmetic Overflow

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));

if L_M_BV_32 > 32767 then

 P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;

elsif L_M_BV_32 < -32768 then

 P_M_DERIVE(T_ALG.E_BV) := 16#8000#;

else

 P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));

end if;

P_M_DERIVE(T_ALG.E_BH) :=

 UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH)));

According to a presentation by Jean-Jacques Levy (who was part of the team who
searched for the source of the problem), the source code in Ada that caused the problem
was as follows:

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

 Air Transport

ASTREE Analyzer

“In Nov. 2003, ASTRÉE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

• http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

AbsInt

• 7 April 2005. AbsInt contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Coverity Prevent

• SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to
be encountered even in thorough testing. SDV systematically analyzes the
source code of Windows drivers that are written in the C language. SDV uses a
set of interface rules and a model of the operating system to determine
whether the driver interacts properly with the Windows operating system.
SDV can verify device drivers (function drivers, filter drivers, and bus drivers)
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the
development cycle. You should run SDV as soon as the basic structure of a
driver is in place, and continue to run it as you make changes to the driver.
Development teams at Microsoft use SDV to improve the quality of the WDM,
KMDF, and NDIS miniport drivers that ship with the operating system and the
sample drivers that ship with the Windows Driver Kit (WDK).
SDV is included in the Windows Driver Kit (WDK) and supports all x86-based
and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

Further Reading on Verification

• Recent Research Highlights from the
Communications of the ACM
– A Few Billion Lines of Code Later: Using Static Analysis

to Find Bugs in the Real World
– Retrospective: An Axiomatic Basis for Computer

Programming
– Model Checking: Algorithmic Verification and

Debugging
– Software Model Checking Takes Off
– Formal Verification of a Realistic Compiler
– seL4: Formal Verification of an Operating-System

Kernel
(click on the links to see pointers to papers)

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext

Type Inference

Example Analysis: Type Inference

• Avoid the need for some type declarations,
but still know the type

• Infer types that programmer is not willing to
write (e.g. more precise ones)

• We show a simple example: inferring types
that can be simple values or functions

– we assume no subtyping in this part

– corresponds to Simply Typed Lambda Calculus

Subset of Scala

• Int, Boolean (unless otherwise specified)

– These are two disjoint types

• arithmetic operations (+, -, …), Int x Int => Int

• relations relate Int and give Boolean

• boolean operators

• functions

– also anonymous functions x=>E

• if-then-else statements

Example
object Main {

 val a = 2 * 3

 val b = a < 2

 val c = sumOfSquares(a)

 val d = if(b) c(3) else square(a)

}

def square(x) = x * x

def sumOfSquares(x) = {

 (y) => square(x) + square(y)

}

Can it type-check?

Do there exist some type declarations
for which it type checks

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a)

 val d: TD = if(b) c(3) else square(a)

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => square(x) + square(y)

}

Find assignment
{TA -> Int, TB -> Boolean …}

Type constraints in example

object Main {

 val a: TA = 2 * 3

 val b: TB = a < 2

 val c: TC = sumOfSquares(a: TA)

 val d: TD =

 if(b) c(3): S1 else square(a): S2

}

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {

 (y: TI) => (square(x) + square(y)): S3

}

2: Int, 3: Int

TA = Int
TB = Boolean

TE = TG
TI = TE
TH = TI -> S3
S3 = Int
S3 = TF

S1 = S2
TD = S2
TD = S1
TA = TE

TC = TH
TA = TG

TF = Int
TE = TF

Hindley-Milner algorithm, intuitively

1. Record type constraints
 val a: A = 3

 val b: B = a

2. Solve type constraints

– obvious in the case above: {A= Int, B = Int}

– in general use unification algorithm

3. Return assignment to type variables or failure

constraints:
{ A = Int, A = B}

Recording type constraints

T1 = Boolean
T2 = T3 = T4

T1 = T2 = T3 = Int

Rules for Solving Equations

Unification

Finds a solution (substitution) to a set of equational
constraints.
• works for any constraint set of equalities between (type) constructors
• finds the most general solution

Definition
A set of equations is in solved form if it is of the form
{x1 = t1, … xn = tn} iff variables xi do not appear in terms ti, that is
{x1, …, xn} ∩ (FV(t1)∪…∪FV(tn)) = ∅

In what follows,
• x denotes a type variable (like TA, TB before)
• t, ti, si denote terms, that may contain type variables

Unification Algorithm
We obtain a solved form in finite time using the non-deterministic algorithm that
applies the following rules as long as no clash is reported and as long as the
equations are not in solved form.

Orient: Select t = x, t ≠ x and replace it with x = t.

Delete: Select x = x, remove it.

Eliminate: Select x = t where x does not occur in t, put it aside,
 substitute x with t in all remaining equations

Occurs Check: Select x = t, where x occurs in t, report clash.

Decomposition: Select f(t1, …, tn) = f(s1, …, sn),

 replace with t1 = s1, …, tn = sn.

 e.g. (T1 x T2) = (S1 x S2) becomes T1 = S1 , T2 = S2

Decomposition Clash: f(t1,…,tn) = g(s1,…,sn), f ≠ g, report clash.

 e.g. (T1 x T2) = (S1 -> S2) is f(T1,T2) = g(S1,S2) so it is a clash

f and g can denote x, ->, as well as constructor of polymorphic containers:

 Map[A, B] = Map[C, D] will be replaced by A = C and B = D

Example 2
Construct and Solve Constraints

def twice(f) = (x) => f(f(x))

Example 2, cleaned up

def twice(f) = (x) => f(f(x))

add type variables:

def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB

constraints:

TA=TX->TB, TF=TX->TR, TF=TR->TB

consequences derived:

TX=TR, TR=TB

replace TR,TB with TX:

TR=TX, TB=TX, TA=TX->TX, TF=TX->TX

twice: TT = TF->TA = (TX->TX)->(TX->TX)

Most General Solution
What is the general solution for

def f(x) = x

def g(a) = f(f(a))

Example solution: a:Int, f,g : Int -> Int

Are there others? How do all solutions look like?

Instantiating Type Variables
def f(x) = x

def test() = if (f(true)) f(3) else f(4)

Generate and solve constraints.

Is result different if we clone f for each invocation?

Generalization Rule

• If after inferring top-level function definitions
certain variables remain unconstrained, then
generalize these variables

• When applying a function with generalized
variables, rename variables into fresh ones

def f(x) = x

def test() = if (f(true)) f(3) else f(4)

Individual exercise 1:

def length(s : String) : Int = {...}

def foo(s: String) = length(s)

def bar(x, y) = foo(x) + y

Individual exercise 2:

def CONS[T](x:T, lst:List[T]):List[T]={...}

def listInt() : List[Int] = {...}

def listBool() : List[Bool] = {...}

def baz(a, b) = CONS(a(b), b)

def test(f,g) =

 (baz(f,listInt), baz(g,listBool))

