Translate This While Loop
using Rules that Explicitly Put Booleans on Stack

static void count(int from,
int to,
int step) {

int counter = from;
while (counter < to) {

counter = counter + step;

}
}

Towards More Efficient Translation
Compiling by Passing Destinations

Macro ‘branch’ instruction

Introduce an imaginary big instruction

branch(c,nThen,nElse)
Here

c is a potentially complex Java boolean expression,
that is the main reason why branch is not a real instruction

nThen is label to jump to when c evaluates to true
nFalse is label to jump to when c evaluates to false
no “fall through” — always jumps (for symmetry)
We show how to:
e use branch to compile if, while, etc.
e expand branch recursively into concrete bytecodes

Using branch in Compilation

[if (c)telsee]= [while (c)s]=
b h(c,nThen,nEl : '
ranch(c,nThen,nElse) IBegin: branch(c,start, |Exit)
nThen:[t]
goto nAfter start: 5]
goto |Begin

nElse: [e]
nAfter: |[Exit:

Decomposing branch

branch(!c,nThen,nElse) = branch(true,nThen,nElse) =

goto nThen
branch(c,nElse,nThen)
branch(c1 && c2,nThen,nElse) = branch(false,nThen,nElse) =
goto nElse

branch(c1l,nNext,nElse)

nNext:branch(c2,nThen,nElse)
boolean var b with slot N

branch(cl || c2,nThen,nElse) = branch(b,nThen,nElse) =
branch(c1,nThen,nNext) iload_N

nNext:branch(c2,nThen,nElse) ifeq nElse
goto nThen

Compiling Relations

branch(el R e2,nThen,nElse) =
[el]
[e2]
if_cmpR nThen
goto nElse

Putting boolean variable on the stack

Consider storing X=C

where x,c are boolean and ¢ has &&, | |

How to put result of branch on stack to allow istore?
[c] = branch(c,nThen,nElse)
nThen: iconst_1

goto nAfter

nElse: iconst O
nAfter:

Compare Two Translations
of This While Loop

while (counter < to) {
counter = counter + step;

}
old one: o
nbegin: iload #counter
iload #to
if _icmplt ntrue
iconst_0O

goto nafter
ntrue: iconst 1
nafter. ifeq nexit

iload #counter

iload #step

ladd

istore #counter

goto nbegin
nexit:

Complex Boolean Expression: Compare

Old code for assignment New code:
V=(Xx&& y) && !z

staticint k = 0;

static boolean action(int si,
boolean ob,
int sm, int pr) {

if (sm+ 2%pr> 10 &&
I(si <=5 && ob)) {
k++; return true;
} else {
return false;

1}

Compared to our current translation:
if 'sm+2*pr > 10' false, immediately ireturns
if 'si >5"is true, immediately goes to 'then' part

no intermediate result for if condition - do
branches directly

negation sign eliminated and pushed through
only one iconst_0 and oneiconst_1

N s WM RO

iload 2
iconst_2
iload 3
imul

iadd
bipush 10
if_icmple

. iload_0
: iconst_5
. if_icmpgt
: iload_1

. ifne 29
. getstatic
: iconst_1
. iadd

. putstatic
: iconst_1
: ireturn

. iconst_0
: ireturn

Code Compiled with javac

29

19

#2; //Field k

#2; //Field k

Implementing branch

e Option 1: emit code using branches, then
rewrite

e Option 2: branch is a compilation function in the
compiler that expands

branch(c,nTrue,nFalse)

}

def compileBranch(c:Expression,
nTrue : Label, nFalse : Label) : List[Bytecode] =

{...}

More Complex Control Flow

break statement

A common way to exit from a loop is to use a 'break' statement e.g.

while (true) {
codel

if (cond) break
cond?2

}

Consider a language that has expressions, assignments, the {...}
blocks, 'if' statements, while, and a 'break’ statement. The 'break’
exits the innermost loop and can appear inside arbitrarily complex
blocks and if conditions. How would translation scheme for such
construct look like?

Destination Parameters in Compilation

e To compilation functions [...] pass the label to which
instructions should jump when they finish.

— No fall-through
[x=e]dest= // new parameter dest

[e]
istore_slot(x)
goto dest // at the end jump to it

[s1;s2]destbrk=

[s1]freshL we could have any junk in here
freshL: [s2]dest because ([s1] freshL) jumps

More Control,
More Destination Paramameters

[s1;s2] dest brk =
[s1] freshL brk
freshL: [s2]destbrk

[x=e]dest brk =
[e]

istore_slot(x)
goto dest

[break] dest brk =
goto brk

[while (c) s] dest brk =

test: branch(c,body,dest)
body: [s] dest dest

this is where the second
parameter gets bound to
the exit of the loop

break and continue statements?

e Describe how to modify previous translation

Some High-Level Instructions for JVM

Method Calls

Invoking methods (arguments pushed onto stack)
invokestatic
invokevirtual

Returning value from methods:
ireturn — take integer from stack and return it
areturn — take reference from stack and return it
return — return from a method returning ‘void’

invokestatic

invokestatic
indexbytel
indexbyte2

Operand Stack ..., [argl, [arg2...]] > ...

The unsigned indexbytel and indexbyte2 are used to construct

an index into the run-time constant pool of the current class
(§2.6), where the value of the index is

(indexbytel << 8) | indexbyte2. The run-time constant pool
item at that index must be a symbolic reference to a method
(§5.1), which gives the name and descriptor (§4.3.3) of the
method as well as a symbolic reference to the class in which the
method is to be found. The named method is resolved (§5.4.3.3).
The resolved method must not be an instance initialization
method (§2.9) or the class or interface initialization method
(§2.9). It must be static, and therefore cannot be abstract.

On successful resolution of the method, the class that declared
the resolved method is initialized (§5.5) if that class has not
already been initialized.

The operand stack must contain nargs argument values, where
the number, type, and order of the values must be consistent with
the descriptor of the resolved method.

If the method is synchronized, the monitor associated with the
resolved Class object is entered or reentered as if by execution of
a monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values are
popped from the operand stack. A new frame is created
on the Java Virtual Machine stack for the method being
invoked. The nargs argument values are consecutively
made the values of local variables of the new frame,
with argl in local variable 0 (or, if argl is of type long or

double, in local variables 0 and 1) and so on. Any
argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java Virtual
Machine, that is done. The nargs argument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being
passed as a parameter. The parameters are passed and the code is
invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

If the native method is synchronized, the monitor associated
with the resolved Class object is updated and possibly exited as if
by execution of a monitorexit instruction (§monitorexit) in the
current thread.

If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

invokevirtual

invokevirtual

indexbytel

indexbyte2

..., objectref, [argl, [arg2 ...]] >

Description

The unsigned indexbytel and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to a method (§5.1), which gives the name and
descriptor (§4.3.3) of the method as well as a symbolic reference
to the class in which the method is to be found. The named
method is resolved (§5.4.3.3). The resolved method must not be
an instance initialization method (§2.9) or the class or interface
initialization method (§2.9). Finally, if the resolved method is
protected (§4.6), and it is a member of a superclass of the current
class, and the method is not declared in the same run-time
package (§5.3) as the current class, then the class of objectref
must be either the current class or a subclass of the current class.

If the resolved method is not signature polymorphic (§2.9), then
the invokevirtual instruction proceeds as follows.

Let C be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:
If C contains a declaration for an instance method m that

overrides (§5.4.5) the resolved method, then m is the method to
be invoked, and the lookup procedure terminates.

Otherwise, if C has a superclass, this same lookup procedure is
performed recursively using the direct superclass of C; the method
to be invoked is the result of the recursive invocation of this
lookup procedure.

Otherwise, an AbstractMethodError is raised.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the descriptor of the selected instance
method.

If the method is synchronized, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new
frame is created on the Java Virtual Machine stack for
the method being invoked. The objectref and the
argument values are consecutively made the values of
local variables of the new frame, with objectref in local
variable 0, argl in local variable 1 (or, if argl is of type

long or double, in local variables 1 and 2), and so on. Any
argument value that is of a floating-point type undergoes value set
conversion (§2.8.3) prior to being stored in a local variable. The
new frame is then made current, and the Java Virtual Machine pc is
set to the opcode of the first instruction of the method to be
invoked. Execution continues with the first instruction of the
method.

Translation Rule for Method Calls

[x = objExpr.myMethodName(el,e2)] =
[objExpr]
[el]
[e2]
invokevirtual #13 ——
istore #x

constant pool area:
0: "hello, world"
1:

;% 13: className.myMethodName/(l1)l

Objects and References

ifnull label - consume top-of-stack reference and jump if it is null
ifnonnull label - consume top-of-stack reference, jump if not null

new #className - create fresh object of class pointed to by the offset
#className in the constant pool
(does not invoke any constructors)

getfield #field — consume object reference from stack,
then dereference the field of that object given
by (field,class) stored in the #field pointer in the constant pool
and put the value of the field on the stack

putfield #field - consume an object reference obj and a value v

from the stack and store v it in the #field of obj

“If the field descriptor type is boolean, byte, char, short, or int, then the value must
be an int.”

Array Manipulation

a = reference - “address” arrays
i = int arrays (and some other int-like value types)
Selected array manipulation operations:

newarray, anewarray, multianewarray — allocate an
array object and put a reference to it on the stack

aaload, iaload — take: a reference to array and index from stack
load the value from array and push it onto the stack

aastore, iastore — take: a reference to array, an index, a value
from stack, store the value into the array index

arraylength — retrieve length of the array

Java arrays store the size of the array and its time, which enables
run-time checking of array bounds and object types.

There are Floating Point Operations...

e fadd

e faload (for floating point arrays)
e fastore (for floating point arrays)
e fcmp<op>

e fconst <f>

e fdiv

e fload

e fload <n>

e fmul When needed,
e fneg READ THE JVM Spec ©

e frem

e freturn

e fstore

e fstore <n>
e fsub

1=0

WINPERg courcecode Covered!
: . simplified Java-like
ali] = 7*i+3
- language

Your

Compiler
| while S
@
parser

o i -

Lon -
g
3.
o

N\ — —~

W
N @
: < ol o @ code gen
type @D
e —— check (s
21:iload 2
characters words trees 22: iconst_2

23:iload_1
24: imul

Java Virtual Machine b

(JVM) Bytecode [SH

1=0

source code

ile (i<1
wh!Ie y . 0)1 (e.g. Scala, Java,C)
alil = 77i+3 easy to write control-flow
L 10 -

graphs

i optimizer
Compiler P

(scalac, gcc)

Lo n —

characters words trees %Y
mov R2,#40

real compiler: mov R3,#3

- more complex analyses machine code mov (a+R1),R3

- dd R1, R1, #4
A S VI i o

. efficient to execute [RHELEAE
- more optimizations blt -16

Program Analysis

Goal:
Automatically computes potentially useful information about the program.

SOFTWARE QUESTIOM Can come
e.g. specification from compiler or user

auxiliary information
(hints, proof steps, types)

efficiency

(ARSWER T use it to help

correctness

Uses of Program Analysis

Compute information about the program and
use it for:
 efficiency (codegen): Program transformation

— Use the information in compiler to transform the
program, make it more efficient (“optimization”)

e correctness: Program verification

— Provide feedback to developer about possible
errors in the program

Example Transformations

Common sub-expression elimination using available
expression analysis

— avoid re-computing (automatically or manually generated)
identical expressions

Constant propagation

— use constants instead of variables if variable value known
Copy propagation

— use another variable with the same name

Dead code elimination

— remove unnecessary code

Automatically generate code for parallel machines

Examples of Verification Questions

Example questions in analysis and verification
(with sample links to tools or papers):

 Will the program crash?

* Does it compute the correct result?

* Does it leak private information?

* How long does it take to run?

e How much power does it consume?

e Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002

French Guyana, June 4, 1996
t=0sec

t =40 sec
S800 million software failure

Space Missions

Arithmetic Overflow

According to a presentation by Jean-Jacques Levy (who was part of the team who
searched for the source of the problem), the source code in Ada that caused the problem
was as follows:

L_M_BV_32 :=TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));
if L_M_BV_32 > 32767 then
P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;
elsif L M_BV_32 <-32768 then
P_M_DERIVE(T_ALG.E_BV) := 16#8000#;
else
P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));
end if;
P_M_DERIVE(T_ALG.E_BH) :=
UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH)));

http://en.wikipedia.org/wiki/Ariane 5 Flight 501

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

August 2005

As a Malaysia Airlines jetliner cruised
from Perth, Australia, to Kuala Lumpur,
Malaysia, one evening last August, it
suddenly took on a mind of its own and
zoomed 3,000 feet upward. The captain
disconnected the autopilot and pointed
the Boeing 777's nose down to avoid
stalling, but was jerked into a steep dive.
He throttled back sharply on both
engines, trying to slow the plane.
Instead, the jet raced into another climb. The crew eventually regained control
and manually flew their 177 passengers safely back to Australia.

Jerardo Uominguezizm alrinerpiciuras nel

Investigators quickly discovered the reason for the plane's roller-coaster ride
38,000 feet above the Indian Ocean. A defective software program had provided
incorrect data about the aircraft's speed and acceleration, confusing flight
computers.

Air Transport

ASTREE Analyzer

“In Nov. 2003, ASTREE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

* http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Absint

e 7 April 2005. Absint contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Coverity Prevent

 SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft's Static Driver Verifier

Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to
be encountered even in thorough testing. SDV systematically analyzes the
source code of Windows drivers that are written in the C language. SDV uses a
set of interface rules and a model of the operating system to determine
whether the driver interacts properly with the Windows operating system.
SDV can verify device drivers (function drivers, filter drivers, and bus drivers)
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the
development cycle. You should run SDV as soon as the basic structure of a
driver is in place, and continue to run it as you make changes to the driver.
Development teams at Microsoft use SDV to improve the quality of the WDM,
KMDF, and NDIS miniport drivers that ship with the operating system and the
sample drivers that ship with the Windows Driver Kit (WDK).

SDV is included in the Windows Driver Kit (WDK) and supports all x86-based
and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

Further Reading on Verification

* Recent Research Highlights from the
Communications of the ACM

— A Few Billion Lines of Code Later: Using Static Analysis
to Find Bugs in the Real World

— Retrospective: An Axiomatic Basis for Computer
Programming

— Model Checking: Algorithmic Verification and
Debugging

— Software Model Checking Takes Off
— Formal Verification of a Realistic Compiler

— sel4: Formal Verification of an Operating-System
Kernel

(click on the links to see pointers to papers)

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext

Type Inference

Example Analysis: Type Inference

* Avoid the need for some type declarations,
but still know the type

* |nfer types that programmer is not willing to
write (e.g. more precise ones)

 We show a simple example: inferring types
that can be simple values or functions
— we assume no subtyping in this part
— corresponds to Simply Typed Lambda Calculus

Subset of Scala

Int, Boolean (unless otherwise specified)

— These are two disjoint types

arithmetic operations (+, -, ...), Int x Int => Int
relations relate Int and give Boolean

boolean operators

functions

— also anonymous functions x=>E

if-then-else statements

Example

object Main {
val a = 2 * 3 Can it type-check?
val b = a < 2
val ¢ = sumOfSquares (a)

val d = 1£f(b) c(3) else square(a)

def square(x) = x * x

def sumOfSquares (x) = {
(y) => square(x) + square(y)

Do there exist some type declarations
for which it type checks

object Main { Find assignment
val a: TA = 2 * 3 {TA -> Int, TB -> Boolean ...}
val b: TB = a < 2
val c: TC = sumOfSquares (a)
val d: TD = 1if(b) c(3) else square(a)

def square(x: TE): TF = x * x

def sumOfSquares(x: TG): TH = {
(y: TI) => square(x) + square(y)

Type constraints in example

_ | 2:Int, 3:Int
object Main {
val a: TA = 2 * 3 TA = Int
val b: TB = g < 2 TB = Boolean
val c: TC = sumOfSquares(a: TA) TC=TH
val d: TD = TA=TG 1=
if(b) c(3): S1 else square(a): S2 D =
/ TDh=S51
TA=TE
def square(x: TE): TF = x * x TF =Int
TE=TF TE=TG
def sumOfSquares(x: TG): TH = { TI=TE
(y: TI) => (square(x) + square(y)): S3 gg:l-:t->53

3 =TF

Hindley-Milner algorithm, intuitively

1. Record type constraints
val a: A = 3

val b: B = a constraints:
{A=Int, A=Bj}

2. Solve type constraints
— obvious in the case above: {A=Int, B = Int}
— in general use unification algorithm

3. Return assignment to type variables or failure

Recording type constraints

FFb:Tl,Fl_el:Té I'Fey:T5 T1 = Boolean
I' = (if (b) eq else ea) : T} T2=T3=T4

I'Fe :T7 T'keg:1s T1=T2=T3 =Int
I'F(e1+e2): Th

MLe T, I T =2 Tayx wTa T

[- ’X:(@:L)-") KM\ T

Can

Rules for Solving Equations

T,=T
K Smbsjr{éfw <
E[T K -k [Tz‘«l eoguczks for eq"i&\§
T, T, = S, »5S, Lt 4,) =405,
T,‘/ :Si 5 ‘—T/Z,: ga ‘6_/_—/ , -&2352
T,_\—_)) TZ = 54_’562 T’L%TL\(T}

Unification

Finds a solution (substitution) to a set of equational
constraints.

* works for any constraint set of equalities between (type) constructors
* finds the most general solution

Definition
A set of equations is in solved form if it is of the form
{x1 = tl, .. x, = t_} iffvariables x, donot appearinterms t,, thatis

{x1, ., x.} N (EV(t1l)U.UFV(t,)) = @
e FV(TA=~T®)= {TATBS
In what follows =
’ v =) <
 x denotes a type variable (like TA, TB before) b (TA lvﬂ:) {TA}
* t, t,, s, denoteterms, that may contain type variables

17

Unification Algorithm

We obtain a solved form in finite time using the non-deterministic algorithm that
applies the following rules as long as no clash is reported and as long as the
equations are not in solved form.

Orient: Selectt = x, t # x andreplaceitwithx = t.
Delete: Select x = x, remove it.
Eliminate: Select x = t where x does not occur in t, put it aside,

substitute x with t in all remaining equations
Occurs Check: Select x = t, where x occursin t, report clash.
Decomposition: Select £ (t1, .., t,) = f(sl, .., s,.),
replacewithtl = sl1, .., t. = s_.
eg. (TyxT,)=(5,xS,) becomesT,=S5,,T,=5,
Decomposition Clash: £ (t1,..,t) = g(sl,..,s,), £ # g, reportclash.
e.g. (T;xT,)=(S,->S,) is f(T,,T,) =8g(S,,S,) soitisaclash
f and g can denote x, ->, as well as constructor of polymorphic containers:

Map[A, B] = Map[C, D] willbereplacedby”A = C andB = D

Example 2
Construct and Solve Constraints

J[A] o L
def twice (f) = (x) => f(f(x))
L—

T‘F = TY= TR TT=(TX=TR)= (TX>TR)

Example 2, cleaned up

def twice(f) = (x) => f(f(x))
add type variables:
def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB
constraints:
TA=TX->TB, TF=TX->TR, TF=TR->TB
consequences derived:
TX=TR, TR=TB
replace TR,TB with TX:
TR=TX, TB=TX, TA=TX->TX, TF=TX->TX
twice: TT = TF->TA = (TX->TX)->(TX->TX)

Most General Solution

What is the general solution for

FTX]:TX
def f(x) = x TC [:TF Te= TX>TX
def g(2) =TE(£(a)) §T6 TG IATC
i e TX=>TX=TASTR \
TX=TX= TB-2TC
Example solution: a:Int, £f,g : Int -> Int
| | TA=TYX
Are therE others? How do all solutions look like? TB = TX
[F=TY>TY TC=TX
TG ° m«wj -

e

. Instantiating Type Variables
Eief f"(Y)‘ = X {TF TF < Ty TX

2 ()2
def et () = if (£ (true)) \§(3) else f1(4)

L g
TT T¥F Boolean 'E
T)(i: 300(6 dwn

Generate and solve constraints.
Is result different if we clone f for each invocation?

FUHTY, TY-TX T = lut
[| 2
TX, =T1T

TYBZ \M"

Generalization Rule

 |f after inferring top-level function definitions
certain variables remain unconstrained, then
generalize these variables

 When applying a function with generalized
variables, rename variables into fresh ones

def f(x) = x
def test() = 1f (f(true)) f£(3) else f (4)

Individual exercise 1:

def length(s : String) : Int = {...}
def foo(s: String) = length(s)
def bar(x, y) = foo(x) + vy

Individual exercise 2:

def CONS[T] (x:T, lst:List[T]) :List[T]={...
{

def listInt() : List[Int] = {...}
def 1listBool () : List[Bool] = {...}
def baz (a, b) = CONS(a(b), b)

def test(f,g) =
(baz (f,li1stInt), baz(g,listBool))

