
Translate This While Loop  
using Rules that Explicitly Put Booleans on Stack 

static void count(int from,  
                                int to,  
                                int step) { 

  int counter = from; 

  while (counter < to) { 

    counter = counter + step; 

  } 

} 



Towards More Efficient Translation 
Compiling by Passing Destinations 



Macro ‘branch’ instruction 

Introduce an imaginary big instruction 

branch(c,nThen,nElse) 

Here 

    c is a potentially complex Java boolean expression, 
        that is the main reason why branch is not a real instruction 

    nThen is label to jump to when c evaluates to true 

    nFalse is label to jump to when c evaluates to false 

  no “fall through” – always jumps (for symmetry) 

We show how to: 

• use branch to compile if, while, etc. 

• expand branch recursively into concrete bytecodes 



Using branch in Compilation 

 

[ if (c) t else e ] = 

 

[ while (c) s ] = 

nThen: [ t ] 

         goto nAfter 

nElse:  [ e ] 

nAfter: 

  branch(c,nThen,nElse) 
lBegin: branch(c,start,lExit) 

start:    [ s ] 

             goto lBegin 

lExit: 



Decomposing branch 

branch(!c,nThen,nElse) = 

 

 

branch(c1 && c2,nThen,nElse) = 

  

 

 

branch(c1 || c2,nThen,nElse) = 

branch(true,nThen,nElse) = 

 

 

branch(false,nThen,nElse) = 

 

 

boolean var b with slot N 

  branch(b,nThen,nElse) = 

 

 branch(c,nElse,nThen) 

 branch(c1,nNext,nElse) 

 nNext: branch(c2,nThen,nElse) 

 branch(c1,nThen,nNext) 

 nNext: branch(c2,nThen,nElse) 

 goto nThen 

 goto nElse 

iload_N 

ifeq nElse 

goto nThen 



Compiling Relations 

branch(e1 R e2,nThen,nElse) = 

         [ e1 ] 

         [ e2 ] 

         if_cmpR nThen 

         goto nElse 



Putting boolean variable on the stack 

Consider storing  x = c 

where x,c are boolean and c  has &&,|| 

How to put result of branch on stack to allow istore? 

[ c ] =     branch(c,nThen,nElse) 

nThen: iconst_1 

           goto nAfter 

nElse:   iconst_0 

nAfter: 



Compare Two Translations  
of This While Loop 

while (counter < to) { 

    counter = counter + step; 

  } 

 
nbegin: iload #counter 

 iload #to 

 if_icmplt ntrue 

 iconst_0 

 goto nafter 

ntrue: iconst_1 

nafter: ifeq nexit 

 iload #counter 

 iload #step 

 iadd 

 istore #counter 

 goto nbegin 

nexit:  

old one: 



Complex Boolean Expression: Compare 

Old code for assignment 

  y = (x && y) && !z 

New code: 



Code Compiled with javac static int k = 0; 

static boolean action(int si, 
  boolean ob,  
  int sm, int pr) { 

 if (sm + 2*pr > 10 &&  

 !(si <= 5 && ob)) { 

     k++; return true; 

 } else { 

     return false; 

 } } 

 

Compared to our current translation: 

if 'sm+2*pr > 10' false, immediately ireturns 

if 'si > 5' is true, immediately goes to 'then' part 

no intermediate result for if condition - do 
branches directly 

negation sign eliminated and pushed through 

only one iconst_0 and one iconst_1 

   0:   iload_2 

   1:   iconst_2 

   2:   iload_3 

   3:   imul 

   4:   iadd 

   5:   bipush  10 

   7:   if_icmple       29 

   10:  iload_0 

   11:  iconst_5 

   12:  if_icmpgt       19 

   15:  iload_1 

   16:  ifne    29 

   19:  getstatic       #2; //Field k 

   22:  iconst_1 

   23:  iadd 

   24:  putstatic       #2; //Field k 

   27:  iconst_1 

   28:  ireturn 

   29:  iconst_0 

   30:  ireturn 



Implementing branch 

• Option 1: emit code using  branches, then 
rewrite 

• Option 2: branch is a compilation function in the 
compiler that expands 

   branch(c,nTrue,nFalse) 

     

def compileBranch(c:Expression,  
     nTrue : Label, nFalse : Label) : List[Bytecode] = 

{ … } 



More Complex Control Flow 



break statement 

A common way to exit from a loop is to use a 'break' statement e.g. 

 

while (true) { 

  code1 

  if (cond) break 

  cond2 

} 

Consider a language that has expressions, assignments, the {…} 
blocks, 'if' statements, while, and a 'break' statement. The 'break' 
exits the innermost loop and can appear inside arbitrarily complex 
blocks and if conditions. How would translation scheme for such 
construct look like?  



Destination Parameters in Compilation 

• To compilation functions […]  pass the label to which 
instructions should jump when they finish.  

– No fall-through 

[ x = e ] dest =  // new parameter dest 

    [ e ] 

    istore_slot(x) 

    goto dest   // at the end jump to it 

 

[ s1 ; s2 ] dest brk = 

             [ s1 ] freshL 

     freshL: [ s2 ] dest 
we could have any junk in here 
because ([s1] freshL) jumps 



More Control,  
More Destination Paramameters 

[ s1 ; s2 ] dest brk = 

             [ s1 ] freshL brk 

     freshL: [ s2 ] dest brk 

 

[ x = e ] dest brk = 

    [ e ] 

    istore_slot(x) 

    goto dest 

[ break ] dest brk = 

    goto brk 

 

 

[ while (c) s ] dest brk = 

test:    branch(c,body,dest) 
body:  [ s ] dest dest 

this is where the second 
parameter gets bound to  
the exit of the loop 



break and continue statements? 

• Describe how to modify previous translation 



Some High-Level Instructions for JVM 



Method Calls 

Invoking methods (arguments pushed onto stack) 

    invokestatic 

    invokevirtual 

 

Returning value from methods: 

    ireturn – take integer from stack and return it 

    areturn – take reference from stack and return it 

    return – return from a method returning ‘void’ 



invokestatic 
invokestatic 

indexbyte1 

indexbyte2 

 

Operand Stack    ..., [arg1, [arg2 ...]] → ... 
 

The unsigned indexbyte1 and indexbyte2 are used to construct 

an index into the run-time constant pool of the current class 
(§2.6), where the value of the index is  

(indexbyte1 << 8) | indexbyte2. The run-time constant pool 
item at that index must be a symbolic reference to a method 
(§5.1), which gives the name and descriptor (§4.3.3) of the 
method as well as a symbolic reference to the class in which the 
method is to be found. The named method is resolved (§5.4.3.3). 
The resolved method must not be an instance initialization 
method (§2.9) or the class or interface initialization method 
(§2.9). It must be static, and therefore cannot be abstract. 

 

On successful resolution of the method, the class that declared 
the resolved method is initialized (§5.5) if that class has not 
already been initialized. 

 

The operand stack must contain nargs argument values, where 
the number, type, and order of the values must be consistent with 
the descriptor of the resolved method. 

 

If the method is synchronized, the monitor associated with the 
resolved Class object is entered or reentered as if by execution of 
a monitorenter instruction (§monitorenter) in the current thread. 

 

If the method is not native, the nargs argument values are 
popped from the operand stack. A new frame is created 
on the Java Virtual Machine stack for the method being 
invoked. The nargs argument values are consecutively 
made the values of local variables of the new frame, 
with arg1 in local variable 0 (or, if arg1 is of type long or 
double, in local variables 0 and 1) and so on. Any 
argument value that is of a floating-point type undergoes value set 
conversion (§2.8.3) prior to being stored in a local variable. The 
new frame is then made current, and the Java Virtual Machine pc is 
set to the opcode of the first instruction of the method to be 
invoked. Execution continues with the first instruction of the 
method. 

 

If the method is native and the platform-dependent code that 
implements it has not yet been bound (§5.6) into the Java Virtual 
Machine, that is done. The nargs argument values are popped from 
the operand stack and are passed as parameters to the code that 
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being 
passed as a parameter. The parameters are passed and the code is 
invoked in an implementation-dependent manner. When the 
platform-dependent code returns, the following take place: 

 

    If the native method is synchronized, the monitor associated 
with the resolved Class object is updated and possibly exited as if 
by execution of a monitorexit instruction (§monitorexit) in the 
current thread. 

    If the native method returns a value, the return value of the 
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and 
pushed onto the operand stack. 



invokevirtual 
invokevirtual 

indexbyte1 

indexbyte2 

..., objectref, [arg1, [arg2 ...]] → 

 

... 

Description 

 

The unsigned indexbyte1 and indexbyte2 are used to construct an 
index into the run-time constant pool of the current class (§2.6), 
where the value of the index is (indexbyte1 << 8) | indexbyte2. 
The run-time constant pool item at that index must be a symbolic 
reference to a method (§5.1), which gives the name and 
descriptor (§4.3.3) of the method as well as a symbolic reference 
to the class in which the method is to be found. The named 
method is resolved (§5.4.3.3). The resolved method must not be 
an instance initialization method (§2.9) or the class or interface 
initialization method (§2.9). Finally, if the resolved method is 
protected (§4.6), and it is a member of a superclass of the current 
class, and the method is not declared in the same run-time 
package (§5.3) as the current class, then the class of objectref 
must be either the current class or a subclass of the current class. 

 

If the resolved method is not signature polymorphic (§2.9), then 
the invokevirtual instruction proceeds as follows. 

Let C be the class of objectref. The actual method to be invoked is 
selected by the following lookup procedure: 

    If C contains a declaration for an instance method m that 
overrides (§5.4.5) the resolved method, then m is the method to 
be invoked, and the lookup procedure terminates. 

 Otherwise, if C has a superclass, this same lookup procedure is 
performed recursively using the direct superclass of C; the method 
to be invoked is the result of the recursive invocation of this 
lookup procedure. 

    Otherwise, an AbstractMethodError is raised. 

The objectref must be followed on the operand stack by nargs 
argument values, where the number, type, and order of the values 
must be consistent with the descriptor of the selected instance 
method. 

 

If the method is synchronized, the monitor associated with 
objectref is entered or reentered as if by execution of a 
monitorenter instruction (§monitorenter) in the current thread. 

 

If the method is not native, the nargs argument values and 
objectref are popped from the operand stack. A new 
frame is created on the Java Virtual Machine stack for 
the method being invoked. The objectref and the 
argument values are consecutively made the values of 
local variables of the new frame, with objectref in local 
variable 0, arg1 in local variable 1 (or, if arg1 is of type 
long or double, in local variables 1 and 2), and so on. Any 

argument value that is of a floating-point type undergoes value set 
conversion (§2.8.3) prior to being stored in a local variable. The 
new frame is then made current, and the Java Virtual Machine pc is 
set to the opcode of the first instruction of the method to be 
invoked. Execution continues with the first instruction of the 
method. 

 

... 



Translation Rule for Method Calls 

[ x = objExpr.myMethodName(e1,e2) ] = 

  [ objExpr ] 
  [ e1 ] 

  [ e2 ] 

  invokevirtual  #13 

  istore #x 

 

constant pool area: 

 0: "hello, world" 

 1: 

   ... 

13: className.myMethodName/(II)I 

   ... 



Objects and References 

ifnull label - consume top-of-stack reference and jump if it is null 

ifnonnull label  - consume top-of-stack reference, jump if not null 
 

new #className - create fresh object of class pointed to by the offset  
     #className in the constant pool 
   (does not invoke any constructors) 

getfield #field – consume object reference from stack,  
 then dereference the field of that object given  
 by (field,class) stored in the #field pointer in the constant pool 
 and put the value of the field on the stack 

putfield #field - consume an object reference obj and a value v 
    from the stack and store v it in the #field of obj 
“If the field descriptor type is boolean, byte, char, short, or int, then the value must 
be an int.” 



Array Manipulation 

a = reference - “address” arrays 

i = int arrays (and some other int-like value types) 

Selected array manipulation operations: 

    newarray,  anewarray, multianewarray – allocate an  
 array object and put a reference to it on the stack 

    aaload, iaload – take: a reference to array and index from stack 
 load the value from array and push it onto the stack 

    aastore, iastore – take: a reference to array, an index, a value  
 from stack, store the value into the array index 

    arraylength – retrieve length of the array 

Java arrays store the size of the array and its time, which enables 
run-time checking of array bounds and object types. 



There are Floating Point Operations… 
• fadd 

• faload (for floating point arrays) 

• fastore (for floating point arrays) 

• fcmp<op> 

• fconst_<f> 

• fdiv 

• fload 

• fload_<n> 

• fmul 

• fneg 

• frem 

• freturn 

• fstore 

• fstore_<n> 

• fsub 

When needed, 
READ THE JVM Spec  



 
Your           

Compiler              
                   

 
 
 
 
 

Java Virtual Machine 
(JVM) Bytecode 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
simplified Java-like 
language 

 21: iload_2  
  22: iconst_2  
  23: iload_1  
  24: imul  
  25: iadd  
  26: iconst_1  
  27: iadd  
  28: istore_2  

Covered! 

i 
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LF 
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lexer 

characters words trees 

parser 

assign 

while 
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+ 
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assign 
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< 

i 10 

code gen 
type  
check 



Compiler              
(scalac, gcc)                   

 
 
 
 
 

machine code 
(e.g. x86, ARM) 

efficient to execute 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
(e.g. Scala, Java,C) 
easy to write 

mov R1,#0 
mov R2,#40 
mov R3,#3 
jmp +12 
mov (a+R1),R3 
add R1, R1, #4 
add R3, R3, #7 
cmp R1, R2 
blt -16 

i 
= 
0 
LF 

w 
h 
i 
l 
e 

i 
= 
0 

while 
( 
i 
< 

10 
) 

lexer 

characters words trees 

control-flow 
graphs 

parser 

assign 

while 

i  0 

+ 

* 
3 

7 i 

assign 
a[i] 

< 

i 10 

 
 
 
 
 
 

code gen 

optimizer 

type  
check 

idea 

real compiler:  
- more complex analyses 
   (types, data-flow) 
- lower-level code 
- more optimizations 



Program Analysis 

auxiliary information 
(hints, proof steps, types) 

Can come  
from compiler or user 

Goal: 
Automatically computes potentially useful information about the program. 

efficiency 

correctness 

use it to help 



Uses of Program Analysis 

Compute information about the program and 
use it for: 

• efficiency (codegen): Program transformation 

– Use the information in compiler to transform the 
program, make it more efficient (“optimization”) 

• correctness: Program verification 

– Provide feedback to developer about possible 
errors in the program 



Example Transformations 

• Common sub-expression elimination using available 
expression analysis 
– avoid re-computing (automatically or manually generated) 

identical expressions 

• Constant propagation 
– use constants instead of variables if variable value known 

• Copy propagation 
– use another variable with the same name 

• Dead code elimination 
– remove unnecessary code 

• Automatically generate code for parallel machines 



Examples of Verification Questions 

Example questions in analysis and verification 
(with sample links to tools or papers):  

• Will the program crash? 

• Does it compute the correct result? 

• Does it leak private information? 

• How long does it take to run? 

• How much power does it consume? 

• Will it turn off automated cruise control?  

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002


French Guyana, June 4, 1996 
t = 0 sec 

t = 40 sec 
$800 million software failure 

Space Missions 



Arithmetic Overflow 

L_M_BV_32 := TBD.T_ENTIER_32S ((1.0/C_M_LSB_BV) * G_M_INFO_DERIVE(T_ALG.E_BV));  

if L_M_BV_32 > 32767 then  

  P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;  

elsif L_M_BV_32 < -32768 then  

  P_M_DERIVE(T_ALG.E_BV) := 16#8000#;  

else  

  P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));  

end if;  

P_M_DERIVE(T_ALG.E_BH) :=  

  UC_16S_EN_16NS (TDB.T_ENTIER_16S ((1.0/C_M_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH))); 

According to a presentation by Jean-Jacques Levy (who was part of the team who  
searched for the source of the problem), the source code in Ada that caused the problem  
was as follows: 

http://en.wikipedia.org/wiki/Ariane_5_Flight_501 

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Ariane_5_Flight_501


 Air Transport 



ASTREE Analyzer 

“In Nov. 2003, ASTRÉE was able to prove 
completely automatically the absence of any 
RTE in the primary flight control software of the 
Airbus A340 fly-by-wire system, a program of 
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 
32-bit PC using 300 Mb of memory (and 50mn 
on a 64-bit AMD Athlon™ 64 using 580 Mb of 
memory).”  

• http://www.astree.ens.fr/ 

http://www.astree.ens.fr/
http://www.astree.ens.fr/


AbsInt 

• 7 April 2005. AbsInt contributes to 
guaranteeing the safety of the A380, the 
world's largest passenger aircraft. The 
Analyzer is able to verify the proper response 
time of the control software of all components 
by computing the worst-case execution time 
(WCET) of all tasks in the flight control 
software. This analysis is performed on the 
ground as a critical part of the safety 
certification of the aircraft. 

 

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm


Coverity Prevent 

• SAN FRANCISCO - January 8, 2008 - Coverity®, 
Inc., the leader in improving software quality and 
security, today announced that as a result of its 
contract with US Department of Homeland 
Security (DHS), potential security and quality 
defects in 11 popular open source software 
projects were identified and fixed. The 11 
projects are Amanda, NTP, OpenPAM, OpenVPN, 
Overdose, Perl, PHP, Postfix, Python, Samba, 
and TCL. 

 

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/


Microsoft’s Static Driver Verifier 
Static Driver Verifier (SDV) is a thorough, compile-time, static verification tool 
designed for kernel-mode drivers. SDV finds serious errors that are unlikely to 
be encountered even in thorough testing. SDV systematically analyzes the 
source code of Windows drivers that are written in the C language. SDV uses a 
set of interface rules and a model of the operating system to determine 
whether the driver interacts properly with the Windows operating system.  
SDV can verify device drivers (function drivers, filter drivers, and bus drivers) 
that use the Windows Driver Model (WDM), Kernel-Mode Driver Framework 
(KMDF), or NDIS miniport model. SDV is designed to be used throughout the 
development cycle. You should run SDV as soon as the basic structure of a 
driver is in place, and continue to run it as you make changes to the driver. 
Development teams at Microsoft use SDV to improve the quality of the WDM, 
KMDF, and NDIS miniport drivers that ship with the operating system and the 
sample drivers that ship with the Windows Driver Kit (WDK). 
SDV is included in the Windows Driver Kit (WDK) and supports all x86-based 
and x64-based build environments. 

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx


Further Reading on Verification 

• Recent Research Highlights from the 
Communications of the ACM 
– A Few Billion Lines of Code Later: Using Static Analysis 

to Find Bugs in the Real World 
– Retrospective: An Axiomatic Basis for Computer 

Programming 
– Model Checking: Algorithmic Verification and 

Debugging 
– Software Model Checking Takes Off 
– Formal Verification of a Realistic Compiler 
– seL4: Formal Verification of an Operating-System 

Kernel 
(click on the links to see pointers to papers) 

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext


Type Inference 



Example Analysis: Type Inference 

• Avoid the need for some type declarations, 
but still know the type 

• Infer types that programmer is not willing to 
write (e.g. more precise ones) 

• We show a simple example: inferring types 
that can be simple values or functions 

– we assume no subtyping in this part 

– corresponds to Simply Typed Lambda Calculus 



Subset of Scala 

• Int, Boolean (unless otherwise specified) 

– These are two disjoint types 

• arithmetic operations (+, -, …), Int x Int => Int 

• relations relate Int and give Boolean 

• boolean operators 

• functions 

– also anonymous functions   x=>E 

• if-then-else statements 



Example 
object Main { 

  val a = 2 * 3 

  val b = a < 2 

  val c = sumOfSquares(a) 

  val d = if(b) c(3) else square(a)  

} 

 

def square(x) = x * x 

 

def sumOfSquares(x) = { 

  (y) => square(x) + square(y) 

} 

Can it type-check? 



Do there exist some type declarations  
for which  it type checks 

object Main { 

  val a: TA = 2 * 3 

  val b: TB = a < 2 

  val c: TC = sumOfSquares(a) 

  val d: TD = if(b) c(3) else square(a)  

} 

 

def square(x: TE): TF = x * x 

 

def sumOfSquares(x: TG): TH = { 

  (y: TI) => square(x) + square(y) 

} 

Find assignment  
{TA -> Int, TB -> Boolean …} 



Type constraints in example 

object Main { 

  val a: TA = 2 * 3 

  val b: TB = a < 2 

  val c: TC = sumOfSquares(a: TA) 

  val d: TD =  

 if(b) c(3): S1 else square(a): S2  

} 

 

def square(x: TE): TF = x * x 

 

def sumOfSquares(x: TG): TH = { 

  (y: TI) => (square(x) + square(y)): S3 

} 

2: Int,   3: Int 

TA = Int 
TB = Boolean 

TE = TG 
TI = TE 
TH = TI -> S3 
S3 = Int  
S3 = TF 

S1 = S2  
TD = S2 
TD = S1 
TA = TE 

TC = TH 
TA = TG 

TF = Int 
TE = TF 



Hindley-Milner algorithm, intuitively 

1. Record type constraints 
  val a: A = 3 

    val b: B = a 

 

2. Solve type constraints 

– obvious in the case above: {A= Int, B = Int} 

– in general use unification algorithm 

 

3. Return assignment to type variables or failure 

 

constraints: 
{ A = Int, A = B} 



Recording type constraints 

T1 = Boolean 
T2 = T3 = T4 

T1 = T2 = T3 = Int 



Rules for Solving Equations 



Unification 

Finds a solution (substitution) to a set of equational 
constraints. 
• works for any constraint set of equalities between (type) constructors 
• finds the most general solution 

 
Definition 
A set of equations is in solved form if it is of the form 
{x1 = t1, … xn = tn} iff variables xi do not appear in terms ti, that is 
{x1, …, xn} ∩ (FV(t1)∪…∪FV(tn)) = ∅ 
 
In what follows,  
• x denotes a type variable  (like TA, TB before) 
• t, ti, si denote terms, that may contain type variables 



Unification Algorithm 
We obtain a solved form in finite time using the non-deterministic algorithm that 
applies the following rules as long as no clash is reported and as long as the 
equations are not in solved form.  

Orient:    Select t = x, t ≠ x and replace it with x = t. 

Delete:    Select x = x, remove it. 

Eliminate:   Select x = t where x does not occur in t, put it aside, 
   substitute x with t in all remaining equations 

Occurs Check: Select x = t, where x occurs in t, report clash. 

Decomposition:  Select f(t1, …, tn) = f(s1, …, sn),  

    replace with t1 = s1, …, tn = sn. 

  e.g.  (T1 x T2) = (S1 x S2)  becomes T1 = S1 , T2 = S2 

Decomposition Clash: f(t1,…,tn) = g(s1,…,sn), f ≠ g,   report clash. 

 e.g.  (T1 x T2) = (S1 -> S2)  is  f(T1,T2) = g(S1,S2)  so it is a clash 

f and g can denote x, ->, as well as constructor of polymorphic containers: 
 

  Map[A, B] = Map[C, D] will be replaced by A = C and B = D 



Example 2 
Construct and Solve Constraints 

def twice(f) = (x) => f(f(x)) 



Example 2, cleaned up 

def twice(f) = (x) => f(f(x)) 

add type variables: 

def twice(f:TF):TA = (x:TX) => f(f(x):TR):TB 

constraints: 

TA=TX->TB,  TF=TX->TR, TF=TR->TB 

consequences derived: 

TX=TR, TR=TB 

replace TR,TB with TX: 

TR=TX, TB=TX, TA=TX->TX, TF=TX->TX 

twice: TT = TF->TA = (TX->TX)->(TX->TX) 



Most General Solution 
What is the general solution for 

 

def f(x) = x 

def g(a) = f( f( a)) 

 

Example solution:    a:Int,  f,g : Int -> Int 

 

Are there others? How do all solutions look like? 



Instantiating Type Variables 
def f(x) = x 

def test() = if (f(true)) f(3) else f(4) 

 

Generate and solve constraints. 

Is result different if we clone f for each invocation? 

 



Generalization Rule 

• If after inferring top-level function definitions 
certain variables remain unconstrained, then 
generalize these variables 

• When applying a function with generalized 
variables, rename variables into fresh ones 

def f(x) = x 

def test() = if (f(true)) f(3) else f(4) 

 



Individual exercise 1: 

def length(s : String) : Int = {...}   

def foo(s: String) = length(s) 

def bar(x, y) = foo(x) + y 

 

Individual exercise 2: 

 

def CONS[T](x:T, lst:List[T]):List[T]={...} 

def listInt() : List[Int] = {...} 

def listBool() : List[Bool] = {...} 

 

def baz(a, b) = CONS(a(b), b) 

def test(f,g) =  

 (baz(f,listInt), baz(g,listBool)) 


