
Exercise
Determine the output of the following program assuming static
and dynamic scoping. Explain the difference, if there is any.

object MyClass {
 val x = 5
 def foo(z: Int): Int = { x + z }
 def bar(y: Int): Int = {
 val x = 1; val z = 2
 foo(y)
 }
 def main() {
 val x = 7
 println(foo(bar(3)))
 }
}

if the (free) variables of e have types given by gamma,

then e (correctly) type checks and has type T

If e1 type checks in gamma and has type T1 and ...

and en type checks in gamma and has type Tn

then e type checks in gamma and has type T

type judgement relation

type rule

Type Checker Implementation Sketch

def typeCheck( : Map[ID, Type], e : ExprTree) : TypeTree = {

 e match {
 case Var(id) => { (id) match
 case Some(t) => t
 case None => error(UnknownIdentifier(id,id.pos))
 }
 case If(c,e1,e2) => {
 val tc = typeCheck(,c)
 if (tc != BooleanType) error(IfExpectsBooleanCondition(e.pos))
 val t1 = typeCheck(, e1); val t2 = typeCheck(, e2)
 if (t1 != t2) error(IfBranchesShouldHaveSameType(e.pos))
 t1
 }
 ...
}}

Derivation Using Type Rules
x : Int
y : Int

Type Rule for Function Application

We can treat operators as variables that have function type

We can replace many previous rules with application rule:

()

Computing the Environment of a Class

object World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k = r + 2
 m(k, n(k))
 }
}

Type check each function m,n,p in this global environment

Extending the Environment

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Type Checking Expression in a Body

class World {
 var data : Int
 var name : String
 def m(x : Int, y : Int) : Boolean { ... }
 def n(x : Int) : Int {
 if (x > 0) p(x – 1) else 3
 }
 def p(r : Int) : Int = {
 var k:Int = r + 2
 m(k, n(k))
 }
}

Remember Function Updates

{(x,T1),(y,T2)} ⊕ {(x,T3)} = {(x,T3),(y,T2)}

Type Rule for Method Bodies

Type Rule for Assignments

Type Rules for Block: { var x1:T1 ... var xn:Tn; s1; ... sm; e }

Blocks with Declarations in the Middle

just

expression
empty

declaration is first

statement is first

Rule for While Statement

Rule for Method Call

Example to Type Check

object World {

 var z : Boolean

 var u : Int

 def f(y : Boolean) : Int {

 z = y

 if (u > 0) {

 u = u – 1

 var z : Int

 z = f(!y) + 3

 z+z

 } else { 0 }

 }

}

0 = {

 (z, Boolean),

 (u, Int),

 (f, Boolean  Int) }

1 = 0  {(y, Boolean)}

Exercise:

Overloading of Operators

Not a problem for type checking from leaves to root

Int x Int  Int

String x String  String

Arrays

Using array as an expression, on the right-hand side

Assigning to an array

Example with Arrays

def next(a : Array[Int], k : Int) : Int = {

 a[k] = a[a[k]]

}

Given  = {(a, Array(Int)), (k, Int)}, check  |- a[k] = a[a[k]]: Int

Type Rules (1)

variable constant

function application

plus

if

assignment while

Type Rules (2)

array use

array
assignment

block

Type Rules (3)

field use

field assignment

 c - top-level environment of class C

 class C {

 var x: Int;

 def m(p: Int): Boolean = {…}

 }

 c = { (x, Int), (m, C x Int  Boolean)}

method invocation

Does this program type check?
class Rectangle {
 var width: Int
 var height: Int
 var xPos: Int
 var yPos: Int
 def area(): Int = {
 if (width > 0 && height > 0)
 width * height
 else 0
 }
 def resize(maxSize: Int) {
 while (area > maxSize) {
 width = width / 2
 height = height / 2
 }
 }
}

Meaning of Types

• Types can be viewed as named entities

– explicitly declared classes, traits

– their meaning is given by methods they have

– constructs such as inheritance establish
relationships between classes

• Types can be viewed as sets of values

– Int = { ..., -2, -1, 0, 1, 2, ... }

– Boolean = { false, true }

– Int  Int = { f : Int -> Int | f is computable }

Types as Sets

• Sets so far were disjoint

• Sets can overlap

Boolean

true, false

String

“Richard” “cat”

Int  Int

Int  Pos

Int

Pos (1 2)

Neg (-1)

16 bit class C

class F

class D
class E

F extends D,

D extends C

C

E D

F

C represents not only declared C,

but all possible extensions as well

SUBTYPING

Subtyping

• Subtyping corresponds to subset

• Systems with subtyping have non-disjoint sets

• T1 <: T2 means T1 is a subtype of T2

– corresponds to T1  T2 in sets of values

• Rule for subtyping: analogous to set reasoning

Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... } (not including zero)

Neg = { ..., -2, -1 } (not including zero)

Pos <: Int

Neg <: Int
Pos  Int

Neg  Int

(y not zero)

(x/y well defined)

