Physical units part II

Reminder : physical units

A unit expression is defined by following grammar
$u, v:=b|1| u^{*} v \mid u^{-1}$
where u, v are unit expressions themselves and b is a base unit:
$\mathrm{b}:=\mathrm{m}|\mathrm{kg}| \mathrm{s}|\mathrm{A}| \mathrm{K}|\mathrm{cd}| \mathrm{mol}$
You may use B to denote the set of the unit types
$B=\{m, k g, s, A, K, c d, m o l\}$
For readability reasons, we use the syntactic sugar

$$
\begin{aligned}
& \begin{array}{l}
u^{\wedge} \mathrm{n}= \\
u^{*} \ldots * u \text { if } \mathrm{n}>0 \\
1 \\
1 \text { if } \mathrm{n}=0 \\
\mathrm{u}^{-1} * \ldots * \mathrm{u}^{-1} \text { if } \mathrm{n}<0 \\
\text { and } \mathrm{u} / \mathrm{v}=\mathrm{u}^{*} \mathrm{v}^{-1}
\end{array}
\end{aligned}
$$

Theorem

Theorem:

Suppose that the result type T does not contain a base unit b_{1} (or, equivalently, this base type occurs only with the overall exponent 0 , as $b_{1}{ }^{0}$). If we multiply all variables of type b_{1} by a fixed numerical constant K, the final result of the expression does not change.

Question 1: Generalize the theorem.
Question 2: Prove the theorem.

Theorem examples

- Center of mass
$x:<m>=\left(x 1 * m 1+x 2^{*} m 2\right) /(m 1+m 2)$
Changing all mass variables by 2 does not change the center of mass.
- Gravity estimation
$\mathrm{t}_{1}=\mathrm{V}\left(\mathrm{t}_{2}{ }^{\wedge} 2 * \mathrm{~h}_{1} / \mathrm{h}_{2}\right)$
Changing h_{1} and h_{2} by any factor will not change the time.

Reminder: Rules

$\frac{\Gamma+a:\left(U^{*} U\right)^{-1}}{\Gamma+\sqrt{ } a: U^{-1}}$

$$
\frac{\Gamma+\mathrm{a}: \mathrm{U} \quad \Gamma+\mathrm{b}: \mathrm{V}}{\Gamma+\mathrm{a} * \mathrm{~b}: \mathrm{U}^{*} \mathrm{~V}}
$$

$\frac{\Gamma+a: U^{*} U}{\Gamma+\sqrt{ } a: U}$
$\Gamma+\mathrm{a}: 1$
$\frac{\Gamma+a \cdot 1}{\Gamma+\sin (a): 1}$

$\Gamma+\mathrm{a}: \mathrm{U} \quad \Gamma+\mathrm{b}: \mathrm{V}$
Г $\mathrm{a} / \mathrm{b}: \mathrm{U} / \mathrm{V}$

Solution - part I

Lemma:
If we multiply all variables of type B by constant K, and the result has type T where B has exponent N, then the value of the expression is multiplied by $\mathrm{K}^{\wedge} \mathrm{N}$

Solution - part II

Suppose that we have proved the lemma for expressions of size < n.
Let give us an expression of size n. If the last applied rule is + , then:

$\Gamma+E+F: U$
Let us assume that B appears in U with exponent N .
If we multiply all variables of type B in E and F by K, by recurrence E is multiplied by $K^{\wedge} n$.
Therefore $\mathrm{E}+\mathrm{F}$ is transformed to $\left(\mathrm{E}^{*} \mathrm{~K}^{\wedge} \mathrm{N}+\mathrm{F}^{*} \mathrm{~K}^{\wedge} \mathrm{N}\right)=(\mathrm{E}+\mathrm{F})^{*} \mathrm{~K}^{\wedge} \mathrm{N}$ Other rules are similar.

Type inference for physical units

val $\mathrm{g}=9.87 . \mathrm{m} /(1 . \mathrm{s} * 1 . \mathrm{s})$
val href $=1.92 . \mathrm{m}$
$\operatorname{def} f(x, y, z)=\operatorname{sqrt}(x / y)+z$
def $T(L)=2 * p i * s q r t(L / g)+0 . s$
def fall (t, v) $=-0.5 * g * t * t+t * v+h r e f$ def freq (t, w) =
href * $\sin (2 * p i * t * W)+g^{*}(t / w)$
def in $(E, p, v)=E-p^{*} v^{*} v==0$ \&\&

$$
\mathrm{E} / 1 . \mathrm{s}-\mathrm{p}^{*} \mathrm{~g}^{*} \mathrm{v}==0 \& \& \mathrm{p}>0 . \mathrm{kg}
$$

def $\operatorname{prof}(\mathrm{a}, \mathrm{b})=\operatorname{if}(\mathrm{b}>1 . s)$
sqrt(prof(a+a,b-1.s)/b) else a

```
def f(x, y, z) = sqre(x/y) + z
    TX TY TZ TX TY
    :TR Tx/y
    Tsqrt
                        T+
T+ = TR
Tsqre = T+
TZ = T+
Tsqrt * Tsqrt = Tx/y
Tx/y = TX / TY
Therefore:
Tsqrt = TR
TZ = TR
```

$T R * T R=T X / T Y$
so TX $=T R * T R / T Y$
def $\mathrm{f}[\mathrm{T}, \mathrm{V}](\mathrm{x}: \mathrm{T} * \mathrm{~T} / \mathrm{V}, \mathrm{Y}: \mathrm{V}, \mathrm{z}: \mathrm{T}): \mathrm{T}$

$$
\begin{array}{cc}
\text { def } T(L) & =2 p i * \text { sqrt }(L / g) \\
T L: T R & 1 \quad 0 . s \\
T L G \\
& T S Q R T
\end{array}
$$

TM

TP

```
\(T R=T P\)
\(T P=s\)
\(T P=T M\)
TM = 1 * TSQRT
TSQRT*TSQRT = TLG
TLG \(=T L /\left(m /\left(s^{*} s\right)\right)\)
Therefore:
\(T R=s\)
\(\mathrm{s}=\mathrm{TQSRT}\)
\(s * s=T L G\)
\(s^{*} s=T L /\left(m /\left(s^{*} s\right)\right)\)
```

So: $\mathrm{TL}=\mathrm{m}$ and $\mathrm{T}(\mathrm{L}:<\mathrm{m}>):<\mathrm{s}>$
def fall(t, v) $=(-0.5 * g * t * t+t * v)+h r e f$

$$
\text { TT TV :TR } \quad 1
$$

TM1

TM4
TM2
TM3
TP1
TP2
$\mathrm{TR}=\mathrm{TP} 2, \mathrm{TM} 1=1 * \mathrm{~m} /(\mathrm{s} * \mathrm{~s}), \mathrm{TM} 2=\mathrm{TM} \mathrm{T}^{*} \mathrm{TT}, \mathrm{TM} 3=\mathrm{TM} 2 * \mathrm{TT}$, TM4 = TT*TV, TP1 = TM4, TP1 = TM3, TP2 = TP1, TP2 = m Therefore:
$\mathrm{TM} 2=\mathrm{m} /\left(\mathrm{s}^{*} \mathrm{~s}\right) * T T, \mathrm{TM} 3=\mathrm{m} /\left(\mathrm{s}^{*} \mathrm{~s}\right) * T T * T T, \mathrm{TP} 1=\mathrm{TT} * \mathrm{TV}$,
TP1 $=\mathrm{m} /(\mathrm{s} * \mathrm{~s}) * T T * T T, T T * T V=\mathrm{m} /(\mathrm{s} * \mathrm{~s}) * T T * T T$
$T V=m /(s * s) * T T$
$T R=m, T P 1=m$, so $m=m /(s * s) * T T * T T$, therefore $T T=s$
$\mathrm{TV}=\mathrm{m} / \mathrm{s}$
fall(t: <s>): <m>

```
def freq(t, w) = href * sin(2pi*t*w) + g*(t/w)
    TT TW: TR m 1 1 TT TW m/s 2 TTOW
        TTW TM2
            TM1
                TP
TP = TM1, TM1 = TM2, TM2 = m/s*TTOW, TTOW=TT/TW, TTW
= TT*TW, TTW = 1, TM1 = m*1, TR = TP
Therefore
\(T \mathrm{R}=\mathrm{m}\)
\(\mathrm{m}=\mathrm{m} / \mathrm{s}^{2}\) * TTOW, so TT/TW \(=\mathrm{s}^{2}\)
\(1=T T\) * TW
so \(T W=1 / T T\) and \(T T^{2}=s^{2}\), so \(T T=s\) and \(T W=1 / s\) def freq(t: <s>, w: <1/s>): <m>
```

```
def ein(E, p, v): Bool =
            TE TP TV
E - p* v*v == 0&&E/I.s - p*g*V == 0&& p > 0.kg
TE TM1 TES TM2
TP = kg, TE = TM1, TM1 = TP * TV , TES = TE/s, TES =
TM2, TM2 = TP*m/ s}\mp@subsup{}{}{2}*T
```


So kg*TV²/s $=\mathrm{kg} * \mathrm{~m} / \mathrm{s}^{2} * T V$
therefore: $T V=\mathrm{m} / \mathrm{s}, \mathrm{TE}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$
def ein(E: <kg*m²/s $\left.{ }^{2}\right\rangle, p:\langle k g>, v:\langle m / s\rangle):$ Bool

```
def prof(a, b) =
    TA TB :TR
if(b > 1.s) sqrt(prof(a+a,b-1.s)/b) else a
    BOOL TPA TB1
                        TR
                                    TRB
                                    TSQRT
TB = s
TSQRT = TA = TR
TQSRT*TSQRT = TRB
TRB = TR / TB
TA = TA = TA = TA, TB = S = TB
TR * TR = TR / s
so TR = 1/s, TA = 1/s
```

def prof(a: <1/s>, b: <s>): <1/s>

Type inference

Bonus:

Type check omega function
def $w(f)(x)=f(w(f)(f(x)))$
def $w(f: T F)(x: T X): T R=f(w(f)(f(x): T A): T B)$
$T F=T X=>T A$
$T A=T X$
omega: TF x TX => TR
$T R=T B$
$T F=T B=>T R$
Therefore : TF = TX => TX
$T X=>T X==T B=>T B$
$T B=T X$
def $w[T](f: T H T, x: T): T$

