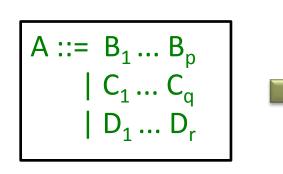
Grammar vs Recursive Descent Parser

```
expr ::= term termList
termList ::= + term termList
            - term termList
            3
term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
             3
factor ::= name | ( expr )
name ::= ident
```

```
def expr = { term; termList }
def termList =
    if (token==PLUS) {
        skip(PLUS); term; termList
    } else if (token==MINUS)
        skip(MINUS); term; termList
    }
def term = { factor; factorList }
```

def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
 skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or)")

Rough General Idea



def A = if (token \in T1) { $B_1 \dots B_p$ else if (token \in T2) { $C_1 \dots C_q$ } else if (token \in T3) { $D_1 \dots D_r$ } else error("expected T1,T2,T3")

where:

$$T1 = first(B_1 \dots B_p)$$

$$T2 = first(C_1 \dots C_q)$$

$$T3 = first(D_1 \dots D_r)$$

$$first(B_1 \dots B_p) = \{a \in \Sigma \mid B_1 \dots B_p \implies aw \}$$

$$T1, T2, T3 \text{ should be } disjoint \text{ sets of tokens.}$$

Computing first in the example

```
expr ::= term termList
termList ::= + term termList
            - term termList
            3
term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
             3
factor ::= name | ( expr )
name ::= ident
```

```
first(name) = {ident}
first(( expr ) ) = { ( }
first(factor) = first(name)
              U first( ( expr ) )
            = \{ ident \} \cup \{ ( \} \}
            = {ident, ()
first(* factor factorList) = { * }
first(/ factor factorList) = { / }
first(factorList) = { *, / }
first(term) = first(factor) = {ident, ( }
first(termList) = \{+, -\}
first(expr) = first(term) = {ident, ( }
```

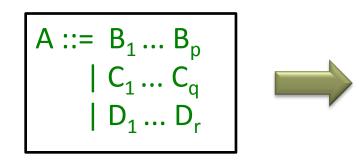
Algorithm for **first**

Given an arbitrary context-free grammar with a set of rules of the form $X ::= Y_1 ... Y_n$ compute first for each right-hand side and for each symbol.

How to handle

- alternatives for one non-terminal
- sequences of symbols
- nullable non-terminals
- recursion

Rules with Multiple Alternatives



$$first(A) = first(B_1...B_p)$$
$$U first(C_1...C_q)$$
$$U first(D_1...D_r)$$

Sequences

 $first(B_1...B_p) = first(B_1)$

if not nullable(B₁)

 $first(B_1...B_p) = first(B_1) \cup ... \cup first(B_k)$

if nullable(B₁), ..., nullable(B_{k-1}) and not nullable(B_k) or k=p

Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

```
expr ::= term termList
termList ::= + term termList
           - term termList
           3
term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
             3
factor ::= name | ( expr )
name ::= ident
```

nullable: termList, factorList

```
expr' = term'
termList' = {+}
U {-}
term' = factor'
factorList' = {*}
U { / }
```

```
factor' = name' U { ( }
name' = { ident }
```

For this nice grammar, there is no recursion in constraints. Solve by substitution.

Example to Generate Constraints

S ::= X | Y
X ::= **b** | S Y
Y ::= Z X **b** | Y **b**
Z ::=
$$\epsilon$$
 | **a**

terminals: **a**,**b** non-terminals: S, X, Y, Z

reachable (from S): productive: nullable:

First sets of terminals: S', X', Y', Z' \subseteq {a,b}

Example to Generate Constraints

S ::= X | Y
X ::= **b** | S Y
Y ::= Z X **b** | Y **b**
Z ::=
$$\epsilon$$
 | **a**

$$S' = X' \cup Y'$$

 $X' = \{b\} \cup S'$
 $Y' = Z' \cup X' \cup Y'$
 $Z' = \{a\}$

terminals: **a**,**b** non-terminals: S, X, Y, Z

reachable (from S): S, X, Y, Z productive: X, Z, S, Y nullable: Z These constraints are recursive. How to solve them? S', X', Y', Z' \subseteq {a,b} How many candidate solutions

- in this case?
- for k tokens, n nonterminals?

Iterative Solution of first Constraints

- S'X'Y'Z'1.{}{}{}2.{}{b}{b}{a}3.{b}{b}{a,b}{a}
- **4.** $\{a,b\}\{a,b\}\{a,b\}\{a\}$
- **5.** {a,b} {a,b} {a,b} {a}}

$$S' = X' \cup Y'$$

 $X' = \{b\} \cup S'$
 $Y' = Z' \cup X' \cup Y'$
 $Z' = \{a\}$

- Start from all sets empty.
- Evaluate right-hand side and assign it to left-hand side.
- Repeat until it stabilizes.

Sets grow in each step

- initially they are empty, so they can only grow
- if sets grow, the RHS grows (U is monotonic), and so does LHS
- they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive $\boldsymbol{\epsilon}$

S', X', Y', Z' $\in \{0,1\}$

- 0 not nullable
- 1 nullable
 - disjunction
- & conjunction

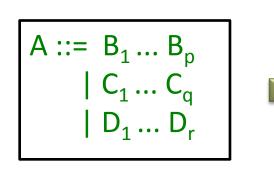
- S' X' Y' Z'
- **1.** 0 0 0 0
- **2.** 0 0 0 1
- **3.** 0 0 0 1

again monotonically growing

Computing first and nullable

- Given any grammar we can compute
 - for each non-terminal X whether nullable(X)
 - using this, the set first(X) for each non-terminal X
- General approach:
 - generate constraints over finite domains, following the structure of each rule
 - solve the constraints iteratively
 - start from least elements
 - keep evaluating RHS and re-assigning the value to LHS
 - stop when there is no more change

Rough General Idea



def A = if (token \in T1) { $B_1 \dots B_p$ else if (token \in T2) { $C_1 \dots C_q$ } else if (token \in T3) { $D_1 \dots D_r$ } else error("expected T1,T2,T3")

where:

$$T1 = first(B_1 \dots B_p)$$

$$T2 = first(C_1 \dots C_q)$$

$$T3 = first(D_1 \dots D_r)$$

T1, T2, T3 should be **disjoint** sets of tokens.



- Tokens: **EOF**, (,)
- Generate constraints and compute nullable and first for this grammar.
- Check whether first sets for different alternatives are disjoint.

Exercise 2

- S ::= B **EOF**
- B ::= ε | B (B)
- Tokens: **EOF**, (,)
- Generate constraints and compute nullable and first for this grammar.
- Check whether first sets for different alternatives are disjoint.

Exercise 3

Compute nullable, first for this grammar: stmtList ::= ε | stmt stmtList stmt ::= assign | block assign ::= ID = ID ; block ::= beginof ID stmtList ID ends Describe a parser for this grammar and explain how it behaves on this input:

beginof myPrettyCode
x = u;
y = v;
myPrettyCode ends

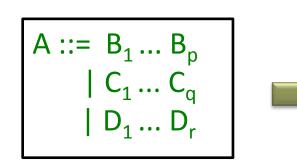
Problem Identified

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse ε that is, do nothing and return
- For nullable non-terminals, we must also compute what follows them

General Idea for nullable(A)



def A = if (token \in T1) { $B_1 \dots B_p$ else if (token \in (T2 U T_F)) { $C_1 \dots C_q$ } else if (token \in T3) { $D_1 \dots D_r$ } // no else error, just return

where:

$$T1 = first(B_1 \dots B_p)$$

$$T2 = first(C_1 \dots C_q)$$

$$T3 = first(D_1 \dots D_r)$$

$$T_F = follow(A)$$

Only one of the alternatives can be nullable (e.g. second) T1, T2, T3, T_F should be pairwise **disjoint** sets of tokens.

LL(1) Grammar - good for building recursive descent parsers

- Grammar is LL(1) if for each nonterminal X
 - first sets of different alternatives of X are disjoint
 - if nullable(X), first(X) must be disjoint from follow(X)
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not LL(1), we can sometimes transform it into equivalent LL(1) grammar

Computing if a token can follow

 $first(B_1 \dots B_p) = \{a \in \Sigma \mid B_1 \dots B_p \implies \dots \implies aw \}$ $follow(X) = \{a \in \Sigma \mid S \implies \dots \implies \dots Xa... \}$

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Xa... (the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X) then first(Z) \subseteq follow(Y) and follow(X) \subseteq follow(Z) now take care of nullable ones as well:

For each rule $X ::= Y_1 \dots Y_p \dots Y_q \dots Y_r$

follow(Y_p) should contain:

- **first(** $Y_{p+1}Y_{p+2}...Y_{r}$ **)**
- also follow(X) if nullable(Y_{p+1}Y_{p+2}Y_r)

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList

stmt ::= assign | block

```
assign ::= ID = ID ;
```

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

- nullable(stmtList)
- first(stmt) ∩ follow(stmtList) = {ID}

- If a recursive-descent parser sees ID, it does not know if it should
 - finish parsing stmtList or
 - parse another stmt