
Grammar vs Recursive Descent Parser 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

def expr = { term; termList } 
def termList = 
  if (token==PLUS) { 
     skip(PLUS); term; termList 
  } else if (token==MINUS) 
     skip(MINUS); term; termList 
  } 

def term = { factor; factorList } 

... 

def factor = 
  if (token==IDENT) name 
  else if (token==OPAR) { 
    skip(OPAR); expr; skip(CPAR) 
  } else error("expected ident or )") 



Rough General Idea 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  T2) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } else error("expected T1,T2,T3") 
 where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 

first(B1 ... Bp) = {a | B1...Bp    ...    aw } 

T1, T2, T3 should be disjoint sets of tokens. 



Computing first in the example 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

first(name) = {ident} 
first(( expr ) ) = { ( } 
first(factor) = first(name) 
                     U first( ( expr ) ) 
                   = {ident} U{ ( } 
                   = {ident, ( } 

first(* factor factorList) = { * }  

first(/ factor factorList) = { / }  

first(factorList) = { *, / } 

first(term) = first(factor) = {ident, ( } 

first(termList) = { + , - }  

first(expr) = first(term) = {ident, ( } 



Algorithm for first 

Given an arbitrary context-free grammar with a 
set of rules of the form X ::= Y1 ... Yn  compute 
first for each right-hand side and for each 
symbol. 

How to handle 

• alternatives for one non-terminal 

• sequences of symbols 

• nullable non-terminals 

• recursion 



Rules with Multiple Alternatives 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

first(A) =  first(B1... Bp) 
             U first(C1 ... Cq) 

             U first(D1 ... Dr) 

Sequences 

first(B1... Bp) = first(B1)  if not nullable(B1) 

first(B1... Bp) = first(B1) U ... U first(Bk) 

if nullable(B1), ..., nullable(Bk-1) and 

 not nullable(Bk) or k=p 



Abstracting into Constraints 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

expr' = term'  
termList' =  {+} 
      U {-} 
 
term' = factor' 
factorList' = {*} 
                  U { / }  
 
factor' = name' U { ( } 
name' = { ident } 

recursive grammar: constraints over finite sets: expr' is first(expr) 

nullable: termList, factorList 
For this nice grammar, there is 
no recursion in constraints. 
Solve by substitution. 



Example to Generate Constraints 

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' U Y'  
X' = 

reachable (from S): 
productive: 
nullable: 

terminals: a,b 
non-terminals: S, X, Y, Z 

First sets of terminals:  
   S', X', Y', Z'  {a,b} 



Example to Generate Constraints 

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' U Y'  
X' = {b} U S' 
Y' = Z' U X'   U Y' 
Z' = {a} 

reachable (from S): S, X, Y, Z 
productive: X, Z, S, Y 
nullable: Z 

terminals: a,b 
non-terminals: S, X, Y, Z 

These constraints are recursive. 
How to solve them? 
 S', X', Y', Z'  {a,b} 
How many candidate solutions 
• in this case? 
• for k tokens, n nonterminals? 



Iterative Solution of first Constraints 

     S'    X'    Y'        Z'  
    {}     {}     {}        {} 
    {}     {b}   {b}     {a} 
   {b}   {b}  {a,b}   {a} 
{a,b} {a,b} {a,b}   {a} 
{a,b} {a,b} {a,b}   {a} 

S' = X' U Y'  
X' = {b} U S' 
Y' = Z' U X'   U Y' 
Z' = {a} 

• Start from all sets empty. 
• Evaluate right-hand side and 

assign it to left-hand side. 
• Repeat until it stabilizes. 

 
1. 
2. 
3. 
4. 
5. 

Sets grow in each step 
• initially they are empty, so they can only grow 
• if sets grow, the RHS grows (U is monotonic), and so does LHS 
• they cannot grow forever: in the worst case contain all tokens 



Constraints for Computing Nullable 

• Non-terminal is nullable if it can derive  

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' | Y'  
X' = 0 | (S' & Y') 
Y' = (Z' & X' & 0) | (Y' & 0) 
Z' = 1 | 0 

S', X', Y', Z'  {0,1} 
   0  - not nullable 
   1  - nullable 
    |  - disjunction 
    & - conjunction 

     S'    X'    Y'    Z'  
     0     0     0     0 
     0     0     0     1 
     0     0     0     1 

 
1. 
2. 
3. 

again monotonically growing 



Computing first and nullable 

• Given any grammar we can compute 

– for each non-terminal X whether nullable(X) 

– using this, the set first(X) for each non-terminal X 

• General approach: 

– generate constraints over finite domains, 
following the structure of each rule 

– solve the constraints iteratively 

• start from least elements 

• keep evaluating RHS and re-assigning the value to LHS 

• stop when there is no more change 



Rough General Idea 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  T2) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } else error("expected T1,T2,T3") 
 where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 

 

T1, T2, T3 should be disjoint sets of tokens. 



Exercise 1 

A ::= B EOF 
B ::=  | B B | (B) 

• Tokens: EOF, (, ) 

• Generate constraints and compute nullable 
and first for this grammar.  

• Check whether first sets for different 
alternatives are disjoint. 



Exercise 2 

S ::= B EOF 
B ::=  | B (B) 

• Tokens: EOF, (, ) 

• Generate constraints and compute nullable 
and first for this grammar.  

• Check whether first sets for different 
alternatives are disjoint. 



Exercise 3 
Compute nullable, first for this grammar: 

 stmtList ::=  | stmt  stmtList  

 stmt ::= assign | block  

 assign ::= ID  =  ID  ;  

 block ::= beginof  ID stmtList ID ends 

Describe a parser for this grammar and explain how it 
behaves on this input: 

 beginof myPrettyCode  

              x = u;  
              y = v;  
          myPrettyCode ends 



Problem Identified 

 stmtList ::=  | stmt  stmtList  

 stmt ::= assign | block  

 assign ::= ID  =  ID  ;  

 block ::= beginof  ID stmtList ID ends 

Problem parsing stmtList:  

– ID could start alternative stmt stmtList  

– ID could follow stmt, so we may wish to parse  
that is, do nothing and return 

• For nullable non-terminals, we must also 
compute what follows them 



General Idea for nullable(A) 

A ::=  B1 ... Bp 
       | C1 ... Cq 

          | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  (T2  U  TF)) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } // no else error, just return 

where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 
 TF = follow(A) 

Only one of the alternatives can be nullable (e.g. second) 
T1, T2, T3, TF  should be pairwise disjoint sets of tokens. 



LL(1) Grammar - good for building 
recursive descent parsers  

• Grammar is LL(1) if for each nonterminal X 

– first sets of different alternatives of X are disjoint 

– if nullable(X), first(X) must be disjoint from follow(X) 

• For each LL(1) grammar we can build  
recursive-descent parser 

• Each LL(1) grammar is unambiguous 

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar 

 



Computing if a token can follow 

first(B1 ... Bp) = {a | B1...Bp    ...    aw } 

follow(X) = {a | S    ...    ...Xa... } 

 

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa... 
(the token a follows the non-terminal X) 



Rule for Computing Follow 

Given  X ::= YZ  (for reachable X) 

then first(Z)  follow(Y) 
and  follow(X)  follow(Z) 

 now take care of nullable ones as well: 

 
For each rule X ::= Y1 ... Yp ... Yq ... Yr 

follow(Yp) should contain: 

• first(Yp+1Yp+2...Yr) 

• also follow(X) if  nullable(Yp+1Yp+2Yr) 



Compute nullable, first, follow 

stmtList ::=  | stmt  stmtList  

stmt ::= assign | block  

assign ::= ID  =  ID  ;  

block ::= beginof  ID stmtList ID ends 

 

 

Is this grammar LL(1)? 



Conclusion of the Solution 

The grammar is not LL(1) because we have  

• nullable(stmtList) 

• first(stmt)  follow(stmtList) = {ID}  

 

• If a recursive-descent parser sees ID, it does 
not know if it should  

– finish parsing stmtList or 

– parse another stmt 


