Grammar vs Recursive Descent Parser

expr ::=term termList def expr = { term; termList }
termList ::= + term termList def termList =
| -term termList if (token==PLUS) {
| & skip(PLUS); term; termList
term ::= factor factorList } else if (token==MINUS)
factorList ::= * factor factorList skip(MINUS); term; termList
| / factor factorList }
| € def term = { factor; factorList }
factor ::= name | (expr)
name ::= ident def factor =

if (token==IDENT) name

else if (token==0PAR) {
skip(OPAR); expr; skip(CPAR)

} else error("expected ident or)")

Rough General Idea

def A =

if (token € T1) {
B, ... B,

ﬁ else if (token € T2) {

| D;...D C; .. Cq
} else if (token € T3) {
D, ... D,
} else error("expected T1,T2,T3")

>
I
o
(BN
9 9)
o T

-

where:

T1 = first(B, ... B))
T2 = first(C, ... C)
T3 = first(D, ... D,)

first(B, ... B)) ={aeX | B,...B, =...=> aw}
T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

expr ::= term termList
termList ::= + term termList
| -term termlList
| €
term ::= factor factorList
factorlList ::= * factor factorList
| / factor factorList
| €
factor ::= name | (expr)
name ::= ident

first(name) = {ident}
first((expr))={(}
first(factor) = first(name)
U first((expr))
= {ident} U{ (}
= {ident, (}

first(* factor factorList) = { * }

first(/ factor factorList) ={/ }
first(factorList) = { *, / }

first(term) = first(factor) = {ident, (}
first(termList) = {+, - }

first(expr) = first(term) = {ident, (}

Algorithm for first

Given an arbitrary context-free grammar with a
set of rules of the form X ::=Y, ... Y, compute
first for each right-hand side and for each
symbol.

How to handle

e alternatives for one non-terminal
e sequences of symbols

e nullable non-terminals

® recursion

Rules with Multiple Alternatives

A:=B;..B, first(A) = first(B;... B))
| C, ... C, ﬁ U first(C, ... C,)
| D, ... D, U first(D, ... D,)

Sequences

first(B,... B,) = first(B,) if not nullable(B,)

first(B,... B,) = first(B,) U ... U first(B,)

if nullable(B,), ..., nullable(B, ,) and
not nullable(B,) or k=p

Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

expr ::= term termlList
termlList ::= + term termList

| -term termList

| €

term ::= factor factorList
factorList ::= * factor factorList
| [factor factorList

| €
factor ::= name | (expr)
name ::= ident

expr' = term'
termlList' = {+}
{-}

term' = factor'
factorList' = {*}

Uui{/}

factor' =name' U {(}
name' ={ident }

nullable: termList, factorList

For this nice grammar, there is
Nno recursion in constraints.
Solve by substitution.

Example to Generate Constraints

Su=X]|Y S'=X'UY'
X:=b|SY | X' =
Y:=ZXb|YDb

/:=¢| a

terminals: a,b
non-terminals: S, X, Y, Z

reachable (from S):

productive: First sets of terminals:
nullable: S XY, Z' c{a,b}

Example to Generate Constraints

Su=X|Y S'=X'UY

X:=b|SY X'={b}US

Y:=ZXb|YDb ; Y'=Z'UX" UY'

Z:=¢| a /' ={a}
terminals: a,b These constraints are recursive.
non-terminals: S, X, Y, Z How to solve them?

S, X, Y, Z' c{a,b}
How many candidate solutions

reachable (from S): S, X, Y, Z * in this case?
productive: X, Z, S, Y * for k tokens, n nonterminals?

nullable: Z

Iterative Solution of first Constraints

s X Yy 7 w1
L0000 0 > =X UY
2. {} {b} {b} ({a} X'={b}US
3. {b} {b} {a,b} {a} Y'=Z2'UX" UY
4. {ab}{a,b}{a,b} {a} |
5. {ab}{ab}{ab} {a) Z'={a}

e Start from all sets empty.
e Evaluate right-hand side and
assign it to left-hand side.

* Repeat until it stabilizes.
Sets grow in each step
 initially they are empty, so they can only grow
* if sets grow, the RHS grows (U is monotonic), and so does LHS
* they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

e Non-terminal is nullable if it can derive ¢

S:=X]|Y S'=X"1]Y
X:=b|SY X'=0](S'&Y')
Y

Y:=ZXb|Yb Y'=(Z'&X' &0) | (Y' &0)
/:=¢|a '=1]0
S, X,Y,Z €{0,1} s XY z

0 - not nullable 1. 0 0 0 O

1 - nullable 2. 0 0 0 1

| - disjunction 3.0 0 0 1

& - conjunction _ . .
again monotonically growing

Computing first and nullable

e Given any grammar we can compute
— for each non-terminal X whether nullable(X)
— using this, the set first(X) for each non-terminal X

e General approach:

— generate constraints over finite domains,
following the structure of each rule

— solve the constraints iteratively
e start from least elements

e keep evaluating RHS and re-assighing the value to LHS
e stop when there is no more change

Rough General ldea

def A =

if (token € T1) {
B, ... B,
ﬁ else if (token € T2) {
C, ... C,
} else if (token € T3) {
D, ... D,
} else error("expected T1,T2,T3")

>
i
w

O O W
[EY =
UQO_O

-

where:

T1 = first(B, ... B,)
T2 = first(C, ... C)
T3 = first(D, ... D,)

T1, T2, T3 should be disjoint sets of tokens.

Exercise 1
[A @K w\\a\o\e
A ::= B EOF 0 o

B::=¢ | BB | (B) 0 1
e Tokens: EOF, (,)

e Generate constraints and compute nullable
and first for this grammar.

e Check whether first sets for different
alternatives are disjoint.

Exercise 2

S ::=B EOF
B:=¢| B(B)
e Tokens: EOF, (,)

e Generate constraints and compute nullable
and first for this grammar.

e Check whether first sets for different
alternatives are disjoint.

Exercise 3

Compute nullable, first for this grammar:
stmtList ::= € | stmt stmtList
stmt ::= assign | block
assign ::=ID = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode
X = U;
y=V,

myPrettyCode ends

Problem Identified

stmtList ::= £ | stmt stmtList

stmt ::= assign | block

assign ::=1D = ID ;

block ::= beginof ID stmtList ID ends
Problem parsing stmtList:

— ID could start alternative stmt stmtList

— ID could follow stmt, so we may wish to parse €
that is, do nothing and return

e For nullable non-terminals, we must also
compute what follows them

General Idea for nullable(A)

>
.
O O
B
O W

[N
O

where:

T1 = first(B, ...
T2 = first(C, ...
T3 = first(D, ...

T = follow(A)

def A =
if (token € T1) {
B, ... B,
ﬁ else if (token € (T2 U Ty)) {
C, ... C,
} else if (token € T3) {
D, ... D,
}// no else error, just return
B)
C,)
D,)

Only one of the alternatives can be nullable (e.g. second)
T1, T2, T3, T; should be pairwise disjoint sets of tokens.

LL(1) Grammar - good for building
recursive descent parsers

Grammar is LL(1) if for each nonterminal X

— first sets of different alternatives of X are disjoint
— if nullable(X), first(X) must be disjoint from follow(X)

For each LL(1) grammar we can build
recursive-descent parser

Each LL(1) grammar is unambiguous

If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B, ... B)) ={aeX | B,...B, =...=> aw}
follow(X)={aeX | S =..= .. Xa..}

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...

(the token a follows the non-terminal X)

Rule for Computing Follow

Given X:=YZ (for reachable X)

then first(Z) < follow(Y)
and follow(X) < follow(Z)

now take care of nullable ones as well:

Foreachrule X:u=Y, . Y .. Y, .Y,

follow(Y) should contain:
o first(Y,,,Y,,,...Y))
e also follow(X) if nullable(Y,,,Y.,,Y,)

Compute nullable, first, follow

stmtList ::= & | stmt stmtList

stmt ::= assign | block

assign ::=I1D = ID ;

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have
e nullable(stmtList)
e first(stmt) N follow(stmtList) = {ID}

e If a recursive-descent parser sees ID, it does
not know if it should

— finish parsing stmtList or
— parse another stmt

