
Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

def expr = { term; termList }
def termList =
 if (token==PLUS) {
 skip(PLUS); term; termList
 } else if (token==MINUS)
 skip(MINUS); term; termList
 }

def term = { factor; factorList }

...

def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
 skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or)")

Rough General Idea

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  T2) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } else error("expected T1,T2,T3")
 where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a | B1...Bp ...  aw }

T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

first(name) = {ident}
first((expr)) = { (}
first(factor) = first(name)
 U first((expr))
 = {ident} U{ (}
 = {ident, (}

first(* factor factorList) = { * }

first(/ factor factorList) = { / }

first(factorList) = { *, / }

first(term) = first(factor) = {ident, (}

first(termList) = { + , - }

first(expr) = first(term) = {ident, (}

Algorithm for first

Given an arbitrary context-free grammar with a
set of rules of the form X ::= Y1 ... Yn compute
first for each right-hand side and for each
symbol.

How to handle

• alternatives for one non-terminal

• sequences of symbols

• nullable non-terminals

• recursion

Rules with Multiple Alternatives

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

first(A) = first(B1... Bp)
 U first(C1 ... Cq)

 U first(D1 ... Dr)

Sequences

first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

 not nullable(Bk) or k=p

Abstracting into Constraints

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

expr' = term'
termList' = {+}
 U {-}

term' = factor'
factorList' = {*}
 U { / }

factor' = name' U { (}
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is
no recursion in constraints.
Solve by substitution.

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y'
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals:
 S', X', Y', Z'  {a,b}

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?
 S', X', Y', Z'  {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?

Iterative Solution of first Constraints

 S' X' Y' Z'
 {} {} {} {}
 {} {b} {b} {a}
 {b} {b} {a,b} {a}
{a,b} {a,b} {a,b} {a}
{a,b} {a,b} {a,b} {a}

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive 

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' | Y'
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z'  {0,1}
 0 - not nullable
 1 - nullable
 | - disjunction
 & - conjunction

 S' X' Y' Z'
 0 0 0 0
 0 0 0 1
 0 0 0 1

1.
2.
3.

again monotonically growing

Computing first and nullable

• Given any grammar we can compute

– for each non-terminal X whether nullable(X)

– using this, the set first(X) for each non-terminal X

• General approach:

– generate constraints over finite domains,
following the structure of each rule

– solve the constraints iteratively

• start from least elements

• keep evaluating RHS and re-assigning the value to LHS

• stop when there is no more change

Rough General Idea

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  T2) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } else error("expected T1,T2,T3")
 where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)

T1, T2, T3 should be disjoint sets of tokens.

Exercise 1

A ::= B EOF
B ::=  | B B | (B)

• Tokens: EOF, (,)

• Generate constraints and compute nullable
and first for this grammar.

• Check whether first sets for different
alternatives are disjoint.

Exercise 2

S ::= B EOF
B ::=  | B (B)

• Tokens: EOF, (,)

• Generate constraints and compute nullable
and first for this grammar.

• Check whether first sets for different
alternatives are disjoint.

Exercise 3
Compute nullable, first for this grammar:

 stmtList ::=  | stmt stmtList

 stmt ::= assign | block

 assign ::= ID = ID ;

 block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

 beginof myPrettyCode

 x = u;
 y = v;
 myPrettyCode ends

Problem Identified

 stmtList ::=  | stmt stmtList

 stmt ::= assign | block

 assign ::= ID = ID ;

 block ::= beginof ID stmtList ID ends

Problem parsing stmtList:

– ID could start alternative stmt stmtList

– ID could follow stmt, so we may wish to parse 
that is, do nothing and return

• For nullable non-terminals, we must also
compute what follows them

General Idea for nullable(A)

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  (T2 U TF)) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } // no else error, just return

where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)
 TF = follow(A)

Only one of the alternatives can be nullable (e.g. second)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X

– first sets of different alternatives of X are disjoint

– if nullable(X), first(X) must be disjoint from follow(X)

• For each LL(1) grammar we can build
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B1 ... Bp) = {a | B1...Bp ...  aw }

follow(X) = {a | S ...  ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  follow(Y)
and follow(X)  follow(Z)

 now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if nullable(Yp+1Yp+2Yr)

Compute nullable, first, follow

stmtList ::=  | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

• nullable(stmtList)

• first(stmt)  follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should

– finish parsing stmtList or

– parse another stmt

