
Exercise: (aa)* | (aaa)*

Construct automaton and eliminate epsilons

Determinization: Subset Construction

– keep track of a set of all possible states in which
automaton could be

– view this finite set as one state of new automaton

• Apply to (aa)* | (aaa)*

– can also eliminate epsilons during determinization

Remark: Relations and Functions

• Relation r  B x C
 r = { ..., (b,c1) , (b,c2) ,... }

• Corresponding function: f : B -> P(C) 2C

 f = { ... (b,{c1,c2}) ... }

 f(b) = { c | (b,c)  r }

• Given a state, next-state function returns the
set of new states

– for deterministic automaton,
the set has exactly 1 element

Running NFA in Scala

def (q : State, a : Char) : Set[States] = { ... }
def '(S : Set[States], a : Char) : Set[States] = {
 for (q1 <- S, q2 <- (q1,a)) yield q2
}

def accepts(input : MyStream[Char]) : Boolean = {

 var S : Set[State] = Set(q0) // current set of states
 while (!input.EOF) {
 val a = input.current
 S = '(S,a) // next set of states
 }
 !(S.intersect(finalStates).isEmpty)
}

Minimization: Merge States

• Only limit the freedom to merge (prove !=) if
we have evidence that they behave differently
(final/non-final, or leading to states shown !=)

• When we run out of evidence, merge the rest

– merge the states in the previous automaton for
 (aa)* | (aaa)*

• Very special case: if successors lead to same
states on all symbols, we know immediately
we can merge

– but there are cases when we can merge even if
successors lead to merged states

Minimization for example

Start from all accepting disequal

all non-accepting.

Result:

only {1} and {2,4} are merged.

Here, the special case is sufficient,

but in general, we need the above

construction (take two copies of

same automaton and union them).

Clarifications

• Non-deterministic state machines where a
transition on some input is not defined

• We can apply determinization, and we will
end up with

– singleton sets

– empty set (this becomes trap state)

• Trap state: a state that has self-loops for all
symbols, and is non-accepting.

Exercise

done on board left for self-study

Complementation, Inclusion,
Equivalence

• Can compute complement: switch accepting
and non-accepting states in deterministic
machine (wrong for non-deterministic)

• We can compute intersection, inclusion,
equivalence

• Intersection: complement union of
complements

• Set difference: intersection with complement

• Inclusion: emptiness of set difference

• Equivalence: two inclusions

Short Demo

• Automated interactive tool for practicing
finite-state automata constructions

• See home page of Damien Zufferey

http://pub.ist.ac.at/~zufferey/

Exercise: first, nullable

• For each of the following languages find the
first set. Determine if the language is nullable.

– (a|b)* (b|d) ((c|a|d)* | a*)

– language given by automaton:

Automated Construction of Lexers
– let r1, r2, ..., rn be regular expressions for token classes

– consider combined regular expression: (r1 | r2 | ... | rn)*

– recursively map a regular expression to a non-deterministic
automaton

– eliminate epsilon transitions and determinize

– optionally minimize A3 to reduce its size  A4

– the result only checks that input can be split into tokens,
does not say how to split it

From (r1|r2|...|rn)* to a Lexer

• Construct machine for each ri labelling
different accepting states differently

• for each accepting state of ri specify the token
class i being recognized

• longest match rule: remember last token and
input position for a last accepted state

• when no accepting state can be reached
(effectively: when we are in a trap state)

– revert position to last accepted state

– return last accepted token

Exercise: Build Lexical Analyzer Part

For these two tokens, using longest match,

where first has the priority:

 binaryToken ::= (z|1)*
 ternaryToken ::= (0|1|2)*

1111z1021z1 

Lexical Analyzer

binaryToken ::= (z|1)*
ternaryToken ::= (0|1|2)*

1111z1021z1 

