Exercise: (aa)* | (aaa)™

Construct automaton and eliminate epsilons

‘/'~—»O

Determinization: Subset Construction

— keep track of a set of all possible states in which
automaton could be

— view this finite set as one state of new automaton
e Apply to (aa)* | (aaa)*

— can also eliminate epsilons during determinization

l a
| a
—
a
&Y

)
S QA xzZxQ a
= (L,a3),0,a,5), .

J'(s,a)=192(39.€5.(9,9,9)€0 | g 3e* z = 2(Q)

Remark: Relations and Functions

e Relation rcBxC
r={..., (b,cl), (b,c2),...}
e Corresponding function: f: B -> AC) 2¢
f={..(bdcL,c2) ..}
f(b)={c| (b,c) er}
e Given a state, next-state function returns the
set of new states

— for deterministic automaton,
the set has exactly 1 element

Running NFA in Scala

def o(q : State, a : Char) : Set[States] ={ ... }

def 0'(S : Set[States], a : Char) : Set[States] = {
for (ql <-S, g2 <- 8(g1,a)) yield g2

}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (linput.EOF) {

val a = input.current

S =0'(S,a) // next set of states

}
I(S.intersect(finalStates).isEmpty)

J

Minimization: Merge States

e Only limit the freedom to merge (prove !=) if
we have evidence that they behave differently
(final/non-final, or leading to states shown !=)

e When we run out of evidence, merge the rest
— merge the states in the previous automaton for
(aa)* | (aaa)*

e Very special case: if successors lead to same
states on all symbols, we know immediately
we can merge

— but there are cases when we can merge even if
successors lead to merged states

Minimization for example

©

—
S

Start from all accepting disequal
all non-accepting.

Result:
only {1} and {2,4} are merged.
Q

«—
Y

construction (take two copies of
same automaton and union them).

(@) Here, the special case is sufficient,
aj but in general, we need the above

Clarifications

e Non-deterministic state machines where a
transition on some input is not defined

e \We can apply determinization, and we will
end up with
— singleton sets

— empty set (this becomes trap state)

e Trap state: a state that has self-loops for all
symbols, and is non-accepting.

Exercise

Convert the following NFAs to deterministic finite automata.

b p
\"_ — T (1 2
~ ~N a> b
| h]-ff::-’ F EJJ. (I F"FJ> ﬂf.|l-_ \r-f/'(llll “'“%E _
Y Ao
- N | “

done on board left for Self-StUdy

Complementation, Inclusion,

Equivalence

e Can compute complement: switch accepting
and non-accepting states in deterministic
machine (wrong for non-deterministic)

e \WWe can compute intersection, inclusion,
equivalence

e Intersection: complement union of
complements

e Set difference: intersection with complement
e Inclusion: emptiness of set difference

e Equivalence: two inclusions

Short Demo

e Automated interactive tool for practicing
finite-state automata constructions

e See home page of Damien Zufferey
http://pub.ist.ac.at/~zufferey/

Exercise: first, nullable

e For each of the following languages find the
first set. Determine if the language is nullable.

tirst(alb)* (bld) ((clald)* | a%)) ={a,b, d]
N ——

— language given by automaton: closure(n=f',2,37;

«C%rs’f(A)'f{d,q,E) c%

Automated Construction of Lexers

— letry, r,, ..., r,be regular expressions for token classes
— consider combined regular expression: (r | r, | ... | r, P

— A

— recursively map a regular expression to a non-deterministic
automaton

— eliminate epsilon transitions and determinize
— optionally minimize A, to reduce its size 2 A,

— the result only checks that input can be split into tokens,
does not say how to split it

From (r,|r,]|...]r,)* to a Lexer

e Construct machine for each r, labelling
different accepting states differently

e for each accepting state of r, specify the token
class i being recognized

e longest match rule: remember last token and
input position for a last accepted state

e when no accepting state can be reached
(effectively: when we are in a trap state)

— revert position to last accepted state
— return last accepted token

Exercise: Build Lexical Analyzer Part

For these two tokens, using longest match,

where first has the priority:
@Y | (ol 12)%

Z/'g. Z.|
L@

o} = £1,2] {12~ ’,M}-—s{}-w /55

binaryToken ::=(z|1)"
ternaryToken ::= (0]1]2)"

11112102121 =
gl

Lexical Analyzer

N binaryToken ::= (z]1)°
2)ternaryToken ::= (0]1]2)" f 1

A
OF—= Do
11112102121 - o
3 S

TL’\{___/\/-Y\JV\-—J

b\‘\/ldv\’ {evv b\"\avy

(binavyToleu] tevuoryTokel)*
1141415 f
\-—\/\/“ 2¢ gq'.tz‘s

