
Exercise:    (aa)* | (aaa)* 

Construct automaton and eliminate epsilons        





Determinization: Subset Construction 

– keep track of a set of all possible states in which 
automaton could be 

– view this finite set as one state of new automaton 

• Apply to   (aa)* | (aaa)* 

– can also eliminate epsilons during determinization 





Remark: Relations and Functions 

• Relation   r  B x C 
 r = { ..., (b,c1) , (b,c2) ,... } 

• Corresponding function: f : B -> P(C)  2C 

 f = { ... (b,{c1,c2}) ... } 

  f(b) = { c | (b,c)  r } 

• Given a state, next-state function returns the 
set of new states 

– for deterministic automaton,  
the set has exactly 1 element 



Running NFA in Scala 

def (q : State, a : Char) : Set[States] = { ... } 
def '(S : Set[States], a : Char) : Set[States] = { 
   for (q1 <- S, q2 <- (q1,a)) yield q2 
} 

def accepts(input : MyStream[Char]) : Boolean = { 

  var S : Set[State] = Set(q0) // current set of states 
  while (!input.EOF) { 
    val a = input.current 
    S = '(S,a)   // next set of states 
  } 
  !(S.intersect(finalStates).isEmpty) 
} 



Minimization: Merge States 

• Only limit the freedom to merge (prove !=) if 
we have evidence that they behave differently 
(final/non-final, or leading to states shown !=) 

• When we run out of evidence, merge the rest 

– merge the states in the previous automaton for  
 (aa)* | (aaa)* 

• Very special case: if successors lead to same 
states on all symbols, we know immediately 
we can merge 

– but there are cases when we can merge even if 
successors lead to merged states 



Minimization for example 

Start from all accepting disequal  

all non-accepting. 

 

Result:  

only {1} and {2,4} are merged. 

 

 

 

Here, the special case is sufficient, 

but in general, we need the above 

construction (take two copies of  

same automaton and union them). 



Clarifications 

• Non-deterministic state machines where a 
transition on some input is not defined 

• We can apply determinization, and we will 
end up with 

– singleton sets 

– empty set (this becomes trap state) 

• Trap state: a state that has self-loops for all 
symbols, and is non-accepting. 



Exercise 

done on board left for self-study 



Complementation, Inclusion, 
Equivalence 

• Can compute complement: switch accepting 
and non-accepting states in deterministic 
machine (wrong for non-deterministic) 

• We can compute intersection, inclusion, 
equivalence 

• Intersection: complement union of 
complements 

• Set difference: intersection with complement 

• Inclusion: emptiness of set difference 

• Equivalence: two inclusions 



Short Demo 

• Automated interactive tool for practicing 
finite-state automata constructions 

 

• See home page of Damien Zufferey 

http://pub.ist.ac.at/~zufferey/ 



Exercise: first, nullable 

• For each of the following languages find the 
first set. Determine if the language is nullable. 

– (a|b)* (b|d) ((c|a|d)* | a*)  

 

– language given by automaton: 



Automated Construction of Lexers 
– let r1, r2, ..., rn be regular expressions for token classes 

– consider combined regular expression:  (r1 | r2 | ... | rn )* 

– recursively map a regular expression to a non-deterministic 
automaton 

– eliminate epsilon transitions and determinize  

– optionally minimize A3 to reduce its size  A4 

– the result only checks that input can be split into tokens, 
does not say how to split it 



From (r1|r2|...|rn )* to a Lexer 

• Construct machine for each ri labelling 
different accepting states differently 

• for each accepting state of ri specify the token 
class i being recognized 

• longest match rule: remember last token and 
input position for a last accepted state 

• when no accepting state can be reached 
(effectively: when we are in a trap state) 

– revert position to last accepted state 

– return last accepted token 



Exercise: Build Lexical Analyzer Part 

For these two tokens, using longest match, 

where first has the priority: 

  binaryToken ::= (z|1)*  
  ternaryToken ::= (0|1|2)*  

 

1111z1021z1  



Lexical Analyzer 

binaryToken ::= (z|1)*  
ternaryToken ::= (0|1|2)*  

 

1111z1021z1  


