Exercise: Balanced Parentheses

Show that the following balanced parentheses grammar is ambiguous (by finding two parse trees for some input sequence) and find unambiguous grammar for the same language.
B ::= ε | (B)|B B

Dangling Else

The dangling-else problem happens when the conditional statements are parsed using the following grammar.

$$
\begin{aligned}
& S::=S ; S \\
& S::=\text { id }:=E \\
& S:=\text { if } E \text { then } S \\
& S::=\text { if } E \text { then } S \text { else } S
\end{aligned}
$$

Find an unambiguous grammar that accepts the same conditional statements and matches the else statement with the nearest unmatched if.

Left Recursive and Right Recursive

We call a production rule "left recursive" if it is of the form
A ::= A p
for some sequence of symbols p. Similarly, a "right-recursive" rule is of a form

$$
\text { A }::=\text { q A }
$$

Is every context free grammar that contains both left and right recursive rule, for a some nonterminal A, ambiguous?

Transforming Grammars into Chomsky Normal Form

1) To parse them using CYK Algorithm 2) To simplify them

Why Parse General Grammars

- Can be difficult or impossible to make grammar unambiguous
- Some inputs are more complex than simple programming languages
- mathematical formulas:

$$
x=y / \backslash z \quad ? \quad(x=y) / \backslash z \quad x=(y / \backslash z)
$$

- future programming languages
- natural language:

I saw the man with the telescope.

CYK Parsing Algorithm

C:

John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers: Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York

University.

Y :
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n^{3}. Information and Control 10(2): 189-208.

K:
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

Two Steps in the Algorithm

1) Transform grammar to normal form called Chomsky Normal Form
(Noam Chomsky, mathematical linguist)
2) Parse input using transformed grammar dynamic programming algorithm
"a method for solving complex problems by breaking them down into simpler steps.
It is applicable to problems exhibiting the properties of overlapping subproblems"

Balanced Parentheses Grammar

Original grammar G

$$
s \rightarrow " "|(S)| S S
$$

Modified grammar in Chomsky Normal Form:

$$
s \rightarrow{ }^{\prime \prime \prime} \mid S^{\prime} \quad \leftarrow \text { if } \quad " n \in L(G)
$$

$$
\left.\begin{array}{l}
S^{\prime} \rightarrow N_{(} N_{S S}\left|N_{1} N_{1}\right| S^{\prime} S^{\prime} \\
N_{S)} \rightarrow S^{\prime} N_{1}
\end{array}\right\} \text { Rules } \quad \begin{aligned}
& N \rightarrow N_{1} N_{2} \\
& \text { nontermminals }
\end{aligned}
$$

$$
N_{1} \rightarrow \text { (}
$$

$$
N_{1}^{\prime} \rightarrow \text {) }
$$

- Terminals: () Nonterminals: $\mathrm{S}^{\prime} \mathrm{N}_{\mathrm{s})} \mathrm{N}_{\mathrm{s}} \mathrm{N}_{(}$ nonterminal with funny name

Idea How We Obtained the Grammar

Transforming to Chomsky Form

Steps:

1. remove unproductive symbols
2. remove unreachable symbols
3. remove epsilons (no non-start nullable symbols)
4. remove single non-terminal productions $X::=Y$
5. transform productions w/ more than 3 on RHS
6. make terminals occur alone on right-hand side

1) Unproductive non-terminals How to compute them?

What is funny about this grammar:
stmt ::= identifier := identifier
while (expr) stmt if (expr) stmt else stmt
expr ::= term + term | term - term term ::= factor $*$ factor factor ::= (expr)

There is no derivation of a sequence of tokens from expr
Why? In every step will have at least one expr, term, or factor If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

- Productive symbols are obtained using these two rules (what remains is unproductive)
- Terminals (tokens) are productive
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule and each s_{i} is productive then X is productive
stmt ::= identifier := identifier
while (expr) stmt if (expr) stmt else stmt

Delete unproductive symbols.
expr ::= term + term | term - term term ::= factor * factor
factor ::= (expr)
program ::= stmt | stmt program

Will the meaning of
top-level symbol
(program) change?

2) Unreachable non-terminals

What is funny about this grammar with starting terminal 'program'
program ::= stmt | stmt program
stmt ::= assignment | whileStmt
assignment ::= expr = expr
ifStmt ::= if (expr) stmt else stmt
whileStmt ::= while (expr) stmt
expr ::= identifier
No way to reach symbol 'ifStmt' from 'program'

2) Computing unreachable non-terminals

What is funny about this grammar with starting terminal 'program'
program ::= stmt | stmt program
stmt ::= assignment | whileStmt
assignment ::= expr = expr
ifStmt ::= if (expr) stmt else stmt
whileStmt ::= while (expr) stmt
expr ::= identifier
What is the general algorithm?

2) Unreachable non-terminals

- Reachable terminals are obtained using the following rules (the rest are unreachable)
- starting non-terminal is reachable (program)
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule and X is reachable then each non-terminal among $s_{1} s_{2} \ldots s_{n}$ is reachable

Delete unreachable symbols.

Will the meaning of top-level symbol (program) change?

3) Removing Empty Strings

Ensure only top-level symbol can be nullable
program ::= stmtSeq
stmtSeq ::= stmt | stmt ; stmtSeq
stmt ::= "" | assignment | whileStmt | blockStmt
blockStmt ::= \{ stmtSeq \}
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

program ::= "" | stmtSeq stmtSeq ::= stmt| stmt ; stmtSeq |
|; stmtSeq | stmt; |;
stmt ::= assignment | whileStmt | blockStmt blockStmt ::= \{stmtSeq $\} \mid\{ \}$
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt ::= while (expr)
expr ::= identifier

3) Removing Empty Strings - Algorithm

- Compute the set of nullable non-terminals
- Add extra rules
- If $X::=s_{1} s_{2} \ldots s_{n}$ is rule then add new rules of form

$$
x::=r_{1} r_{2} \ldots r_{n} \quad 2^{n}
$$

where r_{i} is either s_{i} or, if s_{i} is nullable then r_{i} can also be the empty string (so it disappears)

- Remove all empty right-hand sides
- If starting symbol S was nullable, then introduce a new start symbol S' instead, and add rule S’ ::=S |""

3) Removing Empty Strings

- Since stmtSeq is nullable, the rule
blockStmt ::= \{ stmtSeq \}
gives
blockStmt ::= \{ stmtSeq \}|\{\}
- Since stmtSeq and stmt are nullable, the rule
stmtSeq ::= stmt \| stmt ; stmtSeq gives
stmtSeq ::= stmt | stmt ; stmtSeq
|; stmtSeq \| stmt; |;

4) Eliminating single productions

- Single production is of the form $X::=Y$
where X, Y are non-terminals

program ::= stmtSeq
stmtSeq ::= stmt
| stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt

4) Eliminate single productions - Result

- Generalizes removal of epsilon transitions from non-deterministic automata

$$
\begin{aligned}
& \text { program }::= \text { expr = expr | while (expr) stmt } \\
& \mid \text { stmt ; stmtSeq } \\
& \text { stmtSeq }::=\text { expr }=\text { expr | while (expr) stmt } \\
& \mid \text { stmt ; stmtSeq } \\
& \text { stmt }::=\text { expr }=\text { expr | while (expr) stmt } \\
& \text { assignment }::=\text { expr = expr } \\
&\text { whileStmt }::=\text { while (expr) stmt }\} \text { now unreachable }
\end{aligned}
$$

4) "Single Production Terminator"

- If there is single production
$\mathrm{X}::=\mathrm{Y} \quad$ put an edge (X, Y) into graph
- If there is a path from X to Z in the graph, and there is rule $Z::=s_{1} s_{2} \ldots s_{n}$ then add rule

$$
X::=s_{1} s_{2} \ldots s_{n}
$$

At the end, remove all single productions.

$$
\begin{aligned}
\text { program }: & :=\text { expr }=\text { expr | while (expr) stmt } \\
& \mid \text { stmt ; stmtSeq }
\end{aligned}
$$

stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmt ::= expr = expr | while (expr) stmt

5) No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes

stmt ::= while stmt ${ }_{1}$
stmt $_{1}::=$ (stmt $_{2}$
stmt $_{2}::=\operatorname{expr}^{2 t m t_{3}}$
stmt $_{3}::=$) stmt
6) A non-terminal for each terminal
stmt ::= while (expr) stmt
becomes

stmt $::=\mathrm{N}_{\text {while }} \mathrm{stmt}_{1}$
stmt $_{1}::=\mathrm{N}_{1}$ stmt $_{2}$
stmt $_{2}::=$ expr stmt $_{3}$
stmt $_{3}::=\mathrm{N}$, stmt
$N_{\text {while }}::=$ while
$\mathrm{N}_{1}::=$ (
$\mathrm{N}_{\mathrm{l}}::=$)

Parsing using CYK Algorithm

- Transform grammar into Chomsky Form:

1. remove unproductive symbols
2. remove unreachable symbols
3. remove epsilons (no non-start nullable symbols)
4. remove single non-terminal productions $X::=Y$
5. transform productions of arity more than two
6. make terminals occur alone on right-hand side Have only rules $\mathrm{X}::=\mathrm{Y} Z, \mathrm{X}::=\mathrm{t}$, and possibly $\mathrm{S}::=$ "

- Apply CYK dynamic programming algorithm

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

$$
\begin{aligned}
& S \rightarrow{ }^{\prime \prime \prime} \mid S^{\prime} \\
& N_{\mathrm{j}} \rightarrow \mathrm{t} \\
& \mathrm{~N}_{\mathrm{i}} \rightarrow \mathrm{~N}_{\mathrm{j}} \mathrm{~N}_{\mathrm{k}}
\end{aligned}
$$

(only for the start non-terminal) (names for terminals)
(just $\mathbf{2}$ non-terminals on RHS)
Decomposing long input:

find all ways to parse substrings of length $1,2,3, \ldots$

Parsing an Input

$$
\begin{aligned}
& \mathrm{S}^{\prime} \rightarrow \mathrm{N}_{(} \mathrm{N}_{\mathrm{S})}\left|\mathrm{N}_{(} \mathrm{N}_{\mathrm{l}}\right| \mathrm{S}^{\prime} \mathrm{S}^{\prime} \\
& \mathrm{N}_{\mathrm{S})} \rightarrow \mathrm{S}^{\prime} \mathrm{N}_{\text {, }} \\
& \mathrm{N}_{\mathrm{l}} \rightarrow \text { (} \\
& \mathrm{N}_{\mathrm{s}} \rightarrow \text {) }
\end{aligned}
$$

Algorithm Idea

$S^{\prime} \rightarrow S^{\prime} S^{\prime}$

w_{pq} - substring from p to q $d_{p q}-$ all non-terminals that could expand to w_{pq} Initially $d_{p p}$ has $N_{w(p, p)}$ key step of the algorithm: if $X \rightarrow Y Z$ is a rule, Y is in $d_{p r}$, and Z is in $\mathrm{d}_{(\mathrm{r}+1) \mathrm{q}}$
then put X into d_{pq} ($p<r<q$),
in increasing value of ($q-p$)

Algorithm

INPUT: grammar G in Chomsky normal form word w to parse using G
OUTPUT: true iff (w in L(G))
$N=|w|$
var d: Array [N][N]
for $p=1$ to N \{
$d(p)(p)=\{X \mid G$ contains $X->w(p)\}$
for q in $\{p+1 . . N\} d(p)(q)=\{ \}\}$
for $k=2$ to $\mathrm{N} / /$ substring length
for $p=0$ to $N-k / /$ initial position
for $\mathrm{j}=1$ to $\mathrm{k}-1 / /$ length of first half
val $r=p+j-1 ;$ val $q=p+k-1$;
($X::=Y Z$) in G
Y in $d(p)(r)$ and Z in $d(r+1)(q)$ $d(p)(q)=d(p)(q)$ union $\{X\}$
return S in $d(0)(N-1)$

Parsing another Input

$$
\begin{aligned}
& \mathrm{S}^{\prime} \rightarrow \mathrm{N}_{(} \mathrm{N}_{\mathrm{S})}\left|\mathrm{N}_{(} \mathrm{N}_{\mathrm{l}}\right| \mathrm{S}^{\prime} \mathrm{S}^{\prime} \\
& \mathrm{N}_{\mathrm{S})} \rightarrow \mathrm{S}^{\prime} \mathrm{N}_{\text {, }} \\
& \mathrm{N}_{1} \rightarrow \text { (} \\
& \mathrm{N}_{\mathrm{s}} \rightarrow \text {) }
\end{aligned}
$$

Number of Parse Trees

- Let w denote word ()()()
- it has two parse trees
- Give a lower bound on number of parse trees of the word $w^{n} \quad$ (n is positive integer) w^{5} is the word ()()() ()()()()()()()()()()
- CYK represents all parse trees compactly
- can re-run algorithm to extract first parse tree, or enumerate parse trees one by one

