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Stream of Char-s 
( lazy List[Char] ) 

class CharStream(fileName : String){  

 val file = new BufferedReader( 

      new FileReader(fileName))  

  var current : Char = ' '  

  var eof : Boolean = false 

 

  def next = {  

    if (eof)  

     throw EndOfInput("reading" + file) 

    val c = file.read()  

    eof = (c == -1)  

    current = c.asInstanceOf[Char] 

  } 

 

  next // init first char 

} 

Stream of Token-s 
sealed abstract class Token  

case class ID(content : String) // “id3” 

 extends Token  

case class IntConst(value : Int) // 10 

 extends Token  

case class AssignEQ() ‘=‘ 

 extends Token  

case class CompareEQ // ‘==‘ 

 extends Token  

case class MUL() extends Token // ‘*’ 

case  class PLUS() extends Token // + 

case clas LEQ extends Token // ‘<=‘ 

case class OPAREN extends Token //( 

case class CPAREN extends Token //) 

... 

case class IF extends Token // ‘if’ 

case class WHILE extends Token 

case class EOF extends Token 

 // End Of File 

class Lexer(ch : CharStream) {  

  var current : Token  

  def next : Unit = {  

    lexer code goes here  

  } 

} 



We have seen how to... 

• prove things about languages by induction 

• use regular expressions to describe tokens 

• compute first symbols of regular expressions 

• build lexical analyzers (lexers) to recognize  

– identifiers 

– integer literals 



Decision Tree to Map Symbols to Tokens 
ch.current match { 

  case '(' => {current = OPAREN; ch.next; return} 

  case ')' => {current = CPAREN; ch.next; return} 

  case '+' => {current = PLUS; ch.next; return} 

  case '/' => {current = DIV; ch.next; return} 

  case '*' => {current = MUL; ch.next; return} 

  case '=' => { // more tricky because there can be =, == 

    ch.next 

    if (ch.current == '=') {ch.next; current = CompareEQ; return}  

    else {current = AssignEQ; return} 

  } 

  case '<' => { // more tricky because there can be <, <= 

    ch.next 

    if (ch.current == '=') {ch.next;    current = LEQ; return}  

    else {current = LESS; return} 

  } 

} 

What happens if we omit it? 
consider input '<=  ' 



Skipping Comments 

if (ch.current='/') { 

  ch.next 

  if (ch.current='/') { 

     while (!isEOL && !isEOF) { 

       ch.next 

     } 

  } else {     

  } 

} 

 

Nested comments?        /* foo  /* bar */ baz */ 

// what do we set as the current token now? 



Longest Match (Maximal Munch) Rule 
• There are multiple ways to break input chars into tokens 

• Consider language with   identifiers - ID, <=, <, =  

• Consider these input characters:  

  interpreters <= compilers  

• These are some ways to analyze it into tokens:  

ID(interpreters)  LEQ  ID(compilers) 

ID(inter)  ID(preters)  LESS  AssignEQ   ID(com)  ID(pilers) 

ID(i)  ID(nte)  ID(rpre)  ID(ter)  LESS AssignEQ  ID(co)  ID(mpi) ID(lers) 

• This is resolved by longest match rule:  

 

If multiple tokens could follow, take the longest token possible 



Consequences of Longest Match Rule 

• Consider language with three operators:  

<, <=, => 

• For sequence '<=>' , lexer will report an error 

– Why? 

 

 

• In practice, this is not a problem 

– we can always insert extra spaces 

 



Longest Match Exercise 
• Recall the maximal munch rule: lexical analyzer should eagerly accept 

the longest token that it can recognize from the current point.  

• Consider the following specification of tokens, the numbers in 
parentheses gives the name of the token given by the regular 
expression. 

 (1) a(ab)*  (2) b*(ac)*  (3) cba   (4) c+  

• Use the maximal munch rule to tokenize the following strings 
according to the specification  

– c a c c a b a c a c c b a b c 

– c c c a a b a b a c c b a b c c b a b a c 

• If we do not use the maximal munch rule, is another tokenization 
possible? 

• Give an example of a regular expression and an input string, where 
the regular expression is able to split the input strings into tokens, but 
it is unable to do so if we use the maximal munch rule. 

 



Token Priority 

• What if our token classes intersect?  

• Longest match rule does not help  

• Example: a keyword is also an identifier  

• Solution - priority: order all tokens,  
if overlap, take one with higher priority  

 

• Example: if it looks both like keyword and like 
identifier, then it is a keyword (we say so) 

 



Automating Construction of Lexers 



Example in javacc 

TOKEN: { 

    <IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_")* > 

  | <INTLITERAL: <DIGIT> (<DIGIT>)* > 

  | <LETTER: ["a"-"z"] | ["A"-"Z"]> 

  | <DIGIT: ["0"-"9"]> 

} 

SKIP: { 

   " "   |  "\n"   |    "\t" 

} 

--> get automatically generated code for lexer! 

But how does javacc do it? 



Finite Automaton (Finite State Machine) 

•  - alphabet 

• Q - states (nodes in the graph) 

• q0 - initial state (with '>' sign in drawing) 

•  - transitions (labeled edges in the graph) 

• F - final states (double circles) 



Numbers with Decimal Point 

digit digit* . digit digit* 

What if the decimal part is optional? 



Exercise 

• Design a DFA which accepts all the numbers written in binary 
and divisible by 6. For example your automaton should accept 
the words 0, 110 (6 decimal) and 10010 (18 decimal). 



• Deterministic:  is a function 

Kinds of Finite State Automata 

• Otherwise: non-deterministic 



Interpretation of Non-Determinism 

• For a given word (string), a path in automaton lead to 
accepting, another to a rejecting state 

• Does the automaton accept in such case? 

– yes, if there exists an accepting path in the automaton 
graph whose symbols give that word 

• Epsilon transitions: traversing them does not consume 
anything (empty word) 

• More generally, transitions labeled by a word: traversing such 
transition consumes that entire word at a time 



Regular Expressions and Automata 

Theorem: 

If L is a set of words, then it is a value of a 
regular expression if and only if it is the set of 
words accepted by some finite automaton. 

 

Algorithms: 

• regular expression  automaton (important!) 

• automaton  regular expression (cool) 



Recursive Constructions 

• Union 

 

 

• Concatenation 

 

 

• Star 



Eliminating Epsilon Transitions 



Exercise:    (aa)* | (aaa)* 

Construct automaton and eliminate epsilons 



Determinization: Subset Construction 

– keep track of a set of all possible states in which 
automaton could be 

– view this finite set as one state of new automaton 

• Apply to   (aa)* | (aaa)* 



Exercise 



Exercise: first, nullable 

• For each of the following languages find the 
first set. Determine if the language is nullable. 

– (a|b)*(b|d)((c|a|d)* | a*)  

 

– language given by automaton: 



Minimization: Merge States 

• We should only limit the freedom of merge if 
we have evidence that they behave differently 
(acceptance, or leading to different states) 

• When we run out of evidence, merge the rest 

– merge the states in the previous automaton for  
 (aa)* | (aaa)* 



Automated Construction of Lexers 
– let r1, r2, ..., rn be regular expressions for token classes 

– consider combined regular expression:  (r1 | r2 | ... | rn )* 

– recursively map a regular expression to a non-deterministic 
automaton A1 

– eliminate epsilon transitions from A1 by adding more edges  A2 

– determinize  A2 using the subset construction  A3 

– minimize A3 to reduce its size  A4 

– the result only checks that input can be split into tokens, does not 
say how! 

– so, must maintain different final states for different tokens 

– and, must remember last accepting state to know when to return 
token and to implement the longest match rule 

– we can implement an automaton using a big array or a map for 
transitions 



Making (r1|r2|...|rn ) work as Lexer 

• Modify state machine  

• for each accepting state specify the token 
recognized (but do not stop) 

– use token class priority if multiple options 

• for longest match rule: remember last token 
and input position for last accepted state 

• when no accepting state can be reached 
(effectively: when we are in a trap state) 

– revert position to last accepted state 

– return last accepted token 



Exercise: Build Lexical Analyzer Part 

For these two tokens, using longest match, 

where first has the priority: 

  binaryToken ::= (z|1)*  
  ternaryToken ::= (0|1|2)*  

 

1111z1021z1  



Lexical Analyzer 

binaryToken ::= (z|1)*  
ternaryToken ::= (0|1|2)*  

 

1111z1021z1  



Exercise: Realistic Integer Literals 
• Integer literals are in three forms in Scala: decimal, 

hexadecimal and octal. The compiler discriminates different 
classes from their beginning.  

– Decimal integers are started with a non-zero digit.  

– Hexadecimal numbers begin with 0x or 0X and may 
contain the digits from 0 through 9 as well as upper or 
lowercase digits A to F afterwards.  

– If the integer number starts with zero, it is in octal 
representation so it can contain only digits 0 through 7.  

– l or L at the end of the literal shows the number is Long.  

• Draw a single DFA that accepts all the allowable integer 
literals. 

• Write the corresponding regular expression. 



Exercise 

• Let L be the language of strings A = {<, =} 
defined by regexp   (<|=| <====*), that is, 
L contains <,=, and words <=n for n>2. 

• Construct a DFA that accepts L 

• Describe how the lexical analyzer will tokenize 
the following inputs. 

1) <===== 

2) ==<==<==<==<== 

3) <=====< 

 



More Questions 

• Find automaton or regular expression for: 

– Sequence of open and closed parentheses of even 
length? 

– as many digits  before as after decimal point? 

– Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
  ( ) ) ( ( )   - not balanced 

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF 

– Nested comments like     /*  ... /*   */  … */ 



Automaton that Claims to Recognize 
{ anbn  | n >= 0 } 

We can make it deterministic 

Let the result have K states 

Feed it a, aa, aaa, …. 

   consider the states it ends up in 



Limitations of Regular Languages 

• Every automaton can be made deterministic 

• Automaton has finite memory, cannot count 

• Deterministic automaton from a given state 
behaves always the same 

• If a string is too long, deterministic automaton 
will repeat its behavior 

– say A accepted an bn for all n, and has K states 

 



Context-Free Grammars 

• Σ  - terminals 

• Symbols with recursive defs - nonterminals 

• Rules are of form 
  N ::= v 
v is sequence of terminals and non-terminals 

• Derivation starts from a starting symbol 

• Replaces non-terminals with right hand side 

– terminals and  

– non-terminals 



Balanced Parentheses Grammar 

• Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
   ( ) ) ( ( )   - not balanced 

 



Remember While Syntax 

 

program ::= statmt*  

statmt ::= println( stringConst , ident ) 

             | ident = expr 

             | if ( expr ) statmt (else statmt)? 

             | while ( expr ) statmt 
             | { statmt* }  

expr ::= intLiteral | ident 

          | expr (&& | < | == | + | - | * | / | % ) expr 
          | ! expr | - expr  



Eliminating Additional Notation 

• Grouping alternatives 

s ::= P | Q    instead of  s ::= P 
     s ::= Q 

• Parenthesis notation 

 expr (&& | < | == | + | - | * | / | % ) expr 

• Kleene star within grammars 

 { statmt* } 

• Optional parts 

 if ( expr ) statmt (else statmt)? 


