Abstract Interpretation (Cousot, Cousot 1977) also known as Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs: (like flow-charts)

int a, b, step, i;
boolean c;
a = 0; Const
b = a + 10;
step = -1;
if (step > 0) {
i = a;
} else {
i = b;
}
c = true;
while (c) {
print(i);
i = i + step; // can emit decrement
if (step > 0) {
c = (i < b);
} else {
c = (i > a); // can emit better instruction here
<pre>} // insert here (a = a + step), redo analysis</pre>
}

Constant Propagation

Control-Flow Graph: (V,E)

Set of nodes, V

Set of edges, which have statements on them

 (v_1, st, v_2) in E means there is edge from v_1 to v_2 labeled with statement st. $v_9 v_9$

Interpretation and Abstract Interpratation

- Control-Flow graph is similar to AST
- We can
 - interpret control flow graph
 - generate machine code from it (e.g. LLVM, gcc)
 - abstractly interpret it: do not push values, but
 approximately compute supersets of possible values
 (e.g. intervals, types, etc.)

What we see today

- 1. How to compile abstract syntax trees into control-flow graphs
- 2. Lattices, as structures that describe abstractly sets of program states (facts)
- Transfer functions that describe how to update facts (started)
 Next time:
- 4. Iterative analysis algorithm
- 5. Convergence

Generating Control-Flow Graphs

- Start with graph that has one entry and one exit node and label is entire program
- Recursively decompose the program to have more edges with simpler labels
- When labels cannot be decomposed further, we are done

Flattening Expressions

Better translation uses the "branch" instruction approach: have two destinations

While

Better translation uses the "branch" instruction

Example 1: Convert to CFG

while (i < 10) {
 println(j);
 i = i + 1;
 j = j +2*i + 1;
}</pre>

Example 1 Result

Example 2: Convert to CFG

int i = n; while (i > 1) { println(i); if (i % 2 == 0) { i = i / 2; } else { i = 3*i + 1;ł

Example 2 Result

int i = n; while (i > 1) { println(i); if (i % 2 == 0) { i = i / 2; } else { i = 3*i + 1;

Analysis Domains

Abstract Intepretation Generalizes Type Inference

Type Inference

computes types

• type rules

- can be used to compute types of expression from subtypes
- types fixed for a variable

Abstract Interpretation

- computes facts from a domain
 - types
 - intervals
 - formulas
 - set of initialized variables
 - set of live variables
- transfer functions
 - compute facts for one program point from facts at previous program points
- facts change as the values of vars change (*flow-sensitivity*)

scalac computes types. Try in REPL:

class C

class D extends C

class E extends C

val p = false

```
val d = new D()
```

```
val e = new E()
```

```
val z = if (p) d else e
```

```
val u = if (p) (d,e) else (d,d)
val v = if (p) (d,e) else (e,d)
```

```
val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
val f2 = if (p) ((d1:D) => d) else ((e1:E) => e)
```

Finds "Best Type" for Expression

class C	
---------	--

- class D extends C
- class E extends C

val p = false

- **val** d = **new** D()
- val e = new E()
- **val** z = **if** (p) d **else** e

// e:E // z:C

// d:D

val u = **if** (p) (d,e) **else** (d,d) // u:(D,C) // v:(C,C) val v = if(p)(d,e) else(e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5) // f1: ((D with E) => Int) **val** f2 = if(p)((d1:D) => d) else((e1:E) => e)

// f2: ((D with E) => C)

Least Upper Bound (lub, join)

R

A,B,C are all upper bounds on both D and E (they are above each of then in the picture, they are supertypes of D and supertypes of E). Among these upper bounds, C is the least one (the most specific one).

We therefore say C is the least upper bound,

 $C = D \sqcup E$

In any partial order \leq , if S is a set of elements (e.g. S={D,E}) then: U is **upper bound** on S iff $x \leq U$ for every x in S. U₀ is the **least upper bound (lub)** of S, written U₀ = \bigsqcup S, or U₀=lub(S) iff: U₀ is upper bound and if U is any upper bound on S, then U₀ \leq U

Greatest Lower Bound (glb, meet)

In any partial order \leq , if S is a set of elements (e.g. S={D,E}) then: L is **lower bound** on S iff $L \leq x$ for every x in S. L₀ is the **greatest upper bound (glb)** of S, written L₀ = \bigcup S, or L₀=glb(S), iff: m₀ is upper bound and if m is any upper bound on S, then m₀ \leq m

Computing lub and glb
for tuple and function types
$$(\times, , , ,) \sqcup (\times_{2}, , 2) = (\times, \sqcup \times_{2}, , , \sqcup , 2) \\ (\times, , ,) \sqcap (\times_{2}, , 2) = (\times, \sqcap \times_{2}, , , \sqcap , 2) \\ (\times, , ,) \sqcap (\times_{2}, , 2) = (\times, \sqcap , 2, , \sqcap , 2) \\ (\times, , ,) \sqcup (\times_{2} - , 2) = (\times, \sqcap , 2) - (Y_{1} \sqcup , 2) \\ (\times, , , ,) \sqcap (\times_{2} - , 2) = (\times, \amalg , 2) - (Y_{1} \sqcup , 2)$$

Lattice

Partial order: binary relation \leq (subset of some D²) which is

- reflexive: $x \le x$
- anti-symmetric: $x \le y \land y \le x \rightarrow x=y$
- transitive: $x \le y \land y \le z \rightarrow x \le z$

Lattice is a partial order in which every two-element set has lub and glb

 Lemma: if (D, ≤) is lattice and D is finite, then lub and glb exist for every finite set

Idea of Why Lemma Holds

- $lub(x_1, lub(x_2, ..., lub(x_{n-1}, x_n)))$ is $lub(\{x_1, ..., x_n\})$
- $glb(x_1,glb(x_2,...,glb(x_{n-1},x_n)))$ is $glb(\{x_1,...,x_n\})$
- lub of all elements in D is maximum of D
 by definition, glb({}) is the maximum of D
- glb of all elements in D is minimum of D
 by definition, lub({}) is the minimum of D

Graphs and Partial Orders

- If the domain is finite, then partial order can be represented by directed graphs
 - if $x \le y$ then draw edge from x to y
- For partial order, no need to draw x ≤ z if x ≤ y and y ≤ z. So we only draw non-transitive edges
- Also, because always $x \leq x$, we do not draw those self loops
- Note that the resulting graph is acyclic: if we had a cycle, the elements must to be equal

Defining Abstract Interpretation

Abstract Domain D (elements are data-flow **facts**), describing which information to compute, e.g.

- inferred types for each variable: x:C, y:D
- interval for each variable x:[a,b], y:[a',b']

Transfer Functions, [[**st**]] for each statement **st**, how this statement affects the facts

- Example: $\begin{bmatrix} x = x+2 \end{bmatrix} (x:[a,b],...) \\
= (x:[a+2,b+2],...) \\
0 x:[a+2,b+2], y:[c,d]$

Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If $a \le x \le b$ $c \le y \le d$ and we execute x = x + ythen x' = x + yy' = yso $\le x' \le$ $\le y' \le$

So we can let

$$a'=a+c$$
 $b'=b+d$
 $c'=c$ $d'=d$

Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

So we can let

$$a'=a$$
 $b'=b$
 $c'=a-d$ $d'=b-c$