Abstract Interpretation

(Cousot, Cousot 1977)

also known as
Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the
program

e Use it to report errors to user (like type errors)
* Use it to optimize the program

Works on control-flow graphs:

(like flow-charts) o entry

¥ =1 = L [1(x<i0)] et
- o —»0

while (x < 10
X=x£-2 A %= %t+2 [% <10]
} %

int a, b, step, i;

}

boolean c;
a=0;
b=a+10;
step =-1;
if (step > 0) {
i=a;
} else {
i=b;
}
Cc = true;
while (c) {
print(i);
i =i+ step;

if (step > 0) {

c=(i<b);
} else {

Constant Propagation

// can emit decrement

c = (i > a); // can emit better instruction here

}// insert here (a = a + step), redo analysis

Control-Flow Graph: (V,E)

Set of nodes, V

Set of edges, which have statements on them
(vq,st,v,) in E

means there is edge from v, to v, labeled with

statement st. Vo

x=1 L‘E’Xt 5 o vV

while (x < 10) { 7% Loy
X=X+2 X =%x+2 [x<(0]

} Y

V.
V = {V,,Vy,V,,Va} 2

E ={(vo,x=1,v,), (v,[x<10],v,),
(Vo,X=x+2,v,), (v4,[!(x<10)],v;5)}

Interpretation and
Abstract Interpratation

* Control-Flow graph is similar to AST
* We can

— interpret control flow graph
— generate machine code from it (e.g. LLVM, gcc)

— abstractly interpret it: do not push values, but
approximately compute supersets of possible values
(e.g. intervals, types, etc.)

Compute Range of x at Each Point
(~00,+b°)o V (eu\JCYVh [))_] L‘ [3\3] = [I\B]

=1

VM]W]W]['“] 7oV,
pﬁﬁ]tgrq 7|\ C (><<[t)gﬁ ook
Y = X+/ (<107

V010153 T

\/ —

What we see today

. How to compile abstract syntax trees into
control-flow graphs

. Lattices, as structures that describe abstractly
sets of program states (facts)

. Transfer functions that describe how to
update facts (started)
Next time:

4. |terative analysis algorithm

. Convergence

Generating Control-Flow Graphs

e Start with graph that has one entry and one
exit node and label is entire program

* Recursively decompose the program to have
more edges with simpler labels

 When labels cannot be decomposed further,
we are done

Flattening Expressions

E . %Z - com?\e\(expYessions
£, 4., -~ -(:T‘Q,SL\ uaw"icn\:)\es
) oL

0 £~
0

If-Then-EIse

Y *b
£ (E)
s = \/
elee 51 52
S L

Better translation uses the "branch" instruction
approach: have two destinations

o

9

| |
braunch (E, 28 E,) = brauch (El)

brawd (E2) 57
S\ (\XS,_ . I/ \\‘_/7[32

o] J/ b= E.
while (E) > bL \b
{$ 73 —_:> °

!.f o

Better translation uses the "branch" instruction

77
brand (€)
S \

Example 1: Convert to CFG

while (i < 10) {
println(j);
i=i+1;
j=j+2%i+1;
}

Example 1 Result

while (i < 10) {
println(j);
i=i+1;
j=j+2%i+1;
}

Example 2: Convert to CFG

InNt i =n;
while (i > 1) {

printin(i);

if (1% 2==0){

i=i/2;

} else {

i=3%+1;

}
}

Example 2 Result

InNt i =n;
while (i > 1) { jenty
printIn(i); H“Qi”
if (i % 2 == 0) { e
i=i/2;
} else { 20
i = 3%+ 1; £z ¥
} 1= Eytd

}

Analysis Domains

Abstract Intepretation
Generalizes Type Inference

Type Inference
* computes types

* typerules

— can be used to compute types
of expression from subtypes

* types fixed for a variable

Abstract Interpretation

computes facts from a domain

types
intervals

formulas
set of initialized variables
set of live variables

transfer functions

compute facts for one program
point from facts at previous
program points

facts change as the values of
vars change (flow-sensitivity)

scalac computes types. Try in REPL:

class C

class D extends C
class E extends C
val p = false

val d = new D()

val e = new E()
valz=if (p) d else e

val u = if (p) (d,e) else (d,d)
val v = if (p) (d,e) else (e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
val f2 = if (p) ((d1:D) => d) else ((el:E) => e)

Finds "Best Type" for Expression

class C

class D extends C
class E extends C
val p = false

val d = new D()

val e = new E()
valz=if (p) d else e

val u = if (p) (d,e) else (d,d)
val v =if (p) (d,e) else (e,d)

val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
val f2 = if (p) ((d1:D) => d) else ((el:E) => e)

//
/]
/]

/]
/]

/]
/]

d:D
e:E
z:C

u:(D,C)
v:(C,C)

f1: ((D with E) => Int)
f2: ((D with E) => C)

Subtyping Relation in this Example

(Dié_E‘ product of two graphs: (¢ ¢)
N / b
C (C
NOF (D,0) ‘)\ /’E)
D with E (¢,DE)
(v ME) (E)¢)
J—
(DNE,¢)
/ \
(DNE,D) (BﬂE,E)

N
(DNE, E)

Subtyping Relation in this Example

(DUE)
C (¢, c)
N / AN
D = ‘ /(C) (C,E)
\. / D,(;/ P,
D witW E / ()/ (¢, DNE)
D,E
(v ML) (b,\b) /%)6)
(D,DNE) S/ \\
AN /
(€,DNE)
(DNE,¢)
/ AN
(DﬁE,D} (DnE,E)

N 7
(DN E ,bng

Least Upper Bound (lub, join)

A A,B,C are all upper bounds on both D and E
| (they are above each of then in the picture,
B they are supertypes of D and supertypes of E).
| Among these upper bounds, C is the least one
C (the most specific one).
/N We therefore say C is the least upper bound,

b S C=DUE

In any partial order <, if S is a set of elements (e.g. S={D,E}) then:
U is upper bound on S iff x< U for every xinS.
U, is the least upper bound (lub) of S, written U, = LIS, or Uy=lub(S) iff:
U, is upper bound and
if U is any upper bound on S, then U, < U

Greatest Lower Bound (glb, meet)

= n the presence of traits or interfaces, there are
Y, E f f h
AN / multiple types that are subtypes of both D and E.
Dwitu E The type (D with E) is the largest of them.

|

\
D with € with T with G DHE

In any partial order <, if S is a set of elements (e.g. S={D,E}) then:
L is lower bound on S iff L<xforeveryxins§.
L, is the greatest upper bound (glb) of S, written L, =S, or L,=glb(S), iff:
m,is upper bound and
if m is any upper bound on S, then my<m

Computing lub and glb
for tuple and function types

LX‘)\"/J U (XZ,Yz\ = (x.U X2, Y U ‘12)
D A (le\’z\ = (T %R, 0, ﬂ\/z\

&xl -\, U (%, =2Y2) = (% y) = (nlye)
(%, =)T (g =) = (4 Uy = (v yy)

Lattice

Partial order: binary relation < (subset of some D?)
which is

— reflexive: x < x

— anti-symmetric: x<y /\ y<x -> x=y

— transitive: x<y /\y<z -> x<z
Lattice is a partial order in which every
two-element set has lub and glb

e Lemma: if (D, <) is lattice and D is finite,
then lub and glb exist for every finite set

ldea of Why Lemma Holds

lub(x,,lub(x,,...,lub(x_;,x))) is lub({x,,...x.})

glb(x,,glb(x,,...,glb(x, 1,X,))) is glb({xy,...x.})
lub of all elements in D is maximum of D
— by definition, glb({}) is the maximum of D

glb of all elements in D is minimum of D
— by definition, lub({}) is the minimum of D

Graphs and Partial Orders

If the domain is finite, then partial order can
be represented by directed graphs

— if x <y then draw edge from xto y

For partial order, no need to draw x <z if
X <y andy <z. So we only draw non-transitive

edges

Also, because always x < x , we do not draw
those self loops

Note that the resulting graph is acyclic: if we
had a cycle, the elements must to be equal

Defining Abstract Interpretation

Abstract Domain D (elements are data-flow facts),
describing which information to compute, e.g.

— inferred types for each variable: x:C, y:D

— interval for each variable x:[a,b], y:[a’,b’]

Transfer Functions, [[st]] for each statement st,
how this statement affects the facts
— Example: o #:[a,P] yiLE 2]

[[X’ X+2 :u (x;[Q,B]) >

= (X'. EQ+2\b+2]a“’) * - X+2

\ /4

o x.[atd, b2] y:[c,d]

Domain of Intervals [a,b] where
a,be{-M,-127,0,127,M-1}

[-M, nA)
- ~
-1, 127] [-123, M-1]
e ~ / N
[-M, 0] [-121 23] [0, -1
/ N7\

(-1 -123] [-12% 0] [0,123] [123, M-1]

N\ \

[~™M -r’\] L-127, ~-127] L[o,0] f_\l? 23] [r-1, m-1]

I\ P

1

Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If aﬁ)(éb C£\1£c!

o x:[ap] y: [c,d]
and we execute X= x+y

= X+Y
o x:[a\0] y:[c Q'] then)(": X+ \
v =Y
so -
< x's
< \/‘ <

So we can let

a=a+c b’ =b+d
c’=c d =d

Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

. X [a.b] \‘("[Cnél If
4= X1 and we execute y= x-y
$pab] yindd'] then

So we can let
a’=a b’=b
c=a-d d=b-c

