Abstract Interpretation (Cousot, Cousot 1977)
 also known as Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs: (like flow-charts)
$x=1$
while ($x<10$) $\{$ $x=x+2$
\}


```
int a, b, step, i;
boolean c;
a = 0;
b = a + 10;
step = -1;
if (step > 0) {
    i = a;
} else {
    i = b;
}
c = true;
while (c) {
    print(i);
    i = i + step; // can emit decrement
    if (step > 0) {
        c = (i< b);
    } else{
        c=(i>a); // can emit better instruction here
    } // insert here (a = a + step), redo analysis
}
```


Constant Propagation

```
b = a + 10;
step \(=-1\);
if (step >0) \{
\(\mathrm{i}=\mathrm{a}\);
\} else \{
i = b;
\}
c = true;
while (c) \{
print(i);
\(\mathrm{i}=\mathrm{i}+\) step; // can emit decrement
if (step > 0) \{
\(c=(i<b)\);
\} else \{
\(\mathrm{c}=(\mathrm{i}>\mathrm{a})\); // can emit better instruction here
\} // insert here ( \(\mathrm{a}=\mathrm{a}+\) step), redo analysis

\section*{Control-Flow Graph: (V,E)}

Set of nodes, V
Set of edges, which have statements on them
\[
\left(v_{1}, s t, v_{2}\right) \text { in } E
\]
means there is edge from \(v_{1}\) to \(v_{2}\) labeled with statement st.
\(\mathrm{x}=1\)
while \((x<10)\) \{
\(\mathbf{x}=\mathrm{x}+2\)
\}

\[
\begin{aligned}
\mathrm{V}= & \left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} \\
\mathrm{E}= & \left\{\left(\mathrm{v}_{0}, \mathrm{x}=1, \mathrm{v}_{1}\right),\left(\mathrm{v}_{1},[\mathrm{x}<10], \mathrm{v}_{2}\right),\right. \\
& \left.\left(\mathrm{v}_{2}, x=x+2, v_{1}\right),\left(v_{1},[!(x<10)], v_{3}\right)\right\}
\end{aligned}
\]

\section*{Interpretation and}

\section*{Abstract Interpratation}
- Control-Flow graph is similar to AST
- We can
- interpret control flow graph
- generate machine code from it (e.g. LLVM, gcc)
- abstractly interpret it: do not push values, but approximately compute supersets of possible values (e.g. intervals, types, etc.)

Compute Range of \(x\) at Each Point


\section*{What we see today}
1. How to compile abstract syntax trees into control-flow graphs
2. Lattices, as structures that describe abstractly sets of program states (facts)
3. Transfer functions that describe how to update facts (started) Next time:
4. Iterative analysis algorithm
5. Convergence

\section*{Generating Control-Flow Graphs}
- Start with graph that has one entry and one exit node and label is entire program
- Recursively decompose the program to have more edges with simpler labels
- When labels cannot be decomposed further, we are done

Flattening Expressions
\(E_{1}, E_{2}\)-complex expressions \(t_{1}, t_{2}\) - fresh variables
\[
\sum_{0}^{0} x=E_{1} * E_{2} \quad \Rightarrow \quad \begin{aligned}
& \prod_{0}^{i} t_{1}=E_{1} \\
& \prod_{0}^{i} x=t_{1} * t_{2}
\end{aligned}
\]

If-Then-Else


Better translation uses the "branch" instruction approach: have two destinations


While


Better translation uses the "branch" instruction


\section*{Example 1: Convert to CFG}
while ( \(\mathrm{i}<10\) ) \{ println(j);
\(\mathrm{i}=\mathrm{i}+1\);
\(j=j+2 * i+1 ;\)
\}

\section*{Example 1 Result}
\[
\begin{aligned}
& \text { while }(\mathrm{i}<10)\{ \\
& \text { print } \ln (\mathrm{j}) \text {; } \\
& \mathrm{i}=\mathrm{i}+1 \text {; } \\
& \mathrm{j}=\mathrm{j}+2^{*} \mathrm{i}+1 \text {; } \\
& \}
\end{aligned}
\]


\section*{Example 2: Convert to CFG}
int \(\mathrm{i}=\mathrm{n}\);
while ( \(\mathrm{i}>1\) ) \{
println(i);
if ( \(\mathrm{i} \% 2==0\) ) \(\{\)
\(\mathrm{i}=\mathrm{i} / 2\);
\} else \{
\(\mathrm{i}=3 * \mathrm{i}+1\);
\}
\}

\section*{Example 2 Result}
int \(\mathrm{i}=\mathrm{n}\);
while (i>1) \{ println(i); if \((\mathrm{i} \% 2=0)\{\) i = i / 2;
\} else \{
\[
i=3 * i+1 ;
\]
\}


\section*{Analysis Domains}

\section*{Abstract Intepretation Generalizes Type Inference}

Type Inference
- computes types
- type rules
- can be used to compute types of expression from subtypes
- types fixed for a variable

Abstract Interpretation
- computes facts from a domain
- types
- intervals
- formulas
- set of initialized variables
- set of live variables
- transfer functions
- compute facts for one program point from facts at previous program points
- facts change as the values of vars change (flow-sensitivity)

\section*{scalac computes types. Try in REPL:}

\section*{class C}
class D extends C
class E extends C
val \(p=\) false
val \(d=\) new \(D()\)
val \(\mathrm{e}=\) new E()
val \(z=\) if \((p) d\) else \(e\)
val \(u=\) if ( \(p\) ) ( \(d, e\) ) else ( \(d, d\) )
val \(v=\) if \((p)(d, e)\) else ( \(e, d)\)
val \(f 1=\) if \((p)((d 1: D)=>5)\) else ((e1:E) \(=>5)\)
val \(\mathrm{f} 2=\) if \((p)((d 1: D)=>d)\) else ((e1:E) \(=>e)\)

\section*{Finds "Best Type" for Expression}
```

class C
class D extends C
class E extends C
val p = false
val d = new D()
val e = new E()
val z = if (p) d else e
val u = if (p) (d,e) else (d,d)
val v = if (p) (d,e) else (e,d)
val f1 = if (p) ((d1:D) => 5) else ((e1:E) => 5)
// f1:((D with E) => Int)
val f2 = if (p) ((d1:D) => d) else ((e1:E) => e)
// u:(D,C)
// d:D
// e:E
// z:C
// v:(C,C)
// f2: ((D with E) => C)

```

Subtyping Relation in this Example


Subtyping Relation in this Example
(DUE)


\section*{Least Upper Bound (lub, join)}

\(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are all upper bounds on both D and E (they are above each of then in the picture, they are supertypes of \(D\) and supertypes of \(E\) ). Among these upper bounds, C is the least one (the most specific one).
We therefore say \(C\) is the least upper bound,
\[
C=D \sqcup E
\]

In any partial order \(\leq\), if \(S\) is a set of elements (e.g. \(S=\{D, E\}\) ) then:
\(U\) is upper bound on \(S\) iff \(x \leq U\) for every \(x\) in \(S\).
\(U_{0}\) is the least upper bound (lub) of \(S\), written \(U_{0}=\bigsqcup S\), or \(U_{0}=\operatorname{lub}(S)\) iff:
\(\mathrm{U}_{0}\) is upper bound and
if \(U\) is any upper bound on \(S\), then \(U_{0} \leq U\)

\section*{Greatest Lower Bound (gIb, meet)}
 multiple types that are subtypes of both D and E .
\(D\) with \(E \quad\) The type ( \(D\) with \(E\) ) is the largest of them.
\(D\) with \(E\) with \(F\)
\(D\) with \(E\) with \(F\) with \(G\)

\section*{\(D \sqcap E\)}

In any partial order \(\leq\), if \(S\) is a set of elements (egg. \(S=\{D, E\}\) ) then:
\(L\) is lower bound on \(S\) iff \(L \leq x\) for every \(x\) in \(S\).
\(L_{0}\) is the greatest upper bound (gIb) of \(S\), written \(L_{0}=\left\lfloor S\right.\), or \(L_{0}=g \mid b(S)\), iff:
\(\mathrm{m}_{0}\) is upper bound and
if \(m\) is any upper bound on \(S\), then \(m_{0} \leq m\)

Computing lab and gIb for tuple and function types
\[
\begin{aligned}
& \left(x_{1}, y_{1}\right) \cup\left(x_{2}, y_{2}\right)=\left(x_{1} \cup x_{2}, y_{1} \cup y_{2}\right) \\
& \left(x_{1}, y_{1}\right) \sqcap\left(x_{2}, y_{2}\right)=\left(x_{1} \sqcap x_{2}, y_{1} \sqcap y_{2}\right) \\
& \left(x_{2} \rightarrow y_{1}\right) \cup\left(x_{2} \rightarrow y_{2}\right)=\left(x_{1} \sqcap y_{1}\right) \rightarrow\left(y_{1} \cup y_{2}\right) \\
& \left(x_{1} \rightarrow y_{1}\right) \sqcap\left(x_{2} \rightarrow y_{2}\right)=\left(x_{1} \cup y_{1}\right) \rightarrow\left(y_{1} \sqcap y_{2}\right)
\end{aligned}
\]

\section*{Lattice}

Partial order: binary relation \(\leq\left(\right.\) subset of some \(\left.D^{2}\right)\) which is
- reflexive: \(x \leq x\)
- anti-symmetric: \(x \leq y / \triangle y \leq x->x=y\)
- transitive: \(x \leq y / \wedge y \leq z->x \leq z\)

Lattice is a partial order in which every two-element set has lub and glb
- Lemma: if \((D, \leq)\) is lattice and \(D\) is finite, then lub and glb exist for every finite set

\section*{Idea of Why Lemma Holds}
- \(\operatorname{lub}\left(x_{1}, \operatorname{lub}\left(x_{2}, \ldots, \operatorname{lub}\left(x_{n-1}, x_{n}\right)\right)\right)\) is \(\operatorname{lub}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)\)
- \(\operatorname{glb}\left(x_{1}, g \operatorname{lb}\left(x_{2}, \ldots, g \operatorname{lb}\left(x_{n-1}, x_{n}\right)\right)\right)\) is \(\operatorname{glb}\left(\left\{x_{1}, \ldots x_{n}\right\}\right)\)
- lub of all elements in \(D\) is maximum of \(D\)
- by definition, \(\mathrm{glb}(\})\) is the maximum of D
- glb of all elements in \(D\) is minimum of \(D\)
- by definition, lub(\{\}) is the minimum of \(D\)

\section*{Graphs and Partial Orders}
- If the domain is finite, then partial order can be represented by directed graphs
- if \(x \leq y\) then draw edge from \(x\) to \(y\)
- For partial order, no need to draw \(x \leq z\) if \(x \leq y\) and \(y \leq z\). So we only draw non-transitive edges
- Also, because always \(x \leq x\), we do not draw those self loops
- Note that the resulting graph is acyclic: if we had a cycle, the elements must to be equal

\section*{Defining Abstract Interpretation}

Abstract Domain D (elements are data-flow facts), describing which information to compute, egg.
- inferred types for each variable: \(x: C, y: D\)
- interval for each variable \(\mathrm{x}:[\mathrm{a}, \mathrm{b}], \mathrm{y}:\left[\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right]\)

Transfer Functions, [[st]] for each statement st, how this statement affects the facts
- Example:
\[
\begin{aligned}
& \llbracket x=x+2 \rrbracket(x:[a, b], \ldots) \\
&=(x:[a+2, b+2], \ldots)
\end{aligned}
\]
\[
\begin{aligned}
& \text { - } x:[a, b] \quad y:[c, d] \\
& x=x+2 \\
& { }_{0} x:[a+2, b+2], y:[c, d]
\end{aligned}
\]

Domain of Intervals [abb] where \(a, b \in\{-M,-127,0,127, M-1\}\)


Find Transfer Function: Plus
Suppose we have only two integer variables: \(x, y\)
\[
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } a \leqslant x \leqslant b \quad c \leqslant y \leqslant d \\
x=x+y & & \text { and we execute } x=x+y \\
x:\left[a^{\prime}, b^{\prime}\right] & y:\left[c^{\prime}, d^{\prime}\right] & \text { then } x^{\prime}=x+y \\
& & y^{\prime}=y \\
& & \text { so } \quad \\
& & \\
& & x^{\prime} \leqslant \\
& &
\end{array}\right.
\]

So we can let
\[
\begin{array}{ll}
a^{\prime}=a+c & b^{\prime}=b+d \\
c^{\prime}=c & d^{\prime}=d
\end{array}
\]

\section*{Find Transfer Function: Minus}

Suppose we have only two integer variables: \(x, y\)
\[
\left\{\begin{array}{lll}
x:[a, b] & y:[c, d] & \text { If } \\
y=x-y & \text { and we execute } y=x-y \\
x:\left[a^{\prime}, b^{\prime}\right] \quad y:\left[c^{\prime}, d^{\prime}\right] & \text { then }
\end{array}\right.
\]

So we can let
\[
\begin{array}{ll}
a^{\prime}=a & b^{\prime}=b \\
c^{\prime}=a-d & d^{\prime}=b-c
\end{array}
\]```

