http://lara.epfl.ch

Compiler Construction 2011

CYK Algorithm and
Chomsky Normal Form

Parsing an Input

Ng) 2 SN, [7 e S
N(9 (ambiguity D
N, >) 6 >
5 A ~
S(ﬂ)S‘El"W\g 4
lehg{‘/\ < N
3 N,

—

. ® @
—~"N T

CL.OC) TP O]

)

Algorithm ldea

SS>85¢
W, — Substring from p to g

dpq— all non-terminals that
could expand to w

Initially d; has N,
key step of the algorithm:

if X—=>YZ isarule,
Yisind,, ,and
Zisind,),

then put Xinto d

(P r<aq),
in increasing value of (g-p)

~ O o N

W

2

1 N, N, N, N N N N, N,

—

.

(

(

)

(

)

(

)

)

Algorithm

INPUT: grammar G in Chomsky normal form
word w to parse using G

OUTPUT: true iff (w in L(G)) What is the running time
= |w] as a function of grammar
vard: Array[N][N] size and the size of input?
forp=1to N {
d(p)(p) = {X | G contains X->w(p)} 3
forgin{p+1..N}d(p)(a)={}} O(Nig)

for k=2 to N // substring length
for p=0to N-k // initial position
forj=1to k-1//length of first half
val r = p+j-1; val g = p+k-1;
for (X =Y Z)in G
“if Yin d(p)(r) and Z in d(r+1)(q)

t d(Sp)(q(} - dl(\lpa(q) union {X}
return S in d{O)(N-1) (T chHhTchTch T

Parsing another Input

A

7\
s’ 's'" Number of Parse Trees

7 \ /
) 5 \5\, S
C) ¢) 7 N\]
e Let w denote word ()()() /S" S,
N
— it has two parse trees 6S>“ (,5\) @,
e Give a lower bound on number of parse trees
of the word w" (n is positive integer)

w> is the word

000 000 000 000 000
2'VL

e CYK represents all parse trees compactly

— can re-run algorithm to extract first parse tree, or
enumerate parse trees one by one

Algorithm ldea

g >5S PN —
W, — Substring from p to g -

dpq— all non-terminals that
could expand to w

Initially d; has N,
key step of the algorithm:

if X—=>YZ isarule,
Yisind,, ,and
Zisind,),

then put Xinto d

(b r<a),

/
/ N

~ O o N

W

2
1 No No Ny No Ny No Ny N,

in increasing value of (g-p) (|« ‘) ‘ (‘) | ‘) |)

Transforming to Chomsky Form

e Steps:

1. remove unproductive symbols
remove unreachable symbols
remove epsilons (no non-start nullable symbols)
remove single non-terminal productions X::=Y
transform productions of arity more than two

o s W N

make terminals occur alone on right-hand side

1) Unproductive non-terminals
How to compute them?

What is funny about this grammar:
stmt ::= identifier := identifier
| while (expr) stmt
| if (expr) stmt else stmt
expr ::=term + term | term — term
term ::= factor * factor
factor ::= (expr)

There is no derivation of a sequence of tokens from expr
Why? In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

e Productive symbols are obtained using these
two rules (what remains is unproductive)

— Terminals are productive

— If X::=s; s, ... s isrule and each s, is productive
then X is productive

: W
| Delete unproductive

symbols.
—Exp'r_—"r@rrrr?tewn—l"tﬁf’_':ﬁm

Will the meaning of

top-level symbol
program s stmt | stmt program (program) change?

2) Unreachable non-terminals

What is funny about this grammar with starting
terminal ‘program’

program ::= stmt | stmt program

stmt ::= assignment | whileStmt

assignment ::= expr = expr

::= if (expr) stmt else stmt
whileStmt ::= while (expr) stmt
expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

2) Unreachable non-terminals

What is funny about this grammar with starting
terminal ‘program’

WIgeTdEeIn] . =inld | stmt program

s assignment fiwhileStmt

m (expr) stmt else stmt
::= while (expr) stmt

9oy ;.= identifier

What is the general algorithm?

2) Unreachable non-terminals

e Reachable terminals are obtained using the
following rules (the rest are unreachable)
— starting non-terminal is reachable (program)

— If X:ii=s;s, ... s, isrule and Xis reachable then
each non-terminal amongs, s, ... s, is reachable

Delete unreachable
symbols.

Will the meaning of
top-level symbol
(program) change?

2) Unreachable non-terminals

What is funny about this grammar with starting
terminal ‘program’

WIgeTdreIn . =inld | stmt program

s assignment fiwhileStmt

expr) s
::= while (expr) stmt

::= identifier

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

program ::= stmtSeq

stmtSeq ::= stmt | stmt ; stmtSeq

stmt ::= “” | assignment | whileStmt | blockStmt
blockStmt ::= { stmtSeq }

assignment ::= expr = expr

whileStmt ::= while (expr) stmt

expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

o

program ::=“” | stmtSeq
stmtSeq ::= stmt| stmt ; stmtSeq |
| ; stmtSeq | stmt; | ;
stmt ::= assignment | whileStmt | blockStmt
blockStmt ::= { stmtSeq } | { }
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt ::= while (expr)
expr ::= identifier

3) Removing Empty Strings - Algorithm

e Compute the set of nullable non-terminals

e Add extra rules
— If X::=s; s, ... s, is rule then add new rules of form
Xi= ryry .. r,
where r; is either s, or, if s.is nullable then
r.can also be the empty string (so it disappears)

e Remove all empty right-hand sides

e |f starting symbol S was nullable, then
introduce a new start symbol S’ instead, and
add rule §" ::=S |

3) Removing Empty Strings

e Since stmtSeq is nullable, the rule
blockStmt ::= { stmtSeq }
gives
blockStmt ::= {stmtSeq } | {}

e Since stmtSeq and stmt are nullable, the rule
stmtSeq ::= stmt | stmt ; stmtSeq
gives
stmtSeq ::= stmt | stmt ; stmtSeq
| ; stmtSeq | stmt; | ;

4) Eliminating single productions

e Single production is of the form
X =Y
where X,Y are non-terminals

program ::= stmtSeq
stmtSeq ::= stmt

| stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt

4) Eliminate single productions - Result

e Generalizes removal of epsilon transitions
from non-deterministic automata

program ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmt ::= expr = expr | while (expr) stmt
assignment ::= expr = expr 1} now unreachable
whileStmt ::= while (expr) stmt

4) “Single Production Terminator”

e |f there is single production
X:=Y putanedge (X)) into graph

e |[f there is a path from X to Z in the graph, and
thereisruleZ::=s,s, .. s then add rule
Xi=8,S, .5,
At the end, remove all single productions.
program ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmtSeq ::= expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmt ::= expr = expr | while (expr) stmt

5) No more than 2 symbols on RHS

stmt ::= whiIeL(expr) stmt

L
becomes S— -,

3
stmt ::= while stmt;,

stmt, ::= (stmt,
stmt, ::= expr stmt,
stmt, 1=) stmt

6) A non-terminal for each terminal

stmt ::= WhiIeL(expr) stmt

L
becomes S— -,

stmt ::= N ie stm”,E1
stmt; ::= N stmt,
stmt, ::= expr stmt;
stmt; ;1= N, stmt

N .= while

while

Parsing using CYK Algorithm

e Transform grammar into Chomsky Form:

1.

o s W N

Have only rules X ::=Y Z, X ::=t, and possibly S ::=

remove unproductive symbols

remove unreachable symbols

remove epsilons (no non-start nullable symbols)
remove single non-terminal productions X::=Y
transform productions of arity more than two

make terminals occur alone on right-hand side

“wrn

e Apply CYK dynamic programming algorithm

Algorithm ldea

g >5S PN —
W, — Substring from p to g -

dpq— all non-terminals that
could expand to w

Initially d; has N,
key step of the algorithm:

if X—=>YZ isarule,
Yisind,, ,and
Zisind,),

then put Xinto d

(b r<a),

/
/ N

~ O o N

W

2
1 No No Ny No Ny No Ny N,

in increasing value of (g-p) (|« ‘) ‘ (‘) | ‘) |)

Earley’s Algorithm

J. Earley, "An efficient contexi-free parsing algorithm", Communications of the
Association for Computing Machinery, 13:2:94-102, 1970.

CYK vs Earley’s Parser Comparison

L:=XY Z parses w,,

e CYK:ifd parses X and d,,), parses Y, then
ind . stores symbol Z

e Earley’s parser:
in set S, stores item (Z ::= XY. , p)

e Move forward, similar to top-down parsers
e Use dotted rules to avoid binary rules

((})}(}) <})

