Compiler Construction
Lecture 17

Mapping Variables to Memory

|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Original and Target Program have
Different Views of Program State

* Original program:
— local variables given by names (any number of them)

— each procedure execution has fresh space for its variables
(even if it is recursive)

— fields given by names

e Java Virtual Machine
— local variables given by slots (0,1,2,...), any number
— intermediate values stored in operand stack
— each procedure call gets fresh slots and stack
— fields given by names and object references

* Machine code: program state is a large arrays of bytes
and a finite number of registers

Compilation Performs Automated
Data Refinement

x=2>0 _ 1-2>0
s |y>5 Data Refinement 735| ¢
7> 8 Function R 3>8
P: x=y+7*z iload 2
iconst 7
x> 61 iload 3

[[x=y+7*2]] =<

s |ly=>5 imul
z>8 iadd
_istore 1
If interpreting program P 1-> 61
leads from s to s’ 22>5 | ¢
then running the compiled code [[P]] 328

leads from R(s) to R(s’)

Inductive Argument for Correctness

x>0 020
s, |ly=>5 R 125 C1
z>8 228
X=y+7%z [[x=y+7*2]]
X =2 61 0261
s, |[y>5 R 1-2>5 C,
z>8 228
y=z+1 iload 3; iconst 1; iadd; istore 2
S3 |y—=>9 R 129 o

(R may need to be a relation, not just function)

A Simple Theorem

P:S2>S is @ program meaning function
P:C—>C is meaning function for the compiled program
R:S>C is data representation function

Lets. ., =P(s,), n=0,1,... be interpreted execution
Let c.,, =P(c,), n=0,1,... be compiled execution

S, S
Qo r >c:) Tsz >§3 o OS“
I
R l 1{' | I
/‘ K' o | R
o v v v
C‘TDCNO —_0 -~ - . 0
Theorem: If c ' C2 C3 Cw

— forall's, P_(R(s)) = R(P(s))
then c, = R(c,) for all n.
Proof: immediate, by induction. R is often called simulation relation.

Example of a Simple R

* Let the received, the parameters, and local
variables, in their order of declaration, be

Xy Xy e X,
 Then R maps program state with only integers
like this:

X; 2V, 0 =2v,
X, 2V, 1 =2v,
X3 = Vs R 2 DV,

X, 2V, (n-1) =2 v,

R for Booleans

* Let the received, the parameters, and local
variables, in their order of declaration, be

Xy Xy e X,
* Then R maps program state like this, where x,
and x, are integers but x; and x, are Booleans:

X; 23 0 —2>3
X, > 9 1509
X3 =2 true R 2 21
x, = false 320

R that depends on Program Point

. X =2V 0-2v,
def main(x:Int) { res > v, 15>,
var res, y, z: Int v v, R 25,
if (x>0) {1 z DV, 3>V,
y=x+ —
res=y 5
else X V1
} __{_ \res%v 02>V,
z=-x-10 ’ R 1>V
2
res =z V. 2V 1
| 22V
} z 2V, 3
} X >V,
res 2 v, 02 v,
Map y,z to same slot. y DV, R, 12 v,
Consume fewer slots! zZ 2V, 22V,

Packing Variables into Memory

e |f values are not used at the same time, we
can store them in the same place

* This technique arises in

— Register allocation: store frequently used values
in @ bounded number of fast registers

— ‘malloc’ and ‘free’” manual memory management:
free releases memory to be used for later objects

— Garbage collection, e.g. for JVM, and .NET as well
as languages that run on top of them (e.g. Scala)

Register Machines

Better for most purposes than stack machines
— closer to modern CPUs (RISC architecture)
— closer to control-flow graphs
— simpler than stack machine A fow fast

Example: ARM architecture registers

From article on RISC architectures:

Directly
Addressable
RAM
(large - GB,
slow)

RO,R1,...,R31

“The ARM architecture dominates the market for high performance, low
power, low cost embedded systems (typically 100-500 MHz in 2008). ARM
Ltd., which licenses intellectual property rather than manufacturing chips,
reported 10 billion licensed chips shipped in early 2008 [7]. ARM is deployed
in countless mobile devices such as: Samsung Galaxy (ARM11), Apple iPods
(custom ARM7TDMI SoC) Apple iPhone (Samsung ARM1176JZF), Palm and
PocketPC PDAs and smartphones (Marvell XScale family, Samsung SC32442 -

ARM9), Nintendo Game Boy Advance (ARM7TDMI), Nintendo DS

(ARM7TDMI, ARM946E-S), Sony Network Walkman (Sony in-house ARM

based chip)

http://en.wikipedia.org/wiki/ARM architecture
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Samsung Galaxy
http://en.wikipedia.org/wiki/Samsung Galaxy

Basic Instructions of Register Machines

R, € Mem[R,] load
Mem[R] €R; store
R, €< R, *R, compute: for an operation *

Efficient register machine code uses as few loads
and stores as possible.

State Mapped to Register Machine

Both dynamically allocated heap and stack expand

— heap need not be contiguous can request more 1 GB
memory from the OS if needed
— stack grows downwards P —
Heap is more general: —
e Can allocate, read/write, and deallocate,
in any order

* Garbage Collector does deallocation automatically 1o0mpB

— Must be able to find free space among used one,
group free blocks into larger ones (compaction),...

Stack is more efficient:

* allocation is simple: increment, decrement

* top of stack pointer (SP) is often a register SP} 50kb
. Meun

* if stack grows towards smaller addresses: 0

— to allocate N bytes on stack (push): SP :=SP - N

free memory

- — o ~

Heap

| AW

Constants

Static Globals

Exact picture may

— to deallocate N bytes on stack (pop): SP :=SP + N depend on
hardware and OS

JVM vs General Register Machine Code

IVM: Register Machine:
imul R1 € Mem|[SP]
SP=5SP+4
R2 & Mem|[SP]
R2 €< R1 *R2

Mem[SP] €< R2

res] R
X7 R?
74
2RSS

7R3
X k2
X\f‘.?i \

