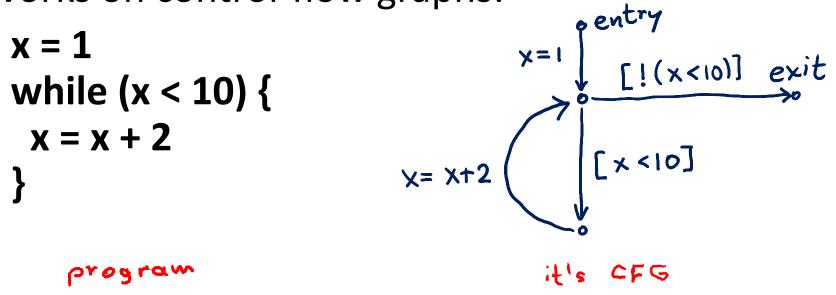
Compiler Construction Lecture 16

Data-Flow Analysis



Goal of Data-Flow Analysis

Automatically compute information about the program

- Use it to report errors to user (like type errors)
- Use it to optimize the program

Works on control-flow graphs:

How We Define It

 Abstract Domain **D** (Data-Flow Facts): which information to compute?

- Example: interval for each variable x:[a,b], y:[a',b']

 Transfer Functions [[st]] for each statement st, how this statement affects the facts

- Example: $\begin{bmatrix} x = x+2 \end{bmatrix} (x:[a,b],...) \\ = (x:[a+2,b+2],...) \\ 0 x:[a+2,b+2], y:[c,d]$

Find Transfer Function: Plus

Suppose we have only two integer variables: x,y

If $a \le x \le b$ $c \le y \le d$ and we execute x = x + ythen x' = x + yy' = yso $\le x' \le$ $\le y' \le$

So we can let

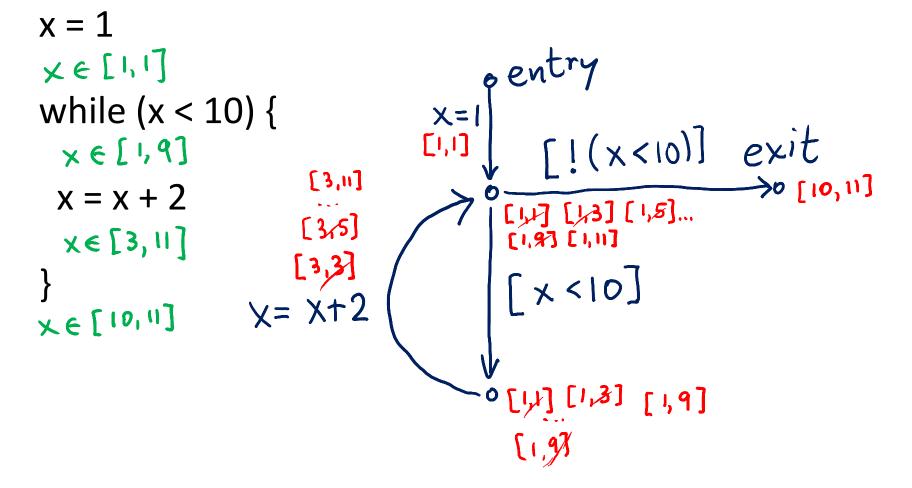
$$a'=a+c$$
 $b'=b+d$
 $c'=c$ $d'=d$

Find Transfer Function: Minus

Suppose we have only two integer variables: x,y

So we can let

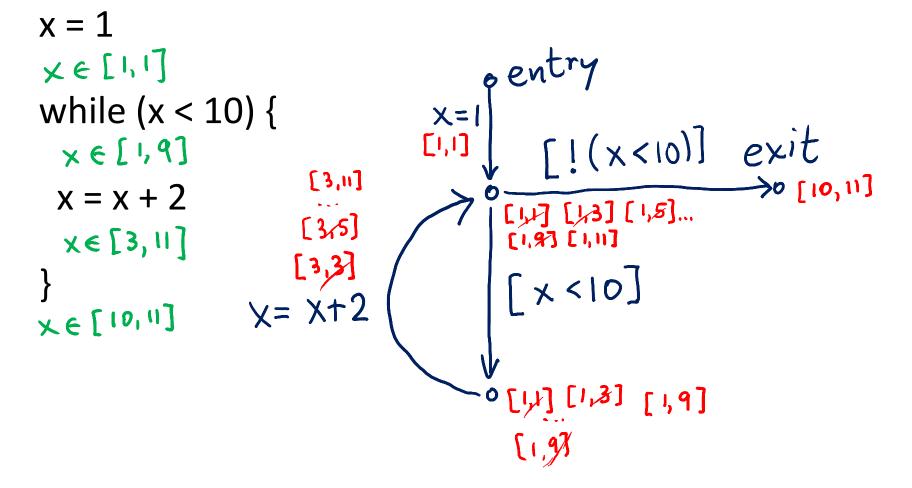
$$a'=a$$
 $b'=b$
 $c'=a-d$ $d'=b-c$


Transfer Functions for Tests ×: [-10,10] x:[-10,10] if (x > 1) { [!(x>I)] [x>I] X÷ Ś ×:[X:E y = 1 / x4=42 } else { Y=1/x *: y = 42 , x:[a,b] y:[c,d] [x > y]

Merging Data-Flow Facts

Compiler learned some facts! ③

 $[1,1] \sqcup [3,3] = [1,3]$ $[1,1] \sqcup [3,5] = [1,5]$


Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues // change

while (there was change) $[1,1] \sqcup [3,3] = [1,3]$ **pick** edge (v1,statmt,v2) from CFG [1,1] L [3,5] = [1,5] such that facts(v1) was changed facts(v2)=facts(v2) join [[statmt]](facts(v1)) } Order does not matter for the [1,1] [1,3] [1,5] end result, as long as we do not [3,5] permanently neglect any edge whose source was changed.

Compiler learned some facts! ③

 $[1,1] \sqcup [3,3] = [1,3]$ $[1,1] \sqcup [3,5] = [1,5]$

Compiler learns some facts, but only after long time

x = 1 n = 100000 while (x < n) { x = x + 2 }

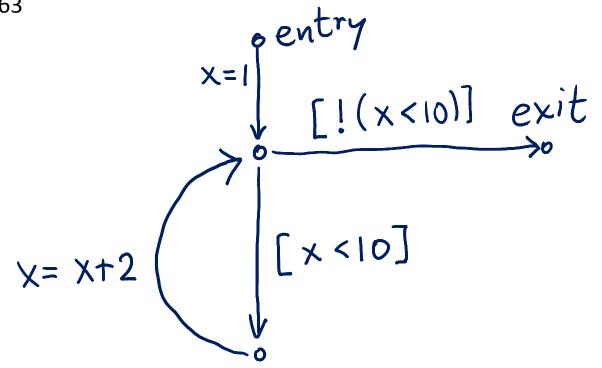
For unknown program inputs it may be practically impossible to know how long it takes

```
var x : BigInt = 1
var n : BigInt = readInput()
while (x < n) {
    x = x + 2
}</pre>
```

Solutions

smaller domain, e.g. only certain intervals
[a,b] where a,b in {-∞,-127,-1,0,1,127,∞}
widening techniques (make it less precise on demand)

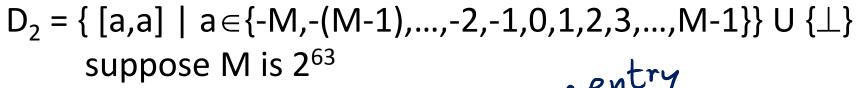
Size of analysis domain


Interval analysis:

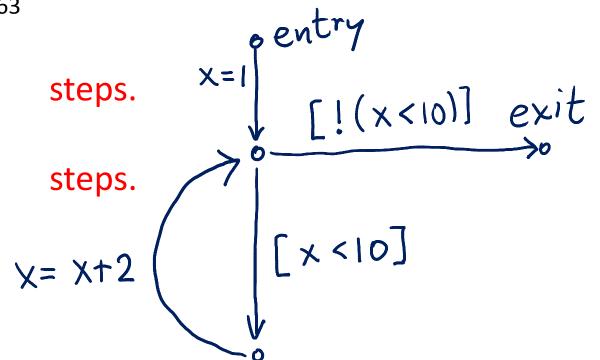
 $D_1 = \{ [a,b] \mid a \le b, a,b \in \{-M,-127,-1,0,1,127,M-1\} \} \cup \{ \perp \}$ Constant propagation:

D₂ = { [a,a] | a ∈ {-M,-(M-1),...,-2,-1,0,1,2,3,...,M-1}} U {⊥}
suppose M is
$$2^{63}$$

 $|D_1| =$


|D₂| =

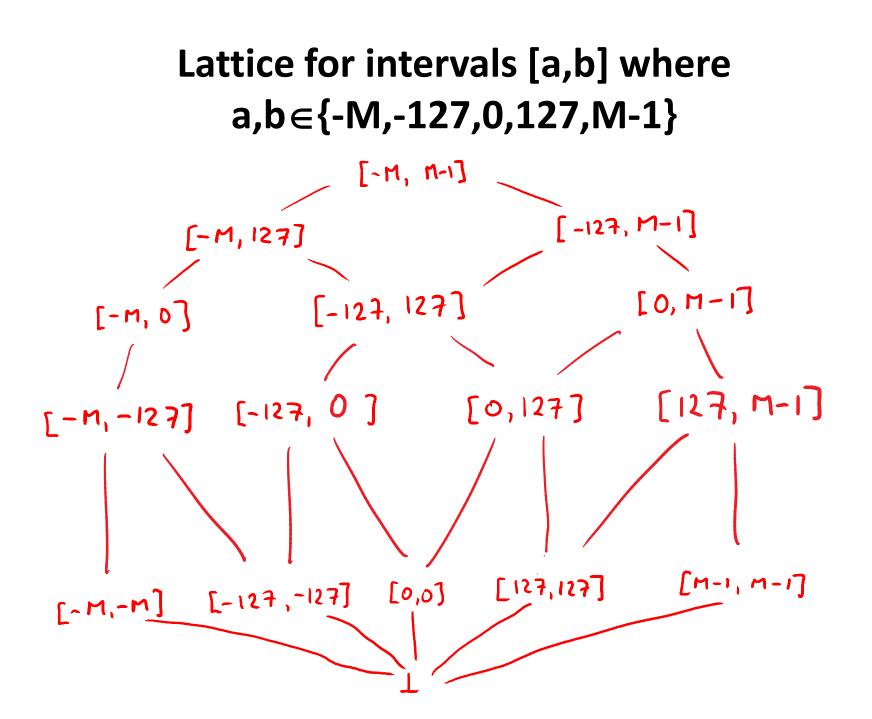
How many steps does the analysis take to finish (converge)?


Interval analysis:

D₁ = { [a,b] | a ≤ b, a,b ∈ {-M,-127,-1,0,1,127,M-1}} U {⊥} Constant propagation:

With D₁ takes at most steps.

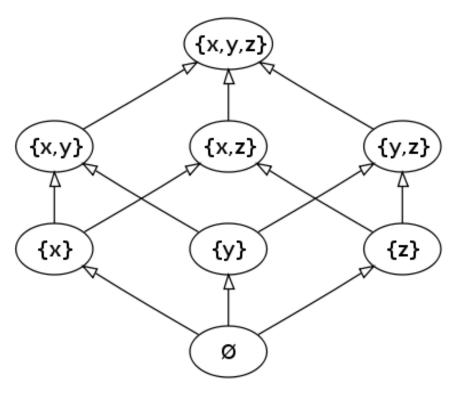
With D₂ takes at most step



Termination Given by Length of Chains

Interval analysis:

 $D_1 = \{ [a,b] \mid a \le b, a,b \in \{-M,-127,-1,0,1,127,M-1\} \} \cup \{ \perp \}$ **Constant propagation:** $D_2 = \{ [a,a] \mid a \in \{-M, ..., -2, -1, 0, 1, 2, 3, ..., M-1\} \} \cup \{ \bot \} \cup \{T \}$ suppose M is 2⁶³ r-m."m-17 [-M,-M] [-2,-2] [-1,-1] [0,0] [1,1] [2,2] [M-1,M-1]


Domain is a **lattice**. Maximal chain length = **lattice height**

Lattice

Partially ordered set (D, \leq)

- Every a, b ∈ D there exists the least element c s.t. a ≤ c, b ≤ c (lub, join, ∐)
- It has a top (T) element
 and a bottom element (⊥)

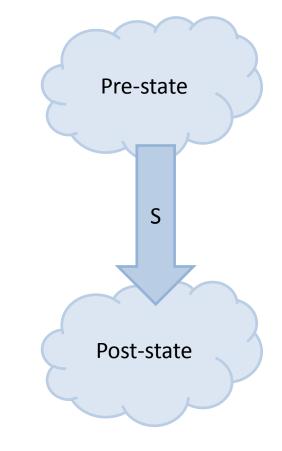
Lattice for $(\wp(\{x, y, z\}), \subseteq)$

Data-Flow Analysis Ingredients

Given some concrete domain D_C :

• Abstract Domain D_A forming a lattice

– An Abstraction Function $D_C \mapsto D_A$


– A Concretization Function $D_A \mapsto D_C$

• The program semantics within D_A : A transfer function $[[_]] : Stmts \mapsto (D_A \mapsto D_A)$

Transfer Function

Given a statement *S* and an abstract pre-state, compute the abstract post-state.

Needs to be monotonous: $A_1 \sqsubseteq A_2 \Rightarrow [[S]](A_1) \sqsubseteq [[S]](A_2)$

