
Compiler Construction
Lecture 16

Data-Flow Analysis

Goal of Data-Flow Analysis

Automatically compute information about the
program

• Use it to report errors to user (like type errors)

• Use it to optimize the program

Works on control-flow graphs:

 x = 1
 while (x < 10) {
 x = x + 2
 }

How We Define It

• Abstract Domain D (Data-Flow Facts):
which information to compute?

– Example: interval for each variable x:[a,b], y:[a’,b’]

• Transfer Functions [[st]] for each statement st,
how this statement affects the facts

– Example:

Find Transfer Function: Plus

If

and we execute x= x+y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a+c b’ = b+d
 c’=c d’ = d

Find Transfer Function: Minus

If

and we execute y= x-y

then

Suppose we have only two integer variables: x,y

So we can let

 a’= a b’ = b
 c’= a - d d’ = b - c

Transfer Functions for Tests

if (x > 1) {

 y = 1 / x
} else {

 y = 42
}

Merging Data-Flow Facts

if (x > 0) {

 y = x + 100

} else {

 y = -x – 50

}

join

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < 10) {

 x = x + 2

 }

Compiler learned
some facts!

Data-Flow Analysis Algorithm

var facts : Map[Vertex,Domain] = Map.withDefault(empty)
facts(entry) = initialValues // change

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) was changed
 facts(v2)=facts(v2) join [[statmt]](facts(v1))
}

Order does not matter for the
end result, as long as we do not
permanently neglect any edge
whose source was changed.

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < 10) {

 x = x + 2

 }

Compiler learned
some facts!

Handling Loops: Iterate Until Stabilizes

 x = 1

 while (x < n) {
 x = x + 2
 }

Compiler learns
some facts, but only after long time

n = 100000

Handling Loops: Iterate Until Stabilizes

 var x : BigInt = 1

 while (x < n) {
 x = x + 2
 }

For unknown program inputs it may be practically
impossible to know how long it takes

var n : BigInt = readInput()

Solutions
 - smaller domain, e.g. only certain intervals
 [a,b] where a,b in {-∞,-127,-1,0,1,127,∞}
 - widening techniques (make it less precise on demand)

Size of analysis domain

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {}
 suppose M is 263

|D1| =

|D2| =

How many steps does the analysis take
to finish (converge)?

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}
Constant propagation:
 D2 = { [a,a] | a{-M,-(M-1),…,-2,-1,0,1,2,3,…,M-1}} U {}
 suppose M is 263

With D1 takes at most steps.

With D2 takes at most steps.

Termination Given by Length of Chains

Interval analysis:
 D1 = { [a,b] | a ≤ b, a,b{-M,-127,-1,0,1,127,M-1}} U {}

Constant propagation:
 D2 = { [a,a] | a{-M,…,-2,-1,0,1,2,3,…,M-1}} U {} U {T}
 suppose M is 263

Domain is a lattice. Maximal chain length = lattice height

Lattice for intervals [a,b] where
a,b{-M,-127,0,127,M-1}

Lattice

Partially ordered set (D, ≤)

• Every 𝑎, 𝑏 ∈ 𝐷 there exists
the least element 𝑐 s.t.
a ≤ 𝑐, b ≤ 𝑐 (lub, join, ⨆)

• It has a top (T) element
and a bottom element (⊥)

Lattice for (℘ 𝑥, 𝑦, 𝑧 , ⊆)

Data-Flow Analysis Ingredients

Given some concrete domain 𝐷𝐶:

• Abstract Domain 𝐷𝐴 forming a lattice

– An Abstraction Function 𝐷𝐶 ⟼ 𝐷𝐴

– A Concretization Function 𝐷𝐴 ⟼ 𝐷𝐶

• The program semantics within 𝐷𝐴:

A transfer function [[_]] ∶ 𝑆𝑡𝑚𝑡𝑠 ⟼ (𝐷𝐴 ⟼ 𝐷𝐴)

Transfer Function

Given a statement 𝑆 and an
abstract pre-state, compute the
abstract post-state.

Needs to be monotonous:
𝐴1 ⊑ 𝐴2 ⇒ [[𝑆]](𝐴1) ⊑ [[𝑆]](𝐴2)

Pre-state

Post-state

S

Abstraction/Concretization

Concrete 𝐷𝐶 Abstract 𝐷𝐴

Abstraction Function

Concretization Function

𝐶1 𝐴1

𝐶2 𝐴2

