
Compiler Construction
Lecture 17

Mapping Variables to Memory

Original and Target Program have
Different Views of Program State

• Original program:
– local variables given by names (any number of them)
– each procedure execution has fresh space for its variables

(even if it is recursive)
– fields given by names

• Java Virtual Machine
– local variables given by slots (0,1,2,…), any number
– intermediate values stored in operand stack
– each procedure call gets fresh slots and stack
– fields given by names and object references

• Machine code: program state is a large arrays of bytes
and a finite number of registers

Compilation Performs Automated
Data Refinement

x = y + 7 * z iload 2
iconst 7
iload 3
imul
iadd
istore 1

x 0
y 5
z 8

1 0
2 5
3 8

x 61
y 5
z 8

1 61
2 5
3 8

Data Refinement

Function R

[[x = y + 7 * z]] =

s

s’

c

c'
If interpreting program P
leads from s to s’
then running the compiled code [[P]]
leads from R(s) to R(s’)

P:

Inductive Argument for Correctness

R

x = y + 7 * z

x 0
y 5
z 8

x 61
y 5
z 8

s1

s2

y = z + 1

R

x 61
y 9
z 8

s3 R

[[x = y + 7 * z]]

0 0
1 5
2 8

0 61
1 5
2 8

c1

c2

iload 3; iconst 1; iadd; istore 2

0 61
1 9
2 8

c3

(R may need to be a relation, not just function)

A Simple Theorem

 P : S S is a program meaning function
 Pc : C C is meaning function for the compiled program
 R : S C is data representation function
Let sn+1 = P(sn), n = 0,1,… be interpreted execution
Let cn+1 = P(cn), n = 0,1,… be compiled execution

Theorem: If

– c0 = R(s0)

– for all s, Pc(R(s)) = R(P(s))

then cn = R(cn) for all n.

Proof: immediate, by induction. R is often called simulation relation.

Example of a Simple R

• Let the received, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state with only integers
like this:

x1 v1
x2 v2
x3 v3
 …
xn vn

0 v1
1 v2
2 v3
 …
(n-1) vn

R

R for Booleans

• Let the received, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state like this, where x1
and x2 are integers but x3 and x4 are Booleans:

x1 3
x2 9
x3 true

x4 false

0 3
1 9
2 1
3 0

R

R that depends on Program Point

def main(x:Int) {
 var res, y, z: Int
 if (x>0) {
 y = x + 1
 res = y
 } else {
 z = -x - 10
 res = z
 }
 …
}

x v1
res v2
y v3
z v4

R

0 v1
1 v2
2 v3
3 v4

x v1
res v2
y v3
z v4

R1
0 v1
1 v2
2 v3

x v1
res v2
y v3
z v4

R2
0 v1
1 v2
2 v4

Map y,z to same slot.
Consume fewer slots!

Packing Variables into Memory

• If values are not used at the same time, we
can store them in the same place

• This technique arises in

– Register allocation: store frequently used values
in a bounded number of fast registers

– ‘malloc’ and ‘free’ manual memory management:
free releases memory to be used for later objects

– Garbage collection, e.g. for JVM, and .NET as well
as languages that run on top of them (e.g. Scala)

Register Machines
Better for most purposes than stack machines

– closer to modern CPUs (RISC architecture)

– closer to control-flow graphs

– simpler than stack machine

Example: ARM architecture
From article on RISC architectures:

“The ARM architecture dominates the market for high performance, low
power, low cost embedded systems (typically 100–500 MHz in 2008). ARM
Ltd., which licenses intellectual property rather than manufacturing chips,
reported 10 billion licensed chips shipped in early 2008 [7]. ARM is deployed
in countless mobile devices such as: Samsung Galaxy (ARM11), Apple iPods
(custom ARM7TDMI SoC) Apple iPhone (Samsung ARM1176JZF), Palm and
PocketPC PDAs and smartphones (Marvell XScale family, Samsung SC32442 -
ARM9), Nintendo Game Boy Advance (ARM7TDMI), Nintendo DS
(ARM7TDMI, ARM946E-S), Sony Network Walkman (Sony in-house ARM
based chip)

Directly
Addressable

RAM
(large - GB,

slow)

R0,R1,…,R31
A few fast
registers

http://en.wikipedia.org/wiki/ARM architecture
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Samsung Galaxy
http://en.wikipedia.org/wiki/Samsung Galaxy

Basic Instructions of Register Machines

Ri Mem[Rj] load

Mem[Rj] Ri store

Ri Rj * Rk compute: for an operation *

Efficient register machine code uses as few loads
and stores as possible.

State Mapped to Register Machine
Both dynamically allocated heap and stack expand

– heap need not be contiguous can request more
memory from the OS if needed

– stack grows downwards

Heap is more general:
• Can allocate, read/write, and deallocate,

in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one,
group free blocks into larger ones (compaction),…

Stack is more efficient:
• allocation is simple: increment, decrement
• top of stack pointer (SP) is often a register
• if stack grows towards smaller addresses:

– to allocate N bytes on stack (push): SP := SP - N
– to deallocate N bytes on stack (pop): SP := SP + N

Stack

Heap

Constants

Static Globals

free memory

SP

0

50kb

10MB

1 GB

Exact picture may
depend on
hardware and OS

JVM vs General Register Machine Code

R1 Mem[SP]

SP = SP + 4

R2 Mem[SP]

R2 R1 * R2

Mem[SP] R2

imul

JVM: Register Machine:

