
Compiler Construction 2010, Lecture 4

Parsing General Context-Free
Grammars

http://lara.epfl.ch

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

context-free
grammar

Today

• CYK parsing algorithm

– Examples

– Chomsky normal form for grammars

– CYK Algorithm

– Transformations to Chomsky form

• Earley’s parsing algorithm

– Example

– Earley’s Algorithm

• Examples of completed projects from 2009

Why Parse General Grammars
• Can be difficult or impossible to make

grammar unambiguous

– thus LL(k) and LR(k) methods cannot work,
for such ambiguous grammars

• Some inputs are more complex than simple
programming languages

– mathematical formulas:
x = y /\ z ? (x=y) /\ z x = (y /\ z)

– natural language:

 I saw the man with the telescope.

– future programming languages

Ambiguity

 I saw the man with the telescope.

1)

2)

CYK Parsing Algorithm

John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York
University.

T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford,
MA.

Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3.
Information and Control 10(2): 189–208.

http://en.wikipedia.org/wiki/John_Cocke
http://en.wikipedia.org/wiki/John_Cocke
http://en.wikipedia.org/wiki/Courant_Institute_of_Mathematical_Sciences
http://en.wikipedia.org/wiki/New_York_University
http://en.wikipedia.org/wiki/New_York_University
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Tadao_Kasami
http://en.wikipedia.org/wiki/Bedford,_MA
http://en.wikipedia.org/wiki/Bedford,_MA

Two Steps in the Algorithm

1) Transform grammar to normal form
 called Chomsky Normal Form
(Noam Chomsky, mathematical linguist)

2) Parse input using transformed grammar
 dynamic programming algorithm

“a method for solving complex problems by breaking them

down into simpler steps.

It is applicable to problems exhibiting the properties of

overlapping subproblems” (>WP)

Balanced Parentheses Grammar

Original grammar G

S  “” | (S) | S S

Modified grammar in Chomsky Normal Form:

S  “” | S’

S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

• Terminals: () Nonterminals: S S’ NS) N) N(

3 min

Idea How We Obtained the Grammar

S  (S)

S’  N(NS) | N(N)

N( (

NS)  S’ N)

N) )

Chomsky Normal Form transformation

can be done fully mechanically

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

 S  “” | S’ (only for the start non-terminal)

 Nj  t (names for terminals)

 Ni  Nj Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

((() ()) ()) (())

Ni

Nj Nk

Parsing an Input
S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

N(N(N) N(N) N(N) N) 1

2

3

4

5

6

7
ambiguity

(() () ())

2 min

Algorithm Idea
S’  S’ S’

(() () ())

N(N(N) N(N) N(N) N) 1

2

3

4

5

6

7
wpq – substring from p to q

dpq – all non-terminals that
 could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X  Y Z is a rule,
 Y is in dp r , and
 Z is in d(r+1)q

then put X into dpq

 (p r < q),

in increasing value of (q-p)

Algorithm
INPUT: grammar G in Chomsky normal form
 word w to parse using G
OUTPUT: true iff (w in L(G))
N = |w|
var d : Array[N][N]
for p = 1 to N {
 d(p)(p) = {X | G contains X->w(i)}
 for q in {p + 1 .. N} d(p)(q) = {} }
for k = 2 to N // substring length
 for p = 0 to N-k // initial position
 for j = 1 to k-1 // length of first half
 val r = p+j-1; val q = p+k-1;
 for (X::=Y Z) in G
 if Y in d(p)(r) and Z in d(p+r+1)(q)
 d(p)(q) = d(p)(q) union {X}
return S in d(0)(N-1)

(() () ())

What is the running time
as a function of grammar
size and the size of input?

O()

2 min

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

Parsing another Input
S’  N(NS) | N(N) | S’ S’
NS)  S’ N)
N( (
N) )

() () () ()

N(N) N(N) N(N) N(N) 1

2

3

4

5

6

7

5 min

Number of Parse Trees

• Let w denote word ()()()

– it has two parse trees

• Give a lower bound on number of parse trees
of the word wn

 (n is positive integer)

w5 is the word

 ()()() ()()() ()()() ()()() ()()()

• CYK represents all parse trees compactly

– can re-run algorithm to extract first parse tree, or
enumerate parse trees one by one

2 min

Algorithm Idea
S’  S’ S’

(() () ())

N(N(N) N(N) N(N) N) 1

2

3

4

5

6

7
wpq – substring from p to q

dpq – all non-terminals that
 could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X  Y Z is a rule,
 Y is in dp r , and
 Z is in d(r+1)q

then put X into dpq

 (p r < q),

in increasing value of (q-p)

Transforming to Chomsky Form

• Steps:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions of arity more than two

6. make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:

 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)

There is no derivation of a sequence of tokens from expr

Why? In every step will have at least one expr, term, or factor

2 min

If it cannot derive sequence of tokens we call it unproductive

How to compute them?

1) Unproductive non-terminals

• Productive symbols are obtained using these
two rules (what remains is unproductive)

– Terminals are productive

– If X::= s1 s2 … sn is rule and each si is productive
then X is productive

 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)
 program ::= stmt | stmt program

Delete unproductive
symbols.

Will the meaning of
top-level symbol
(program) change?

2) Unreachable non-terminals

What is funny about this grammar with starting
terminal ‘program’

 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

2 min

No way to reach symbol ‘ifStmt’ from ‘program’

2) Unreachable non-terminals

What is the general algorithm?

What is funny about this grammar with starting
terminal ‘program’

 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

2) Unreachable non-terminals

• Reachable terminals are obtained using the
following rules (the rest are unreachable)

– starting non-terminal is reachable (program)

– If X::= s1 s2 … sn is rule and X is reachable then
each non-terminal among s1 s2 … sn is reachable

Delete unreachable
symbols.

Will the meaning of
top-level symbol
(program) change?

2) Unreachable non-terminals

What is funny about this grammar with starting
terminal ‘program’

 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

 program ::= stmtSeq
 stmtSeq ::= stmt | stmt ; stmtSeq
 stmt ::= “” | assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 expr ::= identifier

How to do it in this example?
5 min

3) Removing Empty Strings - Result

 program ::= “” | stmtSeq
 stmtSeq ::= stmt| stmt ; stmtSeq |
 | ; stmtSeq | stmt ; | ;
 stmt ::= assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq } | { }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 whileStmt ::= while (expr)
 expr ::= identifier

3) Removing Empty Strings - Algorithm

• Compute the set of nullable non-terminals

• Add extra rules

– If X::= s1 s2 … sn is rule then add new rules of form
 X::= r1 r2 … rn

where ri is either si or, if

• Remove all empty right-hand sides

• If starting symbol S was nullable, then
introduce a new start symbol S’ instead, and
add rule S’ ::= S | “”

si is nullable then

ri can also be the empty string (so it disappears)

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule
 blockStmt ::= { stmtSeq }
gives
 blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
 stmtSeq ::= stmt | stmt ; stmtSeq
gives
 stmtSeq ::= stmt | stmt ; stmtSeq
 | ; stmtSeq | stmt ; | ;

4) Eliminating single productions

• Single production is of the form

X ::=Y

where X,Y are non-terminals

 program ::= stmtSeq
 stmtSeq ::= stmt
 | stmt ; stmtSeq
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) Eliminate single productions - Result

• Generalizes removal of epsilon transitions
from non-deterministic automata

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) “Single Production Terminator”

• If there is single production

X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and
there is rule Z ::= s1 s2 … sn then add rule

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt

X ::= s1 s2 … sn

At the end, remove all single productions.

1 min

5) No more than 2 symbols on RHS

 stmt ::= while (expr) stmt

becomes

 stmt ::= while stmt1
 stmt1 ::= (stmt2

 stmt2 ::= expr stmt3
 stmt3 ::=) stmt

6) A non-terminal for each terminal

 stmt ::= while (expr) stmt

becomes

 stmt ::= Nwhile stmt1
 stmt1 ::= N(stmt2

 stmt2 ::= expr stmt3
 stmt3 ::= N) stmt
 Nwhile ::= while
 N(::= (
 N) ::=)

Parsing using CYK Algorithm

• Transform grammar into Chomsky Form:

1. remove unproductive symbols

2. remove unreachable symbols

3. remove epsilons (no non-start nullable symbols)

4. remove single non-terminal productions X::=Y

5. transform productions of arity more than two

6. make terminals occur alone on right-hand side

Have only rules X ::= Y Z, X ::= t, and possibly S ::= “”

• Apply CYK dynamic programming algorithm

Algorithm Idea
S’  S’ S’

(() () ())

N(N(N) N(N) N(N) N) 1

2

3

4

5

6

7
wpq – substring from p to q

dpq – all non-terminals that
 could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X  Y Z is a rule,
 Y is in dp r , and
 Z is in d(r+1)q

then put X into dpq

 (p r < q),

in increasing value of (q-p)

Earley’s Algorithm
(wiki)

J. Earley, "An efficient context-free parsing algorithm", Communications of the

Association for Computing Machinery, 13:2:94-102, 1970.

http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035

Examples of Completed 2009 Projects

• Implemented all phases, then added an
extension of the language and/or compiler:

– Type Inference and Implicit Type Conversion

• Added type inference

• Added implicit conversions, as in Scala

– Static garbage collection and C back-end

• Emitted C instructions to automatically de-allocate
memory, based on static analysis of source code

– Support for exceptions in the language

– Adding generic types (templates)

Compiler Construction 2010, Lecture 4
- end -

Parsing General Context-Free
Grammars

http://lara.epfl.ch

