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while (id3 < 10) { 
  println(“”,id3); 
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Today 

• CYK parsing algorithm 

– Examples 

– Chomsky normal form for grammars 

– CYK Algorithm 

– Transformations to Chomsky form 

• Earley’s parsing algorithm 

– Example 

– Earley’s Algorithm 

• Examples of completed projects from 2009 



Why Parse General Grammars 
• Can be difficult or impossible to make 

grammar unambiguous 

– thus LL(k) and LR(k) methods cannot work,  
for such ambiguous grammars 

• Some inputs are more complex than simple 
programming languages 

– mathematical formulas: 
x = y /\ z ?  (x=y) /\ z              x = (y /\ z) 

– natural language: 

  I saw the man with the telescope. 

– future programming languages 



Ambiguity 

  I saw the man with the telescope. 

1) 

2) 



CYK Parsing Algorithm 

John Cocke and Jacob T. Schwartz (1970).  Programming languages and their compilers: 
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York 
University.  
 
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free 
languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, 
MA.  
 
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3. 
Information and Control 10(2): 189–208.  
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Two Steps in the Algorithm 

1) Transform grammar to normal form 
 called Chomsky Normal Form 
(Noam Chomsky, mathematical linguist) 

 

2) Parse input using transformed grammar 
 dynamic programming algorithm 

“a method for solving complex problems by breaking them 

down into simpler steps.  

It is applicable to problems exhibiting the properties of 

overlapping subproblems”            (>WP) 



Balanced Parentheses Grammar 

Original grammar G 

S  “” | ( S ) | S S 

Modified grammar in Chomsky Normal Form: 

S  “” | S’ 
 

S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

• Terminals: (  )     Nonterminals: S  S’  NS)  N)  N( 

3 min 



Idea How We Obtained the Grammar 

S           (     S   ) 

 

 

S’        N(     NS)     |  N(   N) 

 

N(     ( 

 

NS)  S’ N)  
 

N)   ) 

Chomsky Normal Form transformation 

can be done fully mechanically 



Dynamic Programming to Parse Input 

Assume Chomsky Normal Form, 3 types of rules: 

 S  “” | S’   (only for the start non-terminal) 

 Nj  t  (names for terminals) 

 Ni  Nj  Nk   (just 2 non-terminals on RHS) 

Decomposing long input: 

 

 

 

find all ways to parse substrings of length 1,2,3,… 

( ( ( ) ( ) ) ( ) ) ( ( ) ) 

Ni 

Nj Nk 



Parsing an Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

N( N( N) N( N) N( N) N) 1 
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3 

4 
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6 

7 
ambiguity 

( ( ) ( ) ( ) ) 

2 min 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 

2 
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4 
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6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Algorithm 
INPUT:  grammar G in Chomsky normal form  
               word w to parse using G 
OUTPUT: true iff (w in L(G))  
N = |w|  
var d : Array[N][N]  
for p = 1 to N {  
   d(p)(p) = {X | G contains X->w(i)}  
   for q in {p + 1 .. N} d(p)(q) = {} }  
for k = 2 to N // substring length  
  for p = 0 to N-k // initial position 
    for j = 1 to k-1 // length of first half  
      val r = p+j-1; val q = p+k-1; 
      for (X::=Y Z) in G 
        if Y in d(p)(r) and Z in d(p+r+1)(q)  
           d(p)(q) = d(p)(q) union {X}  
return  S in d(0)(N-1) 

( ( ) ( ) ( ) ) 

What is the running time 
as a function of grammar 
size and the size of input? 

 
O(       ) 

2 min 

http://scala-lang.org/
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Parsing another Input 
S’  N( NS) | N(  N) | S’ S’  
NS)  S’ N) 
N(  ( 
N)  ) 

( ) ( ) ( ) ( ) 

N( N) N( N) N( N) N( N) 1 
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5 min 



Number of Parse Trees 

• Let w denote word ()()() 

– it has two parse trees 

• Give a lower bound on number of parse trees 
of the word wn 

  (n is positive integer) 

w5  is the word 

 ()()() ()()() ()()() ()()() ()()() 

 

• CYK represents all parse trees compactly 

– can re-run algorithm to extract first parse tree, or 
enumerate parse trees one by one 

2 min 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 

2 

3 

4 

5 

6 

7 
wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Transforming to Chomsky Form 

• Steps: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions of arity more than two 

6. make terminals occur alone on right-hand side 



1) Unproductive non-terminals 

What is funny about this grammar: 

  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
 
There is no derivation of a sequence of tokens from expr 

Why? In every step will have at least one expr, term, or factor 

2 min 

If it cannot derive sequence of tokens we call it unproductive 

How to compute them? 



1) Unproductive non-terminals 

• Productive symbols are obtained using these 
two rules (what remains is unproductive) 

– Terminals are productive 

– If X::= s1 s2 … sn is rule and each si is productive 
then X is productive 

  stmt ::=  identifier := identifier 
              | while (expr) stmt 
              | if (expr) stmt else stmt 
  expr ::= term + term | term – term  
  term ::= factor * factor 
  factor ::= ( expr ) 
  program ::= stmt | stmt program 

Delete unproductive 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



2) Unreachable non-terminals 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

2 min 

No way to reach symbol ‘ifStmt’ from ‘program’ 



2) Unreachable non-terminals 

What is the general algorithm? 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 



2) Unreachable non-terminals 

• Reachable terminals are obtained using the 
following rules (the rest are unreachable) 

– starting non-terminal is reachable (program) 

– If X::= s1 s2 … sn is rule and  X is reachable then 
each non-terminal among s1 s2 … sn is reachable 

Delete unreachable 
symbols. 
 
Will the meaning of 
top-level symbol 
(program) change? 



2) Unreachable non-terminals 

What is funny about this grammar with starting 
terminal ‘program’ 

  program ::= stmt | stmt program 
  stmt ::= assignment | whileStmt 

  assignment ::= expr = expr 

  ifStmt ::= if (expr) stmt else stmt 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 



3) Removing Empty Strings 

Ensure only top-level symbol can be nullable 

  program ::= stmtSeq 
  stmtSeq ::= stmt | stmt ; stmtSeq 
  stmt ::= “” | assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  expr ::= identifier 

How to do it in this example? 
5 min 



3) Removing Empty Strings - Result 

  program ::= “” | stmtSeq  
  stmtSeq ::= stmt| stmt ; stmtSeq |  
                     | ; stmtSeq | stmt ; | ; 
  stmt ::= assignment | whileStmt | blockStmt 
  blockStmt ::= { stmtSeq } | { } 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 
  whileStmt ::= while (expr) 
  expr ::= identifier 



3) Removing Empty Strings - Algorithm 

• Compute the set of nullable non-terminals 

• Add extra rules 

– If X::= s1 s2 … sn is rule then add new rules of form 
   X::=  r1 r2 … rn   

where ri is either si or, if 

 

• Remove all empty right-hand sides 

• If starting symbol S was nullable, then 
introduce a new start symbol S’ instead, and 
add rule  S’ ::= S | “”      

si is nullable then 

ri can also be the empty string (so it disappears) 



3) Removing Empty Strings 

• Since stmtSeq is nullable, the rule 
   blockStmt ::= { stmtSeq } 
gives 
   blockStmt ::=  { stmtSeq } | { } 

• Since stmtSeq and stmt are nullable, the rule 
   stmtSeq ::= stmt | stmt ; stmtSeq 
gives 
   stmtSeq ::= stmt | stmt ; stmtSeq   
        | ; stmtSeq | stmt ; | ; 



4) Eliminating single productions 

• Single production is of the form 

X ::=Y 

where X,Y are non-terminals 

  program ::= stmtSeq 
  stmtSeq ::= stmt  
                    | stmt ; stmtSeq 
  stmt ::= assignment | whileStmt 
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt 



4) Eliminate single productions - Result 

• Generalizes removal of epsilon transitions 
from non-deterministic automata 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  
  assignment ::= expr = expr 
  whileStmt ::= while (expr) stmt   



4) “Single Production Terminator” 

• If there is single production 

X ::=Y  put an edge (X,Y) into graph 

• If there is a path from X to Z in the graph, and 
there is rule Z ::= s1 s2 … sn then add rule 

  program ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmtSeq ::= expr = expr | while (expr) stmt  
                    | stmt ; stmtSeq 
  stmt ::= expr = expr | while (expr) stmt  

X ::= s1 s2 … sn 

At the end, remove all single productions. 

1 min 



5) No more than 2 symbols on RHS 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= while stmt1 
 stmt1 ::= ( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= ) stmt 



6) A non-terminal for each terminal 

 stmt ::= while (expr) stmt 

becomes 

 stmt ::= Nwhile stmt1 
 stmt1 ::= N( stmt2 

 stmt2 ::= expr stmt3 
 stmt3 ::= N) stmt 
 Nwhile ::= while 
 N( ::= ( 
 N) ::= ) 



Parsing using CYK Algorithm 

• Transform grammar into Chomsky Form: 

1. remove unproductive symbols 

2. remove unreachable symbols 

3. remove epsilons (no non-start nullable symbols) 

4. remove single non-terminal productions X::=Y 

5. transform productions of arity more than two 

6. make terminals occur alone on right-hand side 

Have only rules X ::= Y Z,  X ::= t, and possibly S ::= “” 

• Apply CYK dynamic programming algorithm 



Algorithm Idea 
S’  S’ S’  

( ( ) ( ) ( ) ) 

N( N( N) N( N) N( N) N) 1 
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wpq – substring from p to q 

dpq – all non-terminals that 
         could expand to wpq 

Initially  dpp has Nw(p,p) 

key step of the algorithm: 

if  X  Y Z  is a rule, 
    Y is in dp r  , and 
    Z is in d(r+1)q 

then put X into dpq 

 (p     r < q),  

in increasing value of (q-p) 



Earley’s Algorithm 
(wiki) 

J. Earley, "An efficient context-free parsing algorithm", Communications of the 

Association for Computing Machinery, 13:2:94-102, 1970. 

http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035
http://portal.acm.org/citation.cfm?doid=362007.362035


Examples of Completed 2009 Projects 

• Implemented all phases, then added an 
extension of the language and/or compiler: 

– Type Inference and Implicit Type Conversion 

• Added type inference 

• Added implicit conversions, as in Scala 

– Static garbage collection and C back-end 

• Emitted C instructions to automatically de-allocate 
memory, based on static analysis of source code 

– Support for exceptions in the language 

– Adding generic types (templates) 



Compiler Construction 2010, Lecture 4 
- end - 
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