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JVM 
Code 

i=0 
while (i < 10) { 
  a[i] = 7*i+3 
  i = i + 1 } 

source code 
simplified Java-like 
language 

 21: iload_2  
  22: iconst_2  
  23: iload_1  
  24: imul  
  25: iadd  
  26: iconst_1  
  27: iadd  
  28: istore_2  
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Each two weeks you will add next phase 
   - keep same groups 
   - essential to not get behind 
   - final addition to compiler - your choice 



Compiler              
(scalac, gcc)                   

 
 
 
 
 

Id3 = 0 
while (id3 < 10) { 
  println(“”,id3); 
  id3 = id3 + 1 } 

source code 
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regular expressions 
for tokens 

context-free 
grammar 



Today 

 

• Review 

• Lexical analysis 

• Idea of top-down parsing 



Constructing Deterministic Automaton 

• Automaton that accepts both binary and 
decimal numbers, where for binary numbers 
we use letter o instead of digit 0 

  (o|1)*  |  (0|1|2|…|9)*  



More Examples 

• Find automaton or regular expression for: 

– as many digits  before as after decimal point? 

– Sequence of open and closed parantheses of even 
length? 

– Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
  ( ) ) ( ( )   - not balanced 

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF 

– Nested comments like     /*  ... /*   */  … */ 



Automaton that Claims to Recognize 
{ anbn  | n >= 0 } 

We can make it deterministic 

Let the result have K states 

Feed it a, aa, aaa, …. 

   consider the states it ends up in 



More Examples 

• Find automaton or regular expression for: 

– as many digits  before as after decimal point? 

– Sequence of open and closed parantheses of even 
length? 

– Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
  ( ) ) ( ( )   - not balanced 

– Comment as a sequence of space,LF,TAB, and 
comments from // until LF 

– Nested comments like     /*  ... /*   */  … */ 



Limitations of Regular Languages 

• Every automaton can be made deterministic 

– How? 

• Automaton has finite memory, cannot count 

• Deterministic automaton from a given state 
behaves always the same 

• If a string is too long, deterministic automaton 
will repeat its behavior 

– say A accepted an bn for all n, and has K states 

 



Context-Free Grammars 

• Σ  - terminals 

• Symbols with recursive defs - nonterminals 

• Rules are of form 
  N ::= v 
v is sequence of terminals and non-terminals 

• Derivation starts from a starting symbol 

• Replaces non-terminals with  

– terminals and  

– non-terminals 



Balanced Parentheses Grammar 

• Sequence of balanced parentheses 
 ( ( () )  ()) - balanced 
   ( ) ) ( ( )   - not balanced 

 



Recall While Syntax 

 

program ::= statmt*  

statmt ::= println( stringConst , ident ) 

             | ident = expr 

             | if ( expr ) statmt (else statmt)? 

             | while ( expr ) statmt 
             | { statmt* }  

expr ::= intLiteral | ident 

          | expr (&& | < | == | + | - | * | / | % ) expr 
          | ! expr | - expr  



Eliminating Additional Notation 

• Grouping alternatives 

• Parenthesis notation 

 expr (&& | < | == | + | - | * | / | % ) expr 

• Kleene star within grammars 

 { statmt* } 

• Optional parts 

 if ( expr ) statmt (else statmt)? 

 


