
Compiler Construction 2010, Lecture 2
Staff:

• Viktor Kuncak – Lectures

• Hossein Hojjat – Exercises

• Philippe Suter – {labs}

• Étienne Kneuss, Ali Sinan Köksal – assistants

• Danielle Chamberlain – secretary

http://lara.epfl.ch
Drawing Hands

M.C. Escher, 1948

Your

Compiler

JVM
Code

i=0
while (i < 10) {
 a[i] = 7*i+3
 i = i + 1 }

source code
simplified Java-like
language

 21: iload_2
 22: iconst_2
 23: iload_1
 24: imul
 25: iadd
 26: iconst_1
 27: iadd
 28: istore_2

Your
Compiler

Construction

i
=
0
LF

w
h
i
l
e

i
=
0

while
(
i
<

10
)

lexer

characters words trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

code gen
type
check

Each two weeks you will add next phase
 - keep same groups
 - essential to not get behind
 - final addition to compiler - your choice

Compiler
(scalac, gcc)

Id3 = 0
while (id3 < 10) {
 println(“”,id3);
 id3 = id3 + 1 }

source code

Compiler

Construction

i
d
3

=

0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

characters words
(tokens)

trees

parser

assign

while

i 0

+

*
3

7 i

assign
a[i]

<

i 10

regular expressions
for tokens

context-free
grammar

Today

• Review

• Lexical analysis

• Idea of top-down parsing

Constructing Deterministic Automaton

• Automaton that accepts both binary and
decimal numbers, where for binary numbers
we use letter o instead of digit 0

 (o|1)* | (0|1|2|…|9)*

More Examples

• Find automaton or regular expression for:

– as many digits before as after decimal point?

– Sequence of open and closed parantheses of even
length?

– Sequence of balanced parentheses
 ((()) ()) - balanced
 ()) (() - not balanced

– Comment as a sequence of space,LF,TAB, and
comments from // until LF

– Nested comments like /* ... /* */ … */

Automaton that Claims to Recognize
{ anbn | n >= 0 }

We can make it deterministic

Let the result have K states

Feed it a, aa, aaa, ….

 consider the states it ends up in

More Examples

• Find automaton or regular expression for:

– as many digits before as after decimal point?

– Sequence of open and closed parantheses of even
length?

– Sequence of balanced parentheses
 ((()) ()) - balanced
 ()) (() - not balanced

– Comment as a sequence of space,LF,TAB, and
comments from // until LF

– Nested comments like /* ... /* */ … */

Limitations of Regular Languages

• Every automaton can be made deterministic

– How?

• Automaton has finite memory, cannot count

• Deterministic automaton from a given state
behaves always the same

• If a string is too long, deterministic automaton
will repeat its behavior

– say A accepted an bn for all n, and has K states

Context-Free Grammars

• Σ - terminals

• Symbols with recursive defs - nonterminals

• Rules are of form
 N ::= v
v is sequence of terminals and non-terminals

• Derivation starts from a starting symbol

• Replaces non-terminals with

– terminals and

– non-terminals

Balanced Parentheses Grammar

• Sequence of balanced parentheses
 ((()) ()) - balanced
 ()) (() - not balanced

Recall While Syntax

program ::= statmt*

statmt ::= println(stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

expr ::= intLiteral | ident

 | expr (&& | < | == | + | - | * | / | %) expr
 | ! expr | - expr

Eliminating Additional Notation

• Grouping alternatives

• Parenthesis notation

 expr (&& | < | == | + | - | * | / | %) expr

• Kleene star within grammars

 { statmt* }

• Optional parts

 if (expr) statmt (else statmt)?

