A CYK for Any Grammar

grammar G, non-terminals A_{1}, \ldots, A_{K}, tokens $t_{1}, \ldots . t_{L}$
input word: $\mathrm{w}=\mathrm{w}_{(0)} \mathrm{W}_{(1)} \cdots \mathrm{W}_{(\mathrm{N}-1)}$
$\mathrm{w}_{\mathrm{p} . . \mathrm{q}}=\mathrm{w}_{(\mathrm{p})} \mathrm{w}_{(\mathrm{p}+1)} \ldots \mathrm{w}_{(\mathrm{q}-1)}$
Triple (A, p, q) means: $A=>^{*} w_{\text {p..q }}$, A can be: A_{i}, t_{j}, or ε
$P=\left\{\left(w_{(i)}, i, i+1\right) \mid 0 \leq i<N-1\right\}$
repeat \{
choose rule $\left(A::=B_{1} \ldots B_{m}\right) \in G$
if $\left(\left(A, p_{0}, p_{m}\right) \notin P \& \&\right.$

$$
\begin{aligned}
& \left(\left(m=0 \& \& p_{0}=p_{m}\right)\left|\mid\left(B_{1}, p_{0}, p_{1}\right), \ldots,\left(B_{m}, p_{m-1}, p_{m}\right) \in P\right)\right) \\
& P:=P \cup\left\{\left(A, p_{0}, p_{m}\right)\right\}
\end{aligned}
$$

$\}$ until no more insertions possible

What is the maximal number of steps? How long does it take to check step for a rule? $\}$
for grammar in given normal form

Strategy for Populating Table

- Which order to insert (A, p, q) tuples ?
- all orders give correct result
- efficiency differs
- Left-to-right scan of the input:
- derive all A,p for given q
- then increase q to $\mathrm{q}+1$
- Consider only productive parse attempts
- insert (A,p,q) only if we can prove that

$$
S=>^{*} w_{0 . . p-1} A Y
$$

(Y is any string of symbols)

Dotted Rules Like Nonterminals

$$
X::=Y_{1} Y_{2} Y_{3}
$$

Chomsky transformation is (a simplification of) this:

$$
\begin{aligned}
& \mathrm{X}:::=\mathrm{W}_{123} \\
& \mathrm{~W}_{123}::=\mathrm{W}_{12} \mathrm{Y}_{3} \\
& \mathrm{~W}_{12}::=\mathrm{W}_{1} \mathrm{Y}_{2} \\
& \mathrm{~W}_{1}::=\mathrm{W}_{\varepsilon} \mathrm{Y}_{1} \\
& \mathrm{~W}_{\varepsilon}:::=\varepsilon
\end{aligned}
$$

Early parser: dotted RHS as names of fresh non-terminals:

$$
\begin{array}{ll}
X & ::=\left(Y_{1} Y_{2} Y_{3} \cdot\right) \\
\left(Y_{1} Y_{2} Y_{3}\right) & ::=\left(Y_{1} Y_{2} Y_{3}\right) Y_{3} \\
\left(Y_{1} Y_{2} \cdot Y_{3}\right) & ::=\left(Y_{1} \cdot Y_{2} Y_{3}\right) Y_{2} \\
\left(Y_{1} \cdot Y_{2} Y_{3}\right) & ::=\left(. Y_{1} Y_{2} Y_{3}\right) Y_{3} \\
\left(Y_{1} Y_{2} Y_{3}\right) & ::=\varepsilon
\end{array}
$$

Earley Parser

- group the triples by last element: $S(q)=\{(A, p) \mid(A, p, q) \in P\}$
- dotted rules effectively make productions at most binary

Steps of Earley Parsing Algorithm

Initially, let $S(0)=\left\{\left(D^{\prime}::=. D \mathrm{EOF}, 0\right)\right\}$
When scanning input at position j , parser does the following operations (p, q, r are sequences of terminals and non-terminals):

Prediction

If $(X::=p . Y q, i) \in S(j)$ and $Y::=r$ is a grammar rule, then
$S(j)=S(j) \cup\{(Y::=. r, j)\}$

Scanning

If $w(j)=a$ and $(X::=p . a q, i) \in S(j)$ then (we can skip a):
$S(j+1)=S(j+1) \cup\{(X::=p a . q, i)\}$

Completion

If $(X::=p ., i) \in S(j)$ and $(Y::=q \cdot X r, k) \in S(i)$ then
$S(j)=S(j) \cup\{(Y::=q X . r, k)\}$
sketch of completion:

		ID $^{S_{1}}$	s_{2}	$\mathrm{ID}_{\mathrm{S}_{3}}$	==	ID	EOF
	$\begin{aligned} & \therefore \cdot e \text { EOF } \\ & \therefore 10-e \\ & \therefore e-e \\ & e=e \end{aligned}$		$\begin{gathered} \text { ID- } \\ e-. e \end{gathered}$	$\begin{gathered} \text { ID-IDe-e } \\ e_{1} \in O F \\ e_{1}, e \\ e_{i}=e \end{gathered}$	$\begin{gathered} \mathrm{ID}-\mathrm{ID}== \\ e=\cdot e \end{gathered}$	$\begin{aligned} & \mid D-I D==1 D \\ & \rightarrow e=e . \\ & T e-e . \end{aligned}$	e.EOF
ID		を		-ID	-ID= $=$	$-\mathrm{ID}=1 \mathrm{ID}$	
-			$\begin{aligned} & \varepsilon .10 \\ & 1 e-e \\ & \cdot e=e \end{aligned}$	$\begin{gathered} 1010 \\ e_{i}, e \\ e_{1}=e \end{gathered}$	ID== $e=\cdot e$	$\begin{aligned} & 1 D==1 D \\ & e \\ & e \end{aligned}$	
ID				ε	$=$	= =ID	
==					$\begin{aligned} & \text { E. } 1 D \\ & . e-e \\ & \cdot e=e \end{aligned}$	$\begin{aligned} & { }^{1 D}{ }_{10} \\ & e_{.-}-e \\ & e_{.}=e \end{aligned}$	
ID	$\begin{aligned} \mathrm{S}: & := \\ \mathrm{e}: & \mathrm{e} \text { EOF } \mathrm{e} \\ & \text {. ID } \mid \text { ID } . \\ & \|\cdot \mathrm{e}-\mathrm{e}\| \mathrm{e} .-\mathrm{e}\|\mathrm{e}-. \mathrm{e}\| \mathrm{e}-\mathrm{e} . \\ & \|\cdot \mathrm{e}==\mathrm{e}\| \mathrm{e} .==\mathrm{e}\|\mathrm{e}==. \mathrm{e}\| \mathrm{e}==\mathrm{e} . \end{aligned}$						
EOF							ε

