
Course introduction
Advanced Compiler Construction

Michel Schinz – 2010-02-26

General information

Course goal

The goal of this course is to teach you:
1. how to compile high-level functional and object-oriented

programming languages,
2. how to optimize the generated code, and
3. how to support code execution at run time.

To achieve these goals, the course is roughly split in three parts
of unequal length:

1. a part covering the compilation of high-level concepts
(closures, continuations, etc.),

2. a part covering intermediate languages and optimizations,
3. a part covering virtual machines and garbage collection.

3

Evaluation

The grade will be based on three aspects:
• several group projects, to be completed in groups of at

most two people
• one individual project, to be completed alone,
• an individual oral exam.

Warning: the course is evaluated during the semester, which
has two important consequences:

• there is no retake exam,
• the oral exam will take place during the last week of the

semester, not during the official exam period.

4

Grading scheme

5

The final grade will be based on your results in:
• the various project parts, spread over 10 weeks, which

contribute to 80% of the grade – 8% per week,
• the final exam, which contributes to 20% of the grade.

Resources

6

Lecturer:
Michel Schinz, Michel.Schinz@epfl.ch

Assistants:
Ingo Maier, INR 320, Ingo.Maier@epfl.ch
Lukas Rytz, INR 321, Lukas.Rytz@epfl.ch

Web page:
http://tinyurl.com/acc2010

Moodle site:
http://tinyurl.com/acc2010m
(enrolment key: ACC)

Course overview

What is a compiler?

8

Lexical analysis

Syntactical analysis

Name & type analysis

Code generation

Character stream

Token stream

Tree

Attributed tree

Executable code

Scanner

Parser

Analyzer

Generator

Your current view of a compiler must be something like this:

What is a compiler, really?
Real compilers are often more complicated…

9

Scanner

Parser

Analyzer

Generator

multiple
simplification and

optimization
phases

sophisticated
run time system

Additional phases

Simplification phases transform the program so that complex
concepts of the language – pattern matching, anonymous
functions, etc. – are translated using simpler ones.
Optimization phases transform the program so that it hopefully
makes better use of some resource – e.g. CPU cycles, memory,
etc.
Of course, all these phases must preserve the meaning of the
original program!

10

Simplification phases

11

Example of a simplification phase: Java compilers have a phase
that transforms nested classes to top-level ones.

class Out {
 void f1() { }
 class In {
 void f2() {
 f1();
 }
 }
}

class Out {
 void f1() { }
}
class Out$In {
 final Out this$0;
 Out$In(Out o) {
 this$0 = o;
 }
 void f2() {
 this$0.f1();
 }
}

Optimization phases
Example of an optimization phase: Java compilers optimize
expressions involving constant values. That includes removing
dead code, i.e. code that can never be executed.

12

class C {
 public final static boolean debug = !true;
 int f() {
 if (debug) {
 System.out.println("C.f() called");
 }
 return 10;
 }
}

dead code, removed
during compilation

Intermediate representations

To manipulate the program, simplification and optimization
phases must represent it in some way.
One possibility is to use the representation produced by the
parser – the abstract syntax tree (AST).
The AST is perfectly suited to certain tasks, but other
intermediate representations (IR) exist and are more
appropriate in some situations.

13

Intermediate representations

Many intermediate representations have been used in
compilers. They can be differentiated according to several
criteria:

• imperative (i.e. with a notion of mutable variables) or
functional,

• typed or untyped,
• structured as a control-flow graph (CFG), or as an abstract

syntax tree,
• lazy or strict,
• etc.

We will look at several popular example in the course.

14

Run time system
Implementing a high-level programming language usually
means more than just writing a compiler!
A complete run time system (RTS) must be written, to assist the
execution of compiled programs by providing various services
like memory management, threads, etc.
For example, the Java Virtual Machine is the run time system
for Java, Scala, Groovy and many other programming
languages. It handles (lazy) class loading, byte-code
verification and interpretation, just-in-time compilation,
threading, garbage collection, etc. and provides a debugging
interface.
A good Java Virtual Machine is actually more complex than a
Java compiler!

15

Memory management

Most modern programming languages offer automatic memory
management: the programmer allocates memory explicitly, but
deallocation is performed automatically.
The deallocation of memory is usually performed by a part of
the run time system called the garbage collector (GC).
A garbage collector periodically frees all memory that has
been allocated by the program but is not reachable anymore.

16

Virtual machines
Instead of targeting a real processor, a compiler can target a
virtual one, usually called a virtual machine (VM). The
produced code is then interpreted by a program emulating the
virtual machine.
Virtual machines have many advantages:

• the compiler can target a single, usually high-level
architecture,

• the program can easily be monitored during execution,
e.g. to prevent malicious behavior, or provide debugging
facilities,

• the distribution of compiled code is easier.
The main (only?) disadvantage of virtual machines is their
speed: it is always slower to interpret a program in software
than to execute it directly in hardware.

17

Dynamic (JIT) compilation

To make virtual machines faster, dynamic, or just-in-time (JIT)
compilation was invented.
The idea is simple: Instead of interpreting a piece of code, the
virtual machine translates it to machine code, and hands that
code to the processor for execution.
This is usually faster than interpretation.

18

Summary

Compilers for high-level languages are more complex than the
ones you’ve studied, since:

• they must translate high-level concepts like pattern-
matching, anonymous functions, etc. to lower-level
equivalents,

• they must be accompanied by a sophisticated run time
system, and

• they should produced optimized code.
This course will be focused on these aspects of compilers and
run time systems.

19

