
CGCExplorer: A Semi-Automated Search Procedure
for Provably Correct Concurrent Collectors

Martin T. Vechev
Cambridge University

Eran Yahav
IBM Research

David F. Bacon
IBM Research

Noam Rinetzky
Tel Aviv University

Abstract
Concurrent garbage collectors are notoriously hard to design, im-
plement, and verify. We present a framework for the automatic ex-
ploration of a space of concurrent mark-and-sweep collectors. In
our framework, the designer specifies a set of “building blocks”
from which algorithms can be constructed. These blocks reflect
the designer’s insights about the coordination between the collector
and the mutator. Given a set of building blocks, our framework au-
tomatically explores a space of algorithms, using model checking
with abstraction to verify algorithms in the space.

We capture the intuition behind some common mark-and-sweep
algorithms using a set of building blocks. We utilize our framework
to automatically explore a space of more than 1, 600, 000 algo-
rithms built from these blocks, and derive over 100 correct fine-
grained algorithms with various space, synchronization, and preci-
sion tradeoffs.

Some tasks are best done by machine,
while others are best done by human insight;

and a properly designed system will find the right balance.
– D. Knuth

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]; D.4.2 [Storage Man-
agement]: garbage collection

General Terms Verification, Algorithms

Keywords concurrent garbage collection, concurrent algorithms,
verification, synthesis

1. Introduction
The design, implementation, and verification of concurrent garbage
collection algorithms are important and challenging tasks: As
garbage-collected languages like Java and C# become more and
more widely used, the long pauses caused by traditional syn-
chronous (“stop the world”) collection are unacceptable in many
domains. Unfortunately, concurrent collectors are extremely com-
plex and error-prone.

This work attempts to provide a systematic method for the de-
sign and verification of concurrent mark and sweep collection al-
gorithms. In our approach, the algorithm designer provides the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00.

insights behind the algorithm and utilizes our work to automati-
cally turn these insights into provably correct collection algorithms.
More specifically, the designer specifies a set of “building blocks”
that reflect her insights about the coordination between the collec-
tor and the mutator (the metadata they share and some constraints
on how it may be used). The system then automatically explores the
induced space of algorithms, outputting a number of different cor-
rect collectors. The correctness of the results is ensured by using
specially-designed model-checking with abstraction. When a full
coverage of the induced space turns out to be infeasible, we expect
the designer to simplify the search.

Interestingly, we found that this form of an iterative design can
also benefit the designer: she can start the exploration by specifying
only a few building blocks and placing severe constraints; use
our framework; study the resulting algorithm; detect a common
pattern; and reuse our framework with a more sophisticated input
constraining our system to respect the common pattern. Using this
form of a staged design, we were able to discover over 100 new
(correct) algorithm variations where the only atomicity constraints
are at the granularity of a single building block.

Technically, our work builds on the parametric concurrent mark-
and-sweep collection framework of [24]. Their framework allowed
the derivation of many abstract algorithms by starting from a single
simple, very precise, but maximally atomic algorithm instantiation.
While the algorithms were simple to derive and prove, they were
not directly implementable in an efficient manner. In particular, the
mutator write barrier, and the individual marking steps were imple-
mented using large, heavy-weight, atomic sections. Moreover, the
time complexity of the algorithms was not linear, their space con-
sumption would exceed that of the heap being collected by a sig-
nificant constant factor, and their synchronization overhead would
be very high.

In this work, we concentrate on transforming a subset of the ab-
stract algorithms from [24] into correct and more lightweight algo-
rithms. Specifically, we transform the large, heavy-weight, atomic
sections that form the core of the algorithm of [24] to use a small
amount of per-object metadata and perform only a limited amount
of computation on each step, resulting in algorithms that are linear
in the size of the heap and the amount of mutation.

Our work provides a significant step towards the synthesis of
concurrent collectors. We take this step in a modest setting in
which the system is comprised of a single collector and a single
mutator. We also limit the scope of the synthesis to the mark step
of mark-and-sweep algorithms, because this is the part which is
most difficult to construct correctly.

The final step in generating an actual implementation would
be to parameterize the abstract costs of this model by machine-
dependent parameters and the expected application parameters.
This information could then be used to automatically select an
algorithm for a specific application and to turn the building blocks
into machine code. We leave this as future work.

1.1 Related Work
There has been little work on using formal techniques to automati-
cally discover and verify interesting and practical concurrent algo-
rithms. However, in the field of garbage collection there are several
works using formal approaches to verify algorithms.

The works of [8, 9] define a framework to describe genera-
tional and conservative collectors. However, it only deals with stop-
the-world algorithms. [9] presents a transformational approach us-
ing the SETL wide spectrum language to specify an initially cor-
rect and inefficient implementation of a stop-the-world collector.
Through loop fusion and formal differentiation transformations,
they obtain a more precise implementation of a well-known stop-
the-world algorithm. In contrast, we derive concurrent collectors.

In [5], a stop-the-world collector is modeled, but not verified
using CCS. In [4], separation logic is used to prove the correctness
of a stop-the-world copying garbage collector.

Several works formally verify the correctness of Ben-Ari’s and
Dijkstra’s algorithms presented in [3, 10]. Ben-Ari’s algorithm has
made simplifications to Dijkstra’s algorithm with the sole purpose
of having an algorithm which is easier to prove. The quadratic
complexity of these algorithms is largely due to author’s intention
of making these algorithms simple and easy to verify.

In [11], Dijkstra’s algorithm is verified using the Owicki-Gries
logic. A correction to the article was published in [12]. In [18],
Ben-Ari’s algorithm is verified for both single and multi-mutator
systems using Owicki-Gries’s logic in the Isabelle/HOL theorem
prover [17]. In the work of [14], again Ben-Ari’s algorithm is veri-
fied using the PVS theorem proving system. Similar work has been
done by [19], where he proves Ben-Ari’s algorithm but this time
in Boyer-Moore’s theorem prover. In [15], Dijkstra’s algorithm has
been verified again in the PVS theorem prover. The paper of [6],
proves Ben-Ari’s algorithm using the B and Coq systems.

In [22], the authors use model checking with abstraction to
verify Dijkstra’s and Yuasa’s algorithms. In addition, they use a
search technique to generate algorithms (and then verify them).
However, the algorithm space they consider is rather limited, and
the algorithms they derive do not vary in concurrency.

The work of [16] on superoptimization finds the shortest in-
struction sequence to compute a function. The state space of these
algorithms is bounded, while in our problem the state space is un-
bounded.

In the work of [1], the authors deal with mutual exclusion al-
gorithms. They perform syntactic exploration and discover various
interesting algorithms, some of which are better than known solu-
tions under the given space constraints. The authors employ a cus-
tom model checker and various heuristics to reduce the state space.
However, the state space of these algorithms is bounded a priori,
while in our problem the state space is unbounded.

In sketching [21], the user provides a reference program of the
desired implementation and some sketches which partially specifies
certain optimized functions. The sketching compiler automatically
fills in the missing low-level details to create an optimized imple-
mentation. Sketching has been used to synthesize several bitstream
program implementing cryptographic ciphers. In contrast, our work
can be seen as a specialized synthesizer applicable to the domain
of concurrent mark-and-sweep collectors.

1.2 Main Results
The contributions of this work can be summarized as follows:

• We define a search procedure that explores a space of concur-
rent garbage collection algorithms built from a set of “building
blocks” provided by an algorithm designer.
• We provide a set of building blocks that captures the intuition

behind some common mark-and-sweep algorithms.

• We explore the induced space of algorithms and discover over
100 non-trivial solutions.
• We define a model checking (with abstraction) procedure that

automatically verifies the correctness of our algorithms.

While the search procedure is general, the abstraction used
for verifying the discovered algorithms may be specific to the
choice of building blocks. In this paper, we present an abstraction
that is appropriate for the subspace of mark-and-sweep algorithms
we explore. Due to space restrictions, we only give an informal
description of the abstraction. A detailed formal description is
given in [23].

Outline. The rest of the paper is organized as follows: Section 2
reviews the framework of [24]; Sections 3-5 gradually present
the core of our framework and the new algorithms; Section 6
described the abstraction used for the model-checking algorithm;
and Section 7 concludes the paper.

2. The Log-based Parametric Collector
In this section we briefly review the parametric concurrent collec-
tion algorithm of [24], which serves as a starting point for our work.

2.1 Log-based Concurrent Collectors
The algorithm is defined using a standard concrete semantics. For
simplicity, we assume that all objects have the same set Fields
of field identifiers. We denote by VarId the set of local variable
identifiers. We denote by locs an unbounded set of dynamically
allocated heap locations, and by Val = locs ∪ {null} the possible
values to which fields and variables may be mapped. A program
state keeps track of the program locations of the mutator and the
collector, a set of allocated objects (L ⊆ locs), an environment
mapping local variables to values (ρ : VarId→ Val), and a mapping
from fields of allocated objects to values (h : locs → Fields →
Val). For convenience, we use obj .f to denote the value h(obj)(f).

All reachable objects are reachable from a finite set of R ⊆ L
root objects, denoted root1, . . . , rootR. No particular structure is
assumed regarding the initial root set for collection. Thus it could
consist of just a single pointer, the stack of one thread, or the stacks
of multiple threads. (For simplicity, stack frames are treated as heap
allocated objects.)

The collection algorithm uses an interaction log to record infor-
mation about the combined behavior of the collector and the muta-
tor. This log is used by the collection algorithm to select the objects
to be marked.

The interaction log is a sequence of log entries of the following
kinds: (i) a tracing entry recording a tracing action of the collector
as it traverses the heap during the marking phase; (ii) a mutation
entry recording a pointer redirection action by the mutator; (iii) an
allocation entry recording an allocation of a new object by the
mutator. This is formally defined as follows:

DEFINITION 2.1. A log entry is a tuple 〈k, source, fld, old, new〉 ∈
{T,M,A} × L× Fields× Val× Val, where:
• k identifies the kind of action as one of tracing, mutation, or

allocation, denoted by T, M, and A, respectively.
• source is the object affected by the action.
• fld is the field of source affected by the action.
• old is the value of the field source.fld prior to the action.
• new is the value of source.fld subsequent to the action.

Tracing actions do not change the structure of the heap; therefore
old = new for all tracing entries. Allocation actions allocate the
object new, which must not appear previously in the trace.

The following selectors are used to access the components of a
given log entry tuple, τ = 〈k, s, f, o, n〉: τ.kind = k, τ.source =
s, τ.fld = f , τ.old = o, and τ.new = n.

collect() {
atomicmarked← {root1, . . . , rootR}

pending ←
⋃

x∈marked fields(x)
log ← ε

do {
mark()
addOrigins()
} while (?)

atomic[
addOrigins()
mark()

sweep()
}

(SKL) Collector skeleton

mark() {
while (pending 6= ∅) {
(obj, fld)← removeElement(pending)
atomic[

dst← obj.fld
log ← log • 〈T, obj, fld, dst, dst〉

if (dst 6=null ∧ dst 6∈ marked){
marked← ∪ {dst}
pending ← ∪ fields(dst)

}}}

(MRK) Collector tracing

addOrigins() {
atomic
[origins← expose(log) \marked
marked← ∪ origins

pending ← ∪
(⋃

x∈origins fields(x)
)

}
(ORG) Collector adding origins

mutate(source, fld, new) {
atomicold← source.fld

log ← log • 〈M, source, fld, old, new〉
source.fld← new

}

mutateAlloc(source, fld) {
atomicnew ← alloc new object

old← source.fld
log ← log • 〈A, source, fld, old, new〉
source.fld← new

}
(MUT) Mutator write and allocation barriers

Figure 1. A log-based parametric Mark-and-Sweep algorithm.

2.2 The Parametric Algorithm
Fig. 1 presents the pseudo-code for a parametric concurrent mark-
and-sweep collector. The operation of this collector is defined over
a prefix of the interaction log, recording the collector and mutator
interaction. (In the figure, we use log • τ to denote a concatenation
of τ at the end of log .)

The parametric collection algorithm does not specify how ob-
jects are selected to be marked. Instead, the parameter function ex-
pose determines how the collector handles objects that may be “hid-
den” due to concurrent mutations. The algorithm, however, does re-
strict concurrency by assuming that write barriers are atomic with
respect to collector operations. Effectively, this means that a col-
lector cannot preempt a mutator during a write barrier.

The collection cycle of the algorithm is described in the collect
procedure. The collection cycle consists of two phases: (i) the
marking phase, in which the collector marks potentially live ob-
jects; (ii) the sweeping phase, in which unmarked objects are re-
claimed.

The collection cycle starts by atomically selecting the set of root
objects as origins. After selecting the root objects as origins, the
collector proceeds by repeatedly tracing heap objects and marking
them (mark procedure), and adding origins to be considered by
the collector due to concurrent mutations performed by the mutator
(addOrigins procedure). These two steps are repeated until a
non-deterministic choice (denoted by ‘?’ in the figure) triggers
a move to an atomic phase in which the remaining origins and
objects to be marked are processed atomically. This atomic phase
guarantees the termination of the algorithm, and is in line with
some practical collector implementations (e.g., [2]).

After the marking phase has completed, the sweep phase re-
claims all objects that are not marked. Neither [24] nor we specify
how the sweep operation proceeds, except to ensure that there is
the proper synchronization between the mark and sweep phases.

Marking Traversal: The mark procedure implements a collec-
tor traversal of the heap. (obj, fld) denotes the field fld of an ob-
ject obj. fields(obj) denotes the set of all object fields for a given
object obj. The procedure uses a set pending of pending fields to
be traversed, and performs a transitive traversal of the heap by it-
eratively removing an object field from pending and tracing from
it. Whenever an object field is traced-from, the procedure inserts a
tracing entry into the log. When the traced object field points to an
unmarked object, the object is marked, and its fields are added to
the pending set.

During this traversal, the mutator might concurrently modify the
heap. These concurrent mutations might cause reachable objects to
be hidden from the traversal, and thus may remain unmarked by the
current traversal.

The Collector Wavefront: All collectors discussed in this pa-
per rely on cooperation between the collector and the mutator to
guarantee correctness in the presence of concurrency. A key part
of the cooperation is tracking the progress of the collector through
the heap, since mutations can be treated differently depending on
whether they happened in the portion of the heap already scanned
by the collector (behind the wavefront) or not yet scanned (ahead
of the wavefront). The progress of the collector is tracked by track-
ing the set of object fields (that is, not the values of the pointers in
those fields) that have been traced by the collector thus far.

DEFINITION 2.2. Given a log prefix P , the set of object-fields
that have been traced by collector operations in P is: W(P) =
{(Pi.source, Pi.f ld) | Pi.kind = T ∧ 0 ≤ i < |P |}, where Pi

denotes the ith log entry in P . We say that an object field (o, f)
is behind the wavefront when (o, f) ∈ W(P), and ahead of the
wavefront when (o, f) 6∈ W(P).

Adding Origins: The addOrigins procedure uses the inter-
action log to select a set of additional objects to be considered
as origins. When this procedure is invoked by the collector, it is
possible that a number of reachable pointers were hidden by the
mutator behind the wavefront during the mark procedure. The
addOrigins procedure finds a safe over-approximation of these
hidden, but reachable objects.

The core of addOrigins is the atomic call to expose. The
latter takes a log prefix and returns a set of objects that should be
considered as additional origins. Each object returned by expose is
then marked, and its fields are inserted into the pending set.

Mutator Barriers: Fig. 1(MUT) shows the write-barrier and
allocation-barrier used by the mutator. The procedure mutate is
called by the mutator to update a pointer in the heap. The procedure
mutateAlloc is called by the mutator to allocate a new object
and store it in the given field. To collaborate with the collector, the
mutator barriers append their actions to the interaction log.

When the mutator performs an assignment source.fld← new
with new 6= null, we say that a pointer is installed from
(source, fld) to new. When the object field (source, fld) is be-
hind the wavefront, we say that the pointer is installed behind the
wavefront. Otherwise, we say that the pointer is installed ahead
of the wavefront. Similarly, whenever we assign a value to a field

(source, fld) containing an existing pointer, we say that the exist-
ing pointer is deleted. If the field (source, fld) is ahead (behind)
of the wavefront, we say that the pointer is deleted ahead (behind)
of the wavefront.

Counting-Based Collection: We now describe an approach for
exposing hidden objects, which is based on counting the number of
references to an object from behind the wavefront.

The mutator count is the number of pointers to an object from
object fields behind the wavefront. This quantity is computed with
respect to a given wavefront. Note that this is not a general form of
reference counting.

To compute the mutator count from a given log prefix P ,
we define the mutator-count increment and decrement as follows
(pre(P, i) denotes P ’s prefix of length i):

M+(o, P) = |{Pi | Pi.kind ∈ {M,A} ∧ Pi.new = o

∧ (Pi.source, Pi.f ld) ∈ W(pre(P, i)) ∧ 0 ≤ i < |P |}|

M−(o, P) = |{Pi | Pi.kind ∈ {M,A} ∧ Pi.old = o

∧ (Pi.source, Pi.f ld) ∈ W(pre(P, i)) ∧ 0 ≤ i < |P |}|
The value M+(o, P) is the number of new references intro-

duced by the mutator from object fields that are behind the wave-
front. Similarly, the value M−(o, P) is the number of references
removed by the mutator from object fields behind of the wave-
front. The mutator count M(o, P) is computed by combining the
mutator-count increments and decrements as follows:

M(o, P) = M+(o, P)−M−(o, P)

A counting-based collector can be instantiated using the follow-
ing exposec function.

exposec(P) = {n | n = Pi.new ∧M(n, P) > 0 ∧ 0 ≤ i < |P |}

In real systems, the count maintained for an object is usually
very small. Therefore, it would be wasteful to have a very large
reference count per object. We therefore introduce a threshold for
the count. The threshold limits the mutator count to a maximum
value, at which it “sticks” and is not subsequently decremented.
This allows counts to be implemented with a fixed (small) number
of bits while still maintaining the correctness properties provided
by reference counting.

3. From Log-based to Log-free Algorithms
In this section, we perform several manual steps that allow us to
move away from the log-centric model of our algorithms and move
towards a more practical model that allows some of the collector-
related computation to take place in the write barrier.

Specifically, we show how to get a collection algorithm that
does not use a log by retaining the collector skeleton, shown in
Fig. 1(SKL), and fixing certain design decisions regarding the im-
plementation of mark, addOrigins and mutate. Practically,
this means adding additional metadata (state) per object. Note that
Fig. 1 is exactly the same algorithm discussed in [24] and is re-
peated here for convenience.

The algorithm obtained in this section is shown in Fig. 2. In this
figure, parts (MRK), (ORG) and (MUT) of Fig. 1 are modified from
being log based to being state based, as will be shown below.

The collector skeleton of Fig. 1(SKL) is identical for both al-
gorithms and is not shown in Fig. 2. The code for (MRK), (ORG),
and (MUT) shown in Fig. 1 is converted to the code shown in the
corresponding parts of Fig. 2.

For clarity of presentation we do not show the necessary range
checks for an overflow on increment (operation new.MC + +).
One can assume the operations new.MC + + and new.MC −−
are no longer activated if overflow of the count has occurred.

Similarly, we do not show that all operations in the barrier but the
actual field assignment are predicated on their target object being
non-null and unmarked.

The following manual steps are taken to perform the conversion.
Update the Collector Wavefront On-the-fly: Rather than re-

computing the wavefront each time it is used by expose, the col-
lector keeps track of the wavefront and updates it incrementally in
the mark procedure. Technically, the incremental wavefront can
be implemented by storing a designated bit on each field recording
whether the field has been scanned by the collector. We denote the
wavefront bit for a field fld by WFfld.

Introduce a Marked Bit: Instead of recording the marked objects
in a collector data-structure, we use a bit on every object to record
whether the object has been marked by the collector. We use the
field mark to hold the mark bit of an object.

Constrain Object Processing Order: In the log-based algorithm,
the fields of an object are processed in an arbitrary order (i.e.
pendingF ields). There are two sources of non-determinism here.
First, it is possible to process fields of different objects in arbitrary
order and second, it is possible to process fields of the same object
in arbitrary order.

This step eliminates both sources of non-determinism by pro-
cessing all fields of an object in a predefined order. This allows
us to maintain a pending set of objects, rather than a pending set
of fields, and hence use less space. (In Fig. 2, we use the variable
pending instead of pendingF ields to denote the set of pending
objects.) Technically, we assume that fields within an object are
identified by a number and are processed in an increasing order.

Moving Computation from the Collector to the Mutator: In this
paper, we will concentrate solely on the counting-based algorithms
from [24] which allocate black objects. To avoid re-computation
of the mutator count, we introduce a counter MC for each object.
This counter can be stored in the object header. The MC counter
is updated incrementally by the mutator’s write-barrier.

Because both wavefront and count information are stored in
heap objects and updated incrementally, the log used in the log-
based algorithm of Fig. 1 is reduced to a set of objects for which
the count should be re-inspected when the tracing is over (at the
point of expose). We denote this set of objects by cand, as these
objects are candidates for being exposed.

Next, the expose function is adapted as well. We denote the
adaptation of the expose function that only reinspects the object
counts by êxpose. The adapted expose function is defined as fol-
lows: êxpose(cand) = {o | o.MC > 0 ∧ o ∈ cand}

So far, we have only defined êxpose as a function over the
candidate set cand. However, since we are interested in exploring
versions of êxpose that are not fully-atomic, we need to describe
it operationally. We choose to represent the candidate set cand
using an array, and the êxpose operation via a traversal of the array
(atomically at this point, but we relax atomicity constraints in later
sections). The variable nextcand represents the current size of the
candidate set. It is updated by the mutator when it inserts references
into cand and is read by addOriginswhen it processes the cand
set. In our experiments we have simplified the problem by assuming
that the set cand only grows. In a more practical implementation
the collector would need to update nextcand when it finishes
processing the set, e.g. by resetting it to zero.

Separate Shared Computation from Local Computation: Ini-
tially mark and addOrigins consisted of updates to both heap
and local information (e.g. pendingF ields is a variable local to
the collector). We would like to separate these two because we are
interested in concentrating and varying only the part which is diffi-
cult to create and prove correct: the code accessing the shared data.

Fig. 2 shows the routines performing collector-local compu-
tation: mark, and processObject in the (MRK) part, and

mark() {
while (pending 6= ∅) {
obj ←removeElement(pending)
processObject(obj)

}}

processObject(obj) {
for (fld = 0; fld < |Fields|; fld + +) {
dst← markStep(obj,fld)
if (dst 6= null)
pending ← ∪ {dst}

}}

markStep(obj,fld) {
atomic

dst← obj.fld
obj.WFfld ← true
if (dst 6= null ∧ ¬dst.mark)

dst.mark ← true
else dst← null

returndst
}

(MRK) Collector tracing

addOrigins() {
atomic

for (i = 0; i < |nextcand|; i + +){
dst← addOriginStep(i)
if(dst 6= null)
pending ← ∪ {dst}

}
}

addOriginStep(i) {
dst← cand[i]
dst.inLog ← false
if (dst.MC > 0 ∧ ¬dst.mark)
dst.mark ← true

else dst← null
returndst

}

(ORG) Collector adding origins

mutate(source, fld, new) {
atomic

if(source.WFfld){
old← source.fld
new.MC + +
old.MC −−
if(¬new.inLog){
cand[nextcand ++] = new
new.inLog ← true

}}
source.fld← new

}

mutateAlloc(source, fld) {
new ← alloc new object
mutate(source, fld, new)
}

(MUT) Mutator barriers

Figure 2. Atomic log-free mark-and-sweep collector with metadata stored on heap objects and mutator-computation of the mutator count.

addOrigins in the (ORG) part. These procedure do not directly
read and write to heap objects, and use the procedures markStep
and addOriginStep to access shared heap data.

Part (MUT) of the figure shows the mutator routines: the write
barrier procedure mutate that accesses shared data and the allo-
cation barrier mutateAlloc.

In the figure, we show the procedures that mutate shared heap
data with a shaded background. These are the procedures that will
be automatically synthesized by our framework.

It is worth noting that addOrigins and mutate are access-
ing a shared variable nextcand. We will revisit this point in Sec-
tion 5.5.

Although the procedure addOrigins is atomic, we chose to
show the splitting of addOrigins and addOriginStep here
as in Section 5, we will be concentrating on removing atomicity for
both addOrigins and addOriginStep.

To summarize, the resulting algorithm has the following char-
acteristics:

• space overhead: the algorithm uses: (i) one bit per object-field
in order to record the collector’s progress through the heap
(wavefront); (ii) one mark bit per object; (iii) one inLog bit
per object recording whether the object is in the candidate set;
(iv) a counter per object whose number of bits depends on the
counting threshold.
• concurrency: the algorithm uses an atomic write-barrier, and

two atomic collector steps: markStep and addOrigins.
In effect, the collector cannot perform a marking step or
addOrigins while the write barrier is executing, and the
mutator cannot mutate the heap in the duration of a tracing step
(tracing a single field) or during addOrigins.
• precision: this algorithm has the same precision as the log-

based algorithm. All algorithms we derive in this work are of
identical or lesser precision than the algorithm we obtained in
this section.

In this section we obtained an algorithm that uses large coarse-
grained atomic routines: markStep, mutate and addOrigins.

The key question that we address in the rest of the paper is:
what are the (correct) alternative implementations in terms of con-
currency to the three coarse-grained routines described above? Can
we obtain other less-atomic implementations of these three rou-

tines? Can we find implementations that use no atomics at all? This
is a challenging question because the collector and the mutator con-
currently manipulate shared metadata.

We approach this question systematically, and, using our auto-
mated exploration procedure, find a number of interesting correct
collection algorithms.

4. The Exploration Framework
In this section, we describe our semi-automated framework for ex-
ploring a space of collection algorithms. In Section 5, we put the
framework to work, and derive a variety of collection algorithms
by systematically breaking the coarse-grained atomicity of the al-
gorithm described in Section 3.

Our framework is composed of a search algorithm and a verifi-
cation procedure. The search algorithm attempts to verify the cor-
rectness of algorithms in the space as they are being explored. In
this section, we describe the search algorithm, and treat the ver-
ification procedure as a black box (the details of the verification
procedure are described in Section 6).

Our search procedure looks for correct implementations of three
procedures: markStep, addOriginStep and mutate.

4.1 Atomicity
We use the key word atomic to denote that a sequence of operations
should not be interrupted.

We will be using the terms more atomic, most atomic and
less atomic with respect to collection algorithms. We define these
relations in terms of interleavings. We define an interleaving of
an algorithm in the standard way: a sequence of collector and
mutator operations, where each operation is an execution of a
building block as defined in the next subsection. We denote the
set of interleavings for an algorithm C1 by int(C1). We note that
only algorithms comprised of the same building blocks and in the
same order (but, possibly, with different atomicity constraints) are
comparable by this partial order. Therefore, given two collector
algorithms C1 and C2, we say that C1 is more atomic than C2,
when int(C1) ⊂ int(C2). Subsequently, given a set of collection
algorithms S, c ∈ S is the most atomic if for any other c′ ∈ S,
c′ 6= c, and c is more atomic than c′. The definitions for less atomic
and least atomic are similar.

Collector
BB# Building Block Meaning
C1 dst← o.fld scan field
C2 if (dst 6= null ∧ ¬dst.mark) mark an object which is not

dst.mark ← true already marked
else dst← null

C3 addOrigins() process candidate objects
C4 o.WFfld ← true notify field is read

Mutator
BB# Building Block Meaning
M1 old← o.fld read field
M2 o.fld← new write field
M3 if(val) o.MC← o.MC + 1 conditional inc of count
M4 if(val) o.MC← o.MC− 1 conditional dec of count
M5 cand← cand ∪ {o} records object as candidate
M6 val← o.WFfld check if field is read

Table 1. Building blocks forming the algorithm of Fig. 2.

4.2 Input
The input of the exploration framework is the designer specification
which is comprised of a set of building blocks and, optionally, some
constraints over them.

Building Blocks: The building blocks can be viewed as the state-
ments of a domain specific language for constructing concurrent
collectors. In our framework, the building blocks have the property
that they can be implemented via a small number of machine in-
structions. Generally, any building block that references storage,
where the storage may be accessed concurrently (due mutator-
collector concurrency) contains at most two memory accesses (al-
though it may operate upon any number of local values). However,
it is possible to have building blocks which consist of higher num-
bers of memory accesses (generally, enclosed in atomic sections.)

For example, Table 1 shows a choice of building blocks that
make up the coarse-grained atomic algorithm of Fig. 2. Initially,
we start by treating the updating of the cand set as an atomic oper-
ation (in mutate). We also treat the collector’s addOrigins as
atomic. Therefore, these two steps are represented as single atomic
building blocks, respectively M5 and C3, in Table 1. In Section 5,
we will reduce the atomicity of addOrigins further.

We denote the set of all specified building blocks by Blocks =
CBlocks ∪ MBlocks , where CBlocks and MBlocks denote the
(disjoint sets of) building blocks performed by the collector and
the mutator, respectively.

Constraints: Our framework supports two forms of (optional)
constraints: ordering constraints and atomicity constraints.

The collector ordering constraints require that the collector’s
blocks are executed in a certain order. They should form a partial
order over the building blocks. The same property holds for mutator
ordering constraints.

The atomicity constraints specify which blocks should be ex-
ecuted atomically. They should form an equivalence relation over
the building blocks.

Both forms of constraints do not allow building blocks from the
collector and the mutator to occur in the same constraint. That is,
we cannot have an ordering constraint which specifies that C2 oc-
curs after M1, but we can have an ordering constraint that specifies
that C2 occurs after C1. Providing constraints serves several pur-
poses. First, without some constraints, exploration my be infeasible
as there may be too many points in the space to verify. Second, even
if it is feasible, it is still possible to reduces the size of the algorithm
space and thus makes the exploration more efficient. Third, con-
straints may be a natural way for the designer to express insights
that he is aware of.

set explore(Blocks, Constraints) {
correctSet = ∅;
algSpace = genAll(Blocks, Constraints);

while (algSpace 6= ∅) {
alg = pickandRemoveMostAtomic(algSpace);
if (verify(alg)) {
// propagate correctness
correctSet = correctSet ∪moreAtomic(alg,algSpace);
algSpace = algSpace \moreAtomic(alg,algSpace);
correctSet = correctSet ∪ {alg};
} else {
// propagate failure
algSpace = algSpace \ {alg};
algSpace = algSpace \ lessAtomic(alg,algSpace);

}}
return correctSet;
}

Figure 3. Exploration Procedure.

4.3 Exploration
Fig. 3 shows the algorithm we use for exploring the algorithm
space. explore uses the designer’s specification to automatically
and systematically explore the space of collection algorithms that
can be defined using the input blocks and constraints.

Algorithm Generation: The explore procedure starts by in-
voking genAll which initializes the algSpace set of algorithms
for exploration by enumerating all combinations of building blocks
and atomicity constraints that satisfy the input constraints.

genAll generates all the algorithms in the space using the fol-
lowing two operations: (i) sequential composition, i.e., placing an
ordering constraint on building blocks within the collector (and
respectively within the mutator); (ii) combining operations into
atomic sequences (effectively melding building blocks together).
For efficiency, genAll performs a lazy enumeration and not a sin-
gle eager enumeration step. This is more efficient because it saves
storage and improves the search. That is, as the search proceeds, it
is possible to infer that certain algorithms are correct without need-
ing to enumerate them. For example, an algorithm A is correct if a
less atomic version B is also correct, and hence we can infer B’s
correctness without needing to explicitly enumerate it.

Exploration: The explore procedure iteratively processes the
set algSpace and tries to verify each algorithm by calling a model
checker (procedure verify). When verification succeeds for an
algorithm alg, it is added to the set of correct algorithms, and its
correctness is used to imply the correctness of all algorithms that
are more atomic than alg. This is done by adding the algorithms
that are more atomic than alg to the set of correct algorithms, and
removing them from the algSpace set, as they are guaranteed to
be correct and need not be considered further. If the verification of
alg fails, explore removes all less atomic variants of alg from
the algSpace set, as they are guaranteed to be incorrect.

The procedure pickandRemoveMostAtomic is a particular
heuristic choice that we made in our exploration. The exploration
always selects the most constrained algorithm in terms of atomicity
from the algSpace set, and tries to find correct algorithms that
are less constrained. Effectively, we are expecting most variations
to be incorrect and expect to propagate the incorrectness to less
atomic variations. It is certainly possible to have a hybrid approach
where we start from the least atomic algorithm and expect it to be
correct so that we propagate that information to the more atomic
variations. At any rate, such techniques could be used to reduce the
number of algorithms that need to be checked by the model checker

and hence explore larger algorithm spaces. Additionally, there is an
opportunity for running explore on several processors.

Note that the search algorithm is parametric in the set of build-
ing blocks. That is, we can add additional building blocks and auto-
matically explore a new algorithm space. However, the verification
procedure is not parametric and would need to be adapted.

Optimizations: As mentioned earlier, we assume that the fields
of an object are processed in increasing order. Experimentally, the
utilization of this assumption reduces the state-space and speeds up
the checking of the algorithm. Moreover, the propagation of cor-
rectness and failure reduce the number of calls to the model checker
by more than 90%, which is important because the verify pro-
cedure dominates the total exploration time.

To limit the search space, the exploration system checks for
algorithms where every building block is used once. If a designer
wishes a block to be used more than once, she would have to
specify that as a separate block.

For efficiency, we also equate algorithms that differ only in the
order of (non data dependant) building blocks that are executed
atomically, that is atomic [a b] is equivalent to atomic [b a] if
building blocks a and b are not data dependent.

4.4 Output
The exploration procedure returns a set of correct concurrent col-
lectors. Every algorithm is a pair of a write-barrier description and a
collector-step description. The collector-step consists of the proce-
dures markStep and addOriginStep. In cases where we con-
sider addOrigins to be atomic, the collector step will be simply
consist of the markStep.

The algorithms are encoded using a symbolic representation.
A symbolic write-barrier description consists of: a sequence of
mutator blocks and some atomicity constraints over them (i.e.,
an equivalence relation). A symbolic collector-step description is
similar, but uses collector blocks.

The order of blocks in the sequence reflects the (total) order in
which these blocks are executed. The atomicity constraints speci-
fies which blocks should be executed atomically. These constraints
refine the designer’s specification. The algorithm also respects the
data dependencies between building blocks and does not explore
orders in which building blocks use uninitialized values.

Given two blocks B1, B2 ∈ Blocks and a sequence seq, we
write B1 < B2 when B1 precedes B2 in seq. Note this forms a
partial order.

Given two blocks B1, B2 ∈ Blocks and a set of atomicity
constraints acs ⊆ Blocks × Blocks , we write [B1, B2] when
(B1, B2) ∈ acs, denoting the fact that acs requires that B1 and B2

are executed atomically. Note that this is an equivalence relation.

5. Discovering Algorithms
In this section we describe how we used the automated system to
synthesize a number of interesting fine-grained synchronization al-
gorithms. We show several possible scenarios that we experimented
with and the results that were obtained from each.

This section demonstrates the process that a typical user of the
system would follow in order to synthesize algorithms. In this ex-
ample the system is used in a staged manner, utilizing the feedback
of the system over a particular set of building blocks in order to
reduce the search space for a more refined set of building blocks.
In that sense, we derived variations of algorithms incrementally. As
we progress through this section, we describe how we used the sys-
tem to explore various sets of building blocks. We summarize the
results presented in this section in Table 2. The last four columns of
the table show the number of algorithms explored at each step (To-
tal), the number of algorithms model-checked by the checking pro-
cedure (SPIN), the number of correct algorithms found (Correct),

Sec. Run Total SPIN Correct Time (min.)
5.1 (a) 306 45 1 2
5.3 (b) 2744 162 2 34
5.4 (c) 12 7 2 1

(d) 592 146 14 56
(e) 32 26 1 1

5.5 (f) 3024 550 80 212
(g) - - - T/O
(h) 6144 127 10 39
(i) 1,624,320 1833 6 2072
(j) 364,032 288 0 39

Table 2. Results of Exploration. Experiments performed on a ma-
chine with a 3.8 Ghz Xeon processor and 8 Gb memory running
version 4 of the RedHat Linux operating system.

mutate4()
old← o.fld

detectedAtomic[
o.fld← new
w←o.WFfld

atomic[
if(w) new.MC++
if(w) cand← cand ∪ {new}

if(w) old.MC– –

markStep4()
detectedAtomic

atomic
dst← o.fld
if (dst 6= null ∧
¬dst.mark)

dst.mark ← true
else dst← null

o.WFfld←true
return dst

Figure 4. The least atomic algorithm that is automatically de-
tected by our system from the building blocks of Table 1 (depicted
as run (a) in Table 2).

and the exploration time (in minutes). The difference between the
columns Total and SPIN is that the correctness or failure of many
algorithms (from Total) can be deduced without invoking the SPIN
checker (as discussed in the previous section). It should be noted
that the Correct column indicates the number of least atomic cor-
rect algorithms. More atomic algorithms are trivially correct and
their number is not shown in this column. As noted previously, the
running times are affected by our particular choice of exploration.
Different choices such as starting from the least atomic algorithm or
a hybrid approach will yield different running times. In our experi-
ments we checked the safety property of the algorithms, i.e., that all
reachable objects are marked and processed at the end of marking.
Further details of the verification are available in Section 6.

As users of the system, we start the process with some intuition
as to what are reasonable building blocks from which an algorithm
could be constructed, but without knowing the full details of how
to put these blocks together. This process is similar to the idea of
sketching. Different users of the system may come up with different
such insights/building blocks.

As mentioned in Section 3, the algorithm skeleton has already
been split into local and shared parts manually as shown in Fig. 2.
In what follows, we will describe how we used to system to fill the
shared routines (shaded in Fig. 2) with correct code.

5.1 Exploration: Starting Point
The starting point of our search is the coarse-grained algorithm of
Fig. 2. There are two main causes of mutator-collector interference
in this algorithm. The first is the interaction between markStep
and mutate. The second is the interaction between addOrigins
and mutate.

As a first step, we decide to try and resolve the interfer-
ence between markStep and mutate, and leave addOrigins

atomic. That is, addOrigins is a single building block. Note
that although no operation in mutate can preempt an atomic
addOrigins, making mutate non-atomic will allow for it to
be preempted by addOrigins.

The building blocks comprising the shaded parts of the algo-
rithm of Fig. 2 were already shown in Table 1. Our first natural
choice is to run the system with this set. However, before break-
ing the atomic operations into elementary units (loads/stores), we
first try and maintain more coarse, “higher-level”, operations. This
is done by providing the system with user-defined atomicity con-
straints that are guaranteed to be maintained during exploration. For
the collector, we make building blocks C1 and C2 of Table 1 a sin-
gle atomic operation, expressed as readMarkTarget = [C1 C2].
That is, the reading of the field and the marking of the object who
is pointed to by this field are executed atomically. For the mutator,
we make the increment of the mutator count and the logging of the
object execute atomically, expressed as incAndLog = [M3 M5].

Given these constraints over the building blocks, we ran the
system and the least atomic algorithm found is shown in Fig. 4.
In this paper, in all figures presenting algorithms, we use atomic
to denote an initial atomicity constraint provided by user, and
detectedAtomic to denote atomicity constraints detected as required
by the system. The details of this execution can be seen as run (a)
of Table 2.

The detectedAtomic constraints in the resulting algorithm effec-
tively suggests that the mutator should store the target object and
read the wavefront atomically. Similarly, the collector should read
the field and set its progress atomically.

Initially, we were surprised that the setting of the field and the
reading of the wavefront in the mutator had to be atomic, even
more so because the system had found the processing of the field
was done atomically in the collector, so the mutator could not pre-
empt the collector during the processing of a field. To figure out
why detectedAtomic in the mutator was necessary, we examined a
counterexample generated by SPIN for an algorithm without this
detectedAtomic. It indicated a subtle interleaving where an incor-
rect decrement of a mutator count was taking place. The system
was helpful in quickly discarding such candidates and finding the
correct alternatives.

Our automatic exploration procedure is exhaustive. Thus, it is
guaranteed that the algorithm of Fig. 4 is the least atomic algorithm
that the system could find under the provided set of building blocks
and user-provided atomicity constraints. However, the user may
still be unsatisfied (as she should be) with the current result. She
may want to derive an algorithm with fewer atomicity constraints.

5.2 Manual Step: Adding New Building Blocks
At this point, new insights and new building blocks are needed in
order to continue the derivation and a human is required to generate
an insight. But how can we generate an insight which is as generic
as possible, that is, not garbage collection dependent? We asked a
natural question of what would happen if more state is injected into
the system? Can it be used to reduce atomicity? And if so, how
should the state be introduced?

To answer these questions, we distinguish between two types of
building blocks:

• Core blocks - describe the core operations performed by the
collector and the mutator, such as the collector reading and
marking an object (readMarkTarget) or the mutator storing
a pointer in the heap (M2). One can think of these as operations
which cannot be avoided and exist even in sequential collectors
where the mutator cannot preempt the collector during marking.

Collector
BB# Building Block Meaning
C4S o.Sfld ← true notify field scan starts
C4E o.Efld ← true notify field scan ends

Mutator
BB# Building Block Meaning
M6S val← o.Sfld check if field scan started
M6E val← o.Efld check if field scan ended

Table 3. Refined building blocks, replacing the blocks C4 and M6
of Table 1, and recording both the beginning and the ending of the
wavefront progress over a field.

• Auxiliary blocks - describe the operations on collector metadata
such as the mutator count field in each object, or the progress
of the collector through the heap via modifying the wavefront.

The next step can be thought of as adding new metadata, that
is, new auxiliary building blocks. The question of where to add
this metadata is a central one. Our insight was to add state which
captures the history of the execution of the core operations, that is,
the starting and the ending of each core operation.

One can think of the current per-field wavefront bit as a way of
notifying the mutator that the field has been read by the collector.
However, the role of this bit relies on the atomicity of the collector
sequence. When the sequence is atomic, the wavefront variable is
observed by the mutator if and only if the field has been scanned
by the collector. If the collector sequence becomes non-atomic, the
wavefront variable can no longer convey the same semantics as it
is updated separately from the scanning of the field.

Therefore, we add state to capture the history of the core oper-
ations. For each field in an object we introduce a new bit per field
Sfld, which notifies the mutator when the collector starts process-
ing the field fld. The original wavefront bit retains its semantics
that when it is set, the field has been read by the collector. To reflect
the fact that we now have two fields, we rename the original wave-
front bit from Wfld to Efld. These two fields make the progress
of the collector more precisely observable to the mutator. The new
state also implies that we need new auxiliary building blocks for
reading and writing this state (the collector writes and the mutator
reads this state). The additional blocks are shown in Table 3.

In the future, we would like to see the system automatically
apply various transformation rules such as the one described here
(adding state in a specific place). However, at this stage, the ad-
dition of auxiliary state is done manually. Next, we proceed by
showing how to use these building blocks in order to further reduce
atomicity.

5.3 Exploration: Another Try
Before proceeding, we add an ordering constraint over the collec-
tor’s blocks which reflects our insight about notifying the start and
the end of a core operation:

CO1 : o.Sfld ← true < ReadMarkTarget < o.Efld ← true

In addition, we also added the data-dependent constraints that
decrementing mutator count is dependent on the value of Efld (i.e.
mutator building block M4 is enabled only if Efld is true).

We ran the system again using the additional building blocks
and the CO1 constraint. The details of this invocation can be seen
in Table 2 as run (b). Exploration of the algorithm space yielded
two least atomic correct algorithms (i.e. where no detectedAtomic
was required). Fig. 5 shows one of these algorithms. The other
algorithm is similar and is obtained by swapping the first two lines
of mutate.

mutate5()
old← obj.fld
e← obj.Efld

obj.fld← new
s← obj.Sfld

atomic[
if(s) new.MC++
if(s) cand← cand ∪ {new}

if(e) old.MC– –

markStep5()
o.Sfld ← true
atomicdst← o.fld
if (dst 6= null ∧ ¬dst.mark)

dst.mark ← true
else dst← null

o.Efld ← true
return dst

Figure 5. The least atomic algorithm that can be derived from the
building blocks of Table 1 refined by the blocks of Table 3.

The following three mutator constraints describe the mutate
procedure of the two least atomic algorithms just discovered:

DMC1 : end← o.Efld < o.fld← new
DMC2 : o.fld← new < start← o.Sfld

DMC3 : incAndLog < if(e) old.MC– –

The first two constraints state that the mutator processes an
object field in the opposite order from the collector. The third
constraint is between mutator operations. It is an interesting one
because it says that although addOrigins is atomic, the sys-
tem requires the logging of an object to occur before a poten-
tial mutator count decrement of another or same object. This is
due to the fact that although addOrigins cannot be preempted
by mutate, it can still preempt mutate. In fact, we also per-
formed another experiment where addOrigins could not pre-
empt mutate and mutate could not preempt addOrigins by
using a global synchronization barrier in the skeleton before each
addOrigins starts. With this more global constraint we actually
derived (not surprisingly) more correct algorithms. That is, we were
able to discover the first two constraints DMC1 and DMC2, but
not DMC3. The experiment suggested that what look like small
changes in the skeleton can affect algorithm correctness in sub-
tle ways. Reasoning about these changes manually in the presence
of concurrency is very difficult for a human. Moreover, finding all
possible correct solutions after a small change is made and express-
ing all of the resulting solutions concisely as a set of constraints is
nearly impossible to correctly reason about manually.

5.4 Abstracting State
At this stage, our exploration has produced a non-atomic mutate
and markStep in the building blocks we have provided, but with
an atomic addOrigins. Before we continue searching for less
atomic algorithms, a question to ask is: can we achieve the same
non-atomicity with less auxiliary state and if so, is there some
property of the algorithms that is affected by using less state?

We decide to try and answer this question by experimenting
with our system. Naturally, we concentrate on auxiliary state and
abstracting the collector progress. Abstracting collector progress
simply means the mutator does not observe such progress precisely.
We explore three corner cases of this abstraction, although more
variations could be introduced. The results of these three experi-
ments are shown in Table 2:

1. Removal of Sfld state from every field is shown as run (d).
2. Removal of Efld state from every field is shown as run (e).
3. Removal of Sfld and Efld from every field is shown as run (c).

Removal of state can be thought of as the mutator building
blocks M6S and M4E simply returning true or false. That is, they
are unable to observe the collector progress precisely and are forced
to return a safe approximation, which for M6S is true and for M4E

is false.

It may seem that this process of abstracting state contradicts
the previous step of introducing additional state by suggesting to
now remove the same state from every field. However, there is a
fundamental difference. Earlier, both the increment of the mutator
count and the decrement depended on the same bit Wfld. By
splitting this bit into two bits Sfld and Efld, the increment and
decrement no longer depend on the same state. Therefore, even
when we remove the Sfld bit from every field, the result is not
the same as having only the Wfld, because the resulting mutator
incrementing operations fundamentally depend on different states.

The removal of only the Sfld bit, as suggested by the first case,
led to the generation of 14 correct and least atomic variations. That
is, the system did not detect that more atomics were necessary than
those already provided in the building blocks. All 14 variations can
be expectedly described with the two constraints presented earlier:
DMC1 and DMC3. The constraint DMC2 is not necessary
anymore because M6S always returns true in this case.

When we removed the Efld bit only, as suggested in the sec-
ond case, the system generated only one correct least atomic varia-
tion. This result is represented by the constraint DMC2 presented
earlier, which is expected because M4E always returns false and
hence the constraints DMC1 and DMC3 are unnecessary.

Note that unlike in Fig. 4 where we needed detectedAtomic, in
the two examples so far, we found algorithms which do not require
such a constraint. This is interesting because they use the same state
size, namely a bit per field. As mentioned, the key difference is the
meaning of this state and what actions are triggered by the mutator
upon reading it.

In our third experiment, in which both bits were removed, the
system found two correct least atomic variations. The system did
not derive any required constraints. That is, the algorithms are
strictly described by their input data-flow constraints. Effectively,
the algorithms always increment the mutator count, and never
decrement it.

Certainly, even without running the system, we could have de-
duced the derived constraints from these three runs by simply elim-
inating the corresponding constraint when the building block is
known to return a constant value (e.g. true or false). However,
the particular searching order depends on the expertise of the user
and hence it is possible the user simply did not reach the original
three constraints (DMC1, DMC2 and DMC3) in their design,
but managed to think of a variation which had the Sfld bit only.

It is interesting to mention that the third variation with the
least state (i.e. both bits removed) is a symbolic algorithm which
is very similar to the original Dijkstra algorithm. However, it is
well-known that the order of statements (that is, the store on the
new target and the coloring of the target) in the original Dijkstra
algorithm is crucial to correctness. The reason why the order is
critical there is due to the fact that while in the write barrier
(e.g. mutate), it is possible for one collection cycle to finish
and another collection cycle to start. Such an interleaving is not
possible in our system and in most practical systems which require
a stopping phase for each thread in order to mark their root set.

5.5 Final Step: Reducing Atomicity In Candidate Processing
We resume our search for a non-atomic collector. Our starting point
are the building blocks described in Table 3 and the results ob-
tained in Section 5.3. Recall that the mutator logging of objects
and collector’s addOrigins are still atomic operations (build-
ing blocks M5 and C3). Our next task is splitting these blocks
into separate smaller building blocks. In particular, we first manu-
ally make addOrigins non-atomic by removing the atomic sec-
tion around it and placing it inside addOriginStep, so now the
whole of addOriginStep is atomic, but addOrigins is not.
The splitting amounts to simply removing an atomicity constraint.

Collector
BB# Building Block Meaning
C3A o← cand[i] read object from cand set
C3B o.inLog ← false reset inLog bit
C3C if (¬o.mark ∧ o.MC > 0) mark object

o.mark ← true
Mutator

BB# Building Block Meaning
M5A if (v1) cand[nextcand++]← o add object to cand
M5B if (v1) o.inLog ← true set inLog bit
M5C if (v1) v2← o.inLog read inLog bit

Table 4. Refined building blocks, replacing the blocks C3 and M5
of Table 1, explicitly handling the candidate set cand.

Collector
BB# Building Block Meaning
C5 gc state← phase write gc state. phase

is either trace or expose

Mutator
BB# Building Block Meaning
M7 if (v1) v2← gc state read gc state
M8 if (v1) o.MC ← (val = trace) ? increment or overflow

o.MC + 1 : max the mutator count.

Table 5. Additional building blocks to Table 4.

Therefore, the new collector building blocks are basically those of
addOriginStep. These refined building blocks are shown in Ta-
ble 4. Similarly, the building block M5 is split into several smaller
pieces manually. In fact, these pieces of M5 were always present,
but were not shown earlier as logging was executed atomically. In
addition, we also remove the user provided atomicity constraint of
incAndLog, so now M3 (mutator increments) and mutator log-
ging are no longer constrained to execute atomically.

Therefore, the only atomicity constraints left in the mutator are
those forming the individual building blocks. For example, in block
M5A, we log and then increment nextcand atomically. In the
collector, as before, readMarkTarget forms a single coarse-level
building block.

We ran the system with these new building blocks and fewer
constraints. This run is depicted as run (j) in Table 2. Unfortunately
the exploration could not find a correct algorithm. Despite the fact
that exploration was not successful, there is still a key point to be
made. The main reason we were able to explore over 350, 000
variations in less than 40 minutes is because we used two of the
ordering constraints that we discovered in Section 5.3: DMC1 and
DMC2. In this section our final goal is to have no detectedAtomic
between building blocks and therefore we knew that constraints
DMC1 and DMC2 must hold if the result is to be non-atomic (as
we already know they are required for dealing with the interference
between the mutate and markStep). In this sense, we are using
the system in a feedback-directed manner, inserting a constraint
from a previous stage in order to direct the search more accurately.
In our experience, such informed guidance is vital in obtaining
realistic running times.

At this point, the system has deduced that even with an atomic
addOriginStep, mutate and markStep, it is still not possi-
ble to produce even a single correct algorithm.

Again, an insight is clearly needed. We manually studied why
an algorithm fails and figured out the problem to be due to mutator
counts going up and down while interleaving with the execution
of addOrigins. It is possible to construct an example where
addOrigins never terminates, because an object is continuously
being re-logged during its execution. To solve this problem, we

look for a way to guarantee progress of addOrigins and avoid a
potentially infinite log while still guaranteeing safety.

We decide to follow the same pattern we took in Section 5.2
and add some auxiliary control state to the collector. Therefore, all
we add is a flag (a variable) which signals whether the collector is
in the marking phase or whether it is in the addOrigins phase.
We refer to this variable as gc state and the corresponding build-
ing blocks to read and write this variable are shown in Table 5.
For the mutator, building block M3 which performs increments is
subsumed by block M8. In M8, the mutator checks whether the
gc state has been set to expose and if so, the mutator count over-
flows and hence can no longer be decremented. To fundamentally
understand how gc state came into existence, we note that ide-
ally, we would have added start and end bits to each log field
and explored the possible results. The gc state variable is in fact
an abstraction of the collector progress information through the log
(similar to the abstraction of the collector progress through the heap
discussed in Section 5.4).

We ran the system again with the additional building blocks.
Run (i) in Table 2 shows the details of this run. This run was split
into four parts and we report the maximum time it took for a single
part to complete. Note that the time it took for this run to complete
is much longer than the other runs because the model exploration
requires memory which is close to the physical memory of the
machine. It took 7.8GB for the checking of the largest model and
the available physical memory was 8GB. The exploration found
six correct algorithms. For two of these algorithms, the system
did not require any usage of detectedAtomic at all, both for the
mutator part and for the collector part. One of these two non-
atomic algorithms (instantiated inside the skeleton) is shown in
Fig. 6. The second algorithm can be obtained by swapping the first
two building blocks of mutate. Note that addOrigins has no
enclosing atomic section as well. The state variable gc state is set
to tracing whenever the collector begins the tracing phase, and is
set to expose before addOrigins begins. It is set back to tracing
when addOrigins finishes.

Our system dictated that all six correct algorithms must comply
with the following derived mutator ordering constraints:

DMC4 : M8 < M5C

DMC5 : M5A < M4

In fact these two constraints are simply refinements of constraint
DMC3 presented earlier. The first constraint indicates that an in-
crement/overflow of a mutator count should occur before checking
whether the object is in the candidate set. The second one states
that the store of the object in the candidate set should occur before
the decrement of its count.

The other four algorithms look like the one in Fig. 6, except that
M5B is moved either after M5A or after M4. The system states
that if such movement of M5B occurs, then an atomic section is
required around C3B and C3C (i.e. detectedAtomic).

As in Section 5.4, we also experimented with the system by
abstracting the progress of the collector. That is, by removing either
Sfld, Efld bits or both from every field. Run (h) in Table 2 reflects
the removal of Efld and run (f) reflects the removal of both. Run
(h) indicated that no detectedAtomic was necessary in both the
mutator or the collector, so the only constraints required are the
initial data-dependency constraints. For run (f), the system detected
one derived constraint M8 < M5A, indicating that the increment
of the mutator count had to occur before the logging of the object.
Case (g) (removal of Sfld only) timed out.

5.6 Future Steps
Although the algorithm obtained in Fig. 6 did not require de-
tectedAtomic constraints, it still has atomic inside the code (due

markStep(obj,fld) {
o.Sfld ← true
atomicdst← o.fld

if (dst 6= null ∧ ¬dst.mark)
dst.mark ← true
else dst← null

o.Efld ← true
return dst
}

(MRK) Collector tracing

addOrigins() {
gc state← expose
for (i = 0; i < |nextcand|; i + +) {
dst← addOriginStep(i)
if (dst 6= null)
pending ← ∪ {dst}

}
gc state← trace
}
addOriginStep(i) {
dst← cand[i]
dst.inLog ← false
atomic if (dst.MC > 0 ∧ ¬dst.mark)

dst.mark ← true
else dst← null

return dst
}

(ORG) Collector adding origins

mutate(source, fld, new) {
old← source.fld
e← source.Efld

source.fld← new
s← source.Sfld

if (s) {
val← gc state
atomic if (val = trace)

new.MC + +
else

new.MC = max
val← new.inLog
}
if (¬val) {
new.inLog ← true
atomic[

cand[nextcand++]← new
}
atomic[

if(e) old.MC– –
}

(MUT) Mutator barriers

Figure 6. The most fine-grained algorithm derived in our framework.

to the designer requesting them). However, note that there is no
building block which is executed atomically that is accessing two
or more variables where both variables can be read and written by
both the collector and the mutator. The next step in the exploration
would be to remove these final atomicity constraints and check the
algorithm. However, the algorithm in Fig. 6 already requires 7.8GB
and our machine had 8GB, so it would be impossible to check the
resulting less atomic algorithm. It would be interesting to continue
the exploration either after applying various engineering optimiza-
tions to the model to make it smaller or simply after more memory
is obtained.

Moreover, although our proofs and derivations are for algo-
rithms allocating black, this restriction is only necessary because
we are more general than practical algorithms which perform a
stop-the-world phase for stack rescanning. Assuming such a syn-
chronization phase undoubtedly will lead to more interesting vari-
ations as well as being able to handle white objects. Further, we
would be interested in seeing this work extended for multiple mu-
tators or write barriers other than counting as presented in [24].
This would certainly require more sophisticated abstraction as well
more memory to verify the results.

6. Verifying Derived Algorithms
We verify the derived algorithms using model checking with ab-
straction. Automatically verifying arbitrary concurrent garbage col-
lection algorithms, with all of their details, is a challenging task.
The alert reader may therefore find the above claim surprising.
However, the reason that our verification attempt is successful, is
that we operate within the boundaries of our limited framework.

In particular, we are making the following assumptions:
• The algorithm handles a single collector and a single mutator.
• The implemented algorithm is an attempted implementation of

a counting algorithm, where the counting threshold is known.
• The algorithm skeleton is fixed, and the operations performed

by the skeleton are known to be correct. For example, we as-
sume that basic stop-the-world tracing is implemented correctly
(i.e., the trace procedure marks all the objects that are reachable
from the pending set when it executes without interruptions).
• The algorithm uses a synchronization barrier before moving to

the sweep phase, so mutations are required to terminate before
the collector ends the mark phase.

Therefore our procedure verifies that using the derived write-
barrier and collector-step inside a given (correct) skeleton yields a
correct algorithm. In this section, we describe key aspects of the
verification process.

6.1 Verification Problem: Safety of the Derived Algorithms
The correctness of the derived algorithms is specified by the fol-
lowing safety invariant:

DEFINITION 6.1 (Safety Invariant). When the last execution of
addOrigins terminates, that is, before sweep starts, all reach-
able objects are marked.

Using the safety invariant as the verification goal requires reason-
ing about reachability properties in arbitrary heaps undergoing arbi-
trary mutations while taking into account the interference between
the mutator’s write barrier and the collector’s tracing of the heap
and processing of the log. Reasoning about reachability properties
in such a setting is very challenging. However, we avoid the need
to about reason reachability properties using the following obser-
vation: For the safety invariant to be violated, there must exist an
object o that is reachable but not marked. If such an object o exists,
there exists an object o′ such that o′ is directly pointed to by a black
object, but o′ is not marked.

This observation allows to establish that the safety invariant
holds by verifying that the following local safety invariant holds

DEFINITION 6.2 (Local Safety Invariant). When the last execu-
tion of addOrigins terminates, that is, before sweep starts,
every object which is pointed to by a black object, is marked.

We verify that the local safety property holds by non-deterministically
selecting a tracked object and checking whether any interaction of
mutator and collector can cause this object to violate the local
safety invariant. This selection is similar to the choice of a single
tracked object in e.g., [7, 25, 13].

6.2 Abstraction for Model Checking
We verify that the local safety invariant holds using model checking
with abstraction. Our abstraction represents an unbounded number
of heap locations by a bounded abstract representation. We parti-
tion the heap into equivalence classes based on properties of heap

locations. Intuitively, our abstraction partitions the heap in a way
that distinguishes several classes of locations, including:
• locations that have already been read by the collector (scanned

locations).
• locations marked by the collector (marked locations)
• header locations with different mutator counts.

Our abstraction is sound, so when we successfully verify an
algorithm, it is indeed guaranteed to be correct. However, when
we are unable to establish the correctness of an algorithm under
our abstraction, it is possible that the algorithm is still correct, but
our abstraction is insufficient for showing its correctness (hence we
may have missed some correct algorithms).

To maintain sufficiently precise abstraction we identify fields
that were read by the collector (scanned) and then updated by the
mutator to point to the tracked object. We refine the abstraction
of the scanned location by keeping these fields distinct, while the
mutator count (MC) of the tracked object has not overflowed.
Tracking these fields allows us to precisely handle decrements of
the mutator count. A key observation that we are using in order
to bound the number of these locations, is that there are only k
relevant pointers that can be installed pointing to the tracked object
before its count overflows. Because we assume that k is known,
we are able to precisely track only a bounded number of specific
locations, while aggressively abstracting the rest of the heap.

Technically, we use the framework of [20] to describe the heap
and properties of heap locations using first-order logic. We then
hand-code the abstraction into SPIN to achieve a more efficient
implementation.

7. Conclusion
We present a framework for synthesizing provably correct count-
ing based concurrent mark and sweep collection algorithms. Our
framework utilizes a user-provided set of building blocks to au-
tomatically explore a space of algorithms, using model checking
with abstraction to verify algorithms in the space. Using our frame-
work, we were able to discover several interesting fine-grained al-
gorithms. In future work, we plan to investigate the possibility of
applying our techniques in other domains. We believe that the key
reason for the success of our framework is that it found a good
balance between the tasks performed by a human and the tasks per-
formed by the machine.

References
[1] BAR-DAVID, Y., AND TAUBENFELD, G. Automatic discovery of

mutual exclusion algorithms. In Proceedings of the 22nd Annual
Symposium on Principles of Distributed Computing (2003).

[2] BARABASH, K., OSSIA, Y., AND PETRANK, E. Mostly concurrent
garbage collection revisited. In Proceedings of the 18th ACM
conference on Object-oriented programing, systems, languages, and
applications (2003).

[3] BEN-ARI, M. Algorithms for on-the-fly garbage collection. ACM
Trans. Program. Lang. Syst. 6, 3 (1984).

[4] BIRKEDAL, L., TORP-SMITH, N., AND REYNOLDS, J. C. Local
reasoning about a copying garbage collector. In Proceedings of the
31st ACM Symposium on Principles of Programming Languages
(2004).

[5] BOWMAN, H., DERRICK, J., AND JONES, R. E. Modelling garbage
collection algorithms. In Proceedings of International Computing
Symposium (1994).

[6] BURDY, L. B vs. Coq to prove a garbage collector. In the 14th
International Conference on Theorem Proving in Higher Order
Logics: Supplemental Proceedings (2001).

[7] DAS, M., LERNER, S., AND SEIGLE, M. ESP: Path-sensitive
program verification in polynomial time. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and
Implementation (2002).

[8] DEMMERS, A., WEISER, M., HAYES, B., BOEHM, H., BOBROW,
D., AND SHENKER, S. Combining generational and conservative
garbage collection: framework and implementations. In Proceedings
of the 17th ACM symposium on Principles of programming languages
(1990).

[9] DEWAR, R. B. K., SHIRAR, M., AND WEIXELBAUM, E. Transfor-
mational derivation of a garbage collection algorithm. ACM Trans.
Program. Lang. Syst. 4, 4 (1982).

[10] DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN,
C. S., AND STEFFENS, E. F. M. On-the-fly garbage collection: an
exercise in cooperation. Commun. ACM 21, 11 (1978).

[11] GRIES, D. An exercise in proving parallel programs correct.
Commun. ACM 20, 12 (1977).

[12] GRIES, D. Corrigendum. Commun. ACM 21, 12 (December 1978),
1048.

[13] HACKETT, B., AND RUGINA, R. Region-based shape analysis with
tracked locations. In Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages (2005), ACM.

[14] HAVELUND, K. Mechanical verification of a garbage collector.
In Fourth International Workshop on Formal Methods for Parallel
Programming: Theory and Applications (1999).

[15] JACKSON, P. B. Verifying a garbage collection algorithm. In Theorem
Proving in Higher Order Logics, 11th International Conference
(1998).

[16] MASSALIN, H. Superoptimizer: a look at the smallest program.
In the 2nd International Conference on Architectural Support for
Programming Languages and Operating Systems (1987).

[17] PAULSON, L. Isabelle: A Generic Theorem Prover, vol. 828 of
Lecture Notes in Computer Science. 1994.

[18] PRENSA NIETO, L., AND ESPARZA, J. Verifying single and multi-
mutator garbage collectors with Owicki/Gries in Isabelle/HOL. In
Mathematical Foundations of Computer Science (2000).

[19] RUSSINOFF, D. M. A mechanically verified incremental garbage
collector. Formal Aspects of Computing 6, 4 (1994).

[20] SAGIV, M., REPS, T., AND WILHELM, R. Parametric shape analysis
via 3-valued logic. ACM Trans. on Prog. Lang. and Systems 24, 3
(2002).

[21] SOLAR-LEZAMA, A., RABBAH, R. M., BODÍK, R., AND
EBCIOGLU, K. Programming by sketching for bit-streaming pro-
grams. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (2005).

[22] TAKAHASHI, K. Abstraction and Search in Verification by State
Exploration. PhD thesis, University of Tokyo, Jan. 2002.

[23] VECHEV, M. Derivation And Evaluation Of Concurrent Collectors.
PhD thesis, University of Cambridge, 2007.

[24] VECHEV, M. T., YAHAV, E., AND BACON, D. F. Correctness-
preserving derivation of concurrent garbage collection algorithms.
In Proceedings of the ACM Conference on Programming Language
Design and Implementation (2006).

[25] YAHAV, E., AND RAMALINGAM, G. Verifying safety properties
using separation and heterogeneous abstractions. In Proceedings
of the ACM conference on Programming language design and
implementation (2004).

	Introduction
	Related Work
	Main Results

	The Log-based Parametric Collector
	Log-based Concurrent Collectors
	The Parametric Algorithm

	From Log-based to Log-free Algorithms
	The Exploration Framework
	Atomicity
	Input
	Exploration
	Output

	Discovering Algorithms
	Exploration: Starting Point
	Manual Step: Adding New Building Blocks
	Exploration: Another Try
	Abstracting State
	Final Step: Reducing Atomicity In Candidate Processing
	Future Steps

	Verifying Derived Algorithms
	Verification Problem: Safety of the Derived Algorithms
	Abstraction for Model Checking

	Conclusion

