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Abstract 

Flajolet, Ph., P. Zimmermann and B.V. Cutsem, A calculus for the random generation of labelled 

combinatorial structures, Theoretical Computer Science 132 (1994) l-35. 

A systematic approach to the random generation of labelled combinatorial objects is presented. It 

applies to structures that are decomposable, i.e., formally specifiable by grammars involving set, 

sequence, and cycle constructions. A general strategy is developed for solving the random generation 

problem with two closely related types of methods: for structures of size n, the boustrophedonic 

algorithms exhibit a worst-case behaviour of the form O(n logn); the sequential algorithms have 

worst case 0(n2), while offering good potential for optimizations in the average case. The complexity 

model is in terms of arithmetic operations and both methods appeal to precomputed numerical table 
of linear size that can be computed in time O(n2). 

A companion calculus permits systematically to compute the average case cost of the sequential 

generation algorithm associated to a given specification. Using optimizations dictated by the cost 
calculus, several random generation algorithms of the sequential type are developed; most of them 
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2 Ph. Flajolet 

have expected complexity :n log n, and are thus only slightly superlinear. The approach is exempli- 

fied by the random generation of a number of classical combinatorial structures including Cayley 

trees, hierarchies, the cycle decomposition of permutations, binary trees, functional graphs, surjec- 

tions, and set partitions. 
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0. Introduction 

This work started with a question of Van Cutsem to the first two authors. How can 

one generate a random “hierarchy”? The problem arises in statistics where one would 

like to generate random hierarchies and compare their characteristics to hierarchical 

classifications obtained from real-life statistical data, this in order to determine how 

meaningful are the latter. In combinatorial terms, the generation problem simply 

amounts to drawing, uniformly at random, a tree with internal nodes of degree at least 

2 and with leaves (external nodes) labelled by distinct integers, the number n of leaves 

being fixed. 

There are well-known methods for coping with this type of tree generation prob- 

lems, the general strategy relying on a divide-and-conquer principle: generate the root 

with the suitable probability distribution, then recursively generate the root subtrees. 

Several of the basic principles of this recursive top-down approach have been for- 

malized by Nijenhuis and Wilf in their reference book on combinatorial algorithms 

[29], by Hickey and Cohen in the case of context-free languages [17], and under 

a fairly general setting by Greene’ within the framework of labelled grammars [15]. 

The present work is in many ways a systematization and continuation of the pioneer- 

ing research of these authors. 

The class H of all hierarchies can be viewed as a recursively defined type, 

H = Z + set(H, card 3 2), (1) 

’ It is to be regretted that Greene’s outstanding thesis [15] never appeared in the published literature. 
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where + denotes union of types, set(H, card 3 2) builds all unordered combinations 

of elements of H of cardinality at least 2, and Z designates the initial type of labelled 

nodes. A class of structures like H, that admits an equational specification, like (l), is 

said to be decomposable. (The detailed meaning of such specifications will be spelled 

out later.) 

The methods that we are going to examine enable us to start from any high level 

specification of a decomposable class and automatically to compile procedures that 

solve the corresponding random generation problem. Two closely related groups of 

methods are given: the sequential algorithms are based on a linear search and have 

worst-case time complexity O(n2) when applied to objects of size n; the bous- 

trophedonic algorithms are based on a special search technique that proceeds in 

a bidirectional fashion and exhibit O(n log n) worst-case time complexity. The sequen- 

tial method relies on existing technologies set forth in [S, 17,291; the boustrophedonic 

search extends to the realm of random generation an idea of Knuth for finding cycle 

leaders in permutations [20]. Both methods appeal to precomputed numerical tables 

of size O(n) produced in a preprocessing phase (effected once only) of cost O(n’). 

In the process of developing such random generation algorithms, several alternative 

possibilities of implementation emerge. It is therefore desirable to have a means of 

evaluating and comparing the resulting random generation routines provided by the 

general theory. 

The main contribution of this work is to introduce in this range of problems 

a calculus that automatically produces generation routines from formal specifications. 

A companion cost algebra of a rather exotic type is developed in order to attain 

precise average case complexity estimates of the sequential algorithms. The approach 

thus yields simultaneously a sequential generation algorithm and its associated 

complexity descriptor. Complexity descriptors, being in the form of generating func- 

tions of average costs, contain, at least in principle, all the necessary information 

needed to predict an algorithm’s behaviour. This part is strongly influenced by an 

approach introduced earlier for the automatic analysis of some classes of algorithms 

over decomposable structures by Flajolet et al. [l 11. 

The real dimension of generating functions lies in their complex-analytic properties, 

especially when we contemplate them near their singularities. Without this aspect, the 

collection of formal generating function equations would remain somewhat devoid of 

content. A systematic analysis of singularities, at either a finite or infinite distance 

[lo, 111, permits us to extract in all cases of practical interest the asymptotic costs 

involved. For instance, two different strategies, nicknamed “little-endian” and “big- 

endian”, when applied to Cayley trees (labelled nonplane trees), lead to average 

complexities of the forms O(H~‘~) and O(nlog n) respectively. Therefore, the big- 

endian strategy is to be preferred. At the same time, it comes quite close to the 

unavoidable lower bound of O(n). 

Note that our complexity model is in terms of arithmetic complexity where we take 

unit cost for the manipulation of a large integer. This is justifiable in practice on 

two grounds: (i) optimizations dictated by the arithmetic complexity model are 



realistically reflected in the global computation times observed; (ii) the computations 

could be programmed using fixed-precision floating point arithmetic, all our proced- 

ures being numerically stable, in which case the arithmetic complexity model directly 

applies. In addition, an extension of the cost algebra would even make it possible in 

principle to approach bit complexity questions. We have here purposely avoided 

such detailed machine level complexity considerations in order to keep the paper 

short. (See Section 8 for quick indications on bit complexity and empirical execution 

time.) 

The path taken here is eminently practical. A medium size programme (in the 

Maple language) suffices for the full compiler that produces a random generation 

procedure from an arbitrary specification. The resulting random generation algo- 

rithms, ranging in complexity from quadratic to linear, can then be used routinely to 

generate objects of size a few hundred or about a thousand, which is often an adequate 

territory for simulations. Given proper tools (the Maple system), the whole program- 

ming chain from a specification to the actual generation then requires only the writing 

of a correct specification, a matter of minutes of human interaction at most. Once 

some auxiliary numerical tables have been set up, random structures of size up to 

about 1,000 are obtained in a matter of seconds of computer time. 

Last, the interest of the approach here developed lies in its generality and simplicity. 

The most elementary combinatorial structures are often endowed with special proper- 

ties that can be exploited by ad hoc methods, a fact that has been put to use by 

a variety of authors (as general references, see C&29,37]). Complexity results that we 

obtain, often of the form f n log n, demonstrate the possibility of achieving near- 

optimality by general purpose methods. At the same time, one gains access to the 

random generation of arbitrarily complex objects. 

Plan of the paper: Section 1 defines the basic combinatorial language for the 

specification of decomposable structures to be used throughout this work. Section 

2 presents a reduction method to bring specifications to a binary form amenable to 

efficient random generation. Sections 3 and 4 introduce the two groups of methods 

based on the sequential search and the boustrophedonic search. 

The rest of the paper is devoted to an extensive analysis of the sequential 

algorithms. General heuristics are developed to attain either O(n logn) or O(n) 

average case complexity for sequential search, while optimizing the implied 

constants. Section 5 introduces the cost algebra with some first applications. Sections 

6 and 7 are concerned with general purpose optimization issues and some further 

examples. 

Section 8 presents numerical simulation data. Finally, Section 9 offers some brief 

conclusions and directions for further research. For instance, similar principles appear 

to apply to the random generation of unlabelled structures. This is to be explored in 

a forthcoming paper. 

Note: An extended abstract of this article has been published in T. Lengauer, ed., 

AIgorithmsESA’93, Lecture Notes in Computer Science, Vol. 726 (Springer, Berlin, 

1993) 169-180. 
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1. Combinatorial structures and constructions 

We consider labelled objects, which may be viewed as special graphs, where some 

designated nodes are labelled by distinct integers; the size of an object is the number of 

its labelled nodes, and we further assume that the labelling is canonical in the sense 

that an object of size n bears labels from the set [I. . n]. 

1.1. Specijications 

We start from the initial objects 1 that designates the “empty” structure of size 0 that 

bears no label, and Z that generically designates a single labelled node of size 1. We 

operate with the collection of constructions, 

+, .> sequence()) set( ), cycle(). (2) 

There, (A + B) denotes the disjoint union (i.e., the union of disjoint copies) of A and B; 

(A. B) consists in forming all pairs with a first component in A and a second 

component in B; sequence(A) forms sequences of components from A, set(A) forms 

sets (the order among components does not count), and cycle(A) forms directed 

cycles (or equivalently sequences taken up to circular shift). In the product as well as in 

the composite constructions of sequences, sets, and cycles it is understood that all 

consistent relabellings are performed. As encountered already with hierarchies, a no- 

tation like set@, card 3 k) uses a modifier (card 3 k) to indicate sets that have at 

least k elements. 

The language is that of [l l] to which we refer for detailed definitions. Though more 

in the style of computer science’s data types, this language is consistent with common 

practice in the combinatorial analysis of labelled structures; there the product is 

sometimes called the labelled product or the partitional product. The interested reader 

can consult [13,18,30,34,35,38] for background information on these classical 

notions. 

Definition 1.1. Let T = (TO, T1, , T,,,) be an (m + 1)-tuple of classes of combina- 

torial structures. A specijication of T is a collection of m + 1 equations, with the ith 

equation being of the form 

Ti = !J’i(To, T1, . . . , T,) (3) 

where ‘Pi is a term built from 1, Z, and the Tj, using the standard constructions listed 

in (2). 

We shall also say, for short, that the system (3) is a specification of TO. A structure 

that admits a specification is called decomposable. The framework of specifications 

resembles that of context-free grammars for formal languages, but enriched with 

additional constructions. Its expressive power is analogous to that of Greene’s 

labelled grammars. 
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Table 1 
Eleven basic combinatorial structures and their specifications 

Specification Objects 

A = Z. set(A) 
B=Z+B.B 

C = Z. sequence(C) 
D = set(cycle)(Z) 
E = set(cycle(ii)) 
F = set(set(Z, card 2 1)) 
G = Z + Z. set(G, card = 3) 
H = Z + set(H, card > 2) 

K = set(cycle(Z’set(G, card = 2))) 
I. = Set(SSt(Set(Z, card 2 l), card > 1)) 

A4 = sequence(set(Z, card 2 I)) 

Non plane trees 

Plane binary trees 

Plane general trees 

Permutations 

Functional graphs 

Set partitions 

Non plane ternary trees 

Hierarchies 

3-constrained functional graphs 

3-balanced hierarchies 

Surjections 
- 

We proceed with a list of specifications for eleven basic combinatorial structures 

that will serve as our driving examples throughout the paper, see Table 1. The class of 

hierarchies of Eq. (1) has a one line recursive specification (m = 0). Functional graphs, 

E, have m = 1 corresponding to the specification, 

{A = Z. set(A), E = set(cycle(A))}, 

since their definition first necessitates that of trees. Clearly, a specification can be 

decomposed by naming intermediate classes that arise in it. Thus, a specification 

equivalent to (4) is 

{A = Z.set(A), U = cycle(/l), E = set(U)}. 

Use will be made of this feature in the next section. 

(5) 

Some comments regarding the list of Table 1 are in order. Several entries are 

(rooted) tree structures. Nonplane trees are to be taken as trees in the pure graph 

theoretical sense so that subtrees dangling from a node are not ordered between 

themselves; plane trees are viewed as embedded in the plane so that a left-to-right 

order between subtrees is distinguished. This distinction is reflected by the use of the 

set construction for nonplane trees, versus the sequence construction for plane trees 

which further reduces to a simple product in the binary case. Permutations are given 

by their cycle decomposition. Functional graphs are directed graphs with every node 

having outdegree 1. Hierarchies have their previously assigned meaning. The 3- 

constrained functional graphs are functional graphs with the additional constraint 

that all nodes have indegree 0 or 3 only; the 3-balanced hierarchies can be viewed as 

special trees that are balanced (having all leaves at the same level) and of depth 3. 

In these examples the occurrence of the basic type Z in specifications indicates 

where labelled nodes are to be placed in a structure. (This perhaps unexpected 

notation is justified by the fact that the generating function of the basic type Z is the 
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variable 2.) For instance, in plane binary trees as specified, only external nodes are 

labelled. In contrast, we have elected to define (nonplane) ternary trees with both 

internal and external nodes being labelled. This manifests itself in the specifica- 

tions, 

B = Z + B. B and G = Z + Z. set(G, card = 3). 

As a consequence of the theory to be developed, we shall automatically derive 

random generation procedures from such specifications. As previously announced, 

the random generation routines obtained are all quadratic at worst and often almost 

linear on average. 

These objects relate to classical combinatorial structures, for which we refer the 

reader to Comtet’s superb book [3]. For instance, what we called here a hierarchy is 

called a Schriider system in [3, p. 2253, and ternary trees are related to “regular 

chains” in [3, p. 1651. A set partition is a partition of a set into classes, a familiar object 

of combinatorics [3, p. 2251 related to Stirling numbers and counted by the Bell 

numbers. Surjections, also known as preferential arrangements or ordered partitions, 

are discussed in [30, p. 993; they also represent the possible order types of sequences 

with repetitions [21, p. 951. Balanced hierarchies can be viewed alternatively as nested 

partitions [25]. 

Simulation problems for such combinatorial structures arise in a diversity of 

applications. For instance, statistics originally motivated the consideration of hierar- 

chies; there binary trees are also of some interest [24]. Functional graphs of various 

sorts intervene in cryptology as well as in some integer factorization methods; see 

[l, 91 for a treatment of their probabilistic properties. 

1.2. Generating functions 

We turn next to the enumeration of decomposable structures via generating 

functions. If C is a class, we let C, denote the number of objects in C having size n, and 

introduce the exponential generating function (egf) 

C(z) = f cn;. 
n=O . 

We let c, be the rational number c, = CJn! and, using the classical notation for 

coefficients of generating functions [14], we write c, = [z”]C(z). Throughout the 

paper, we consistently reserve the same groups of symbols for a class, C or T1, its 

generating function, C(z), T1 (z), and the enumeration sequence either normalized, c,, 

tl,,,, or not, C,, T1,,. 

Theorem 1 (Folk theorem of combinatorial analysis). (i) Gioen a speci$cation Zfor 

a class C, a set of equations for the corresponding generating functions is obtained 
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automatically by the following translation rules: 

C=A+B * C(z) = A(z) + B(z), 

C=A,B = C(z) = A(z). B(z), 

C = sequence(A) * C(z) = (1 - A(z))-‘, 

C = set(A) => C(z) = &@), 

C = cycle(A) = C(z) = log(1 - A(z))-‘, 

C = sequence(A, card = k) * C(z) = Ak(z), 

C = set(A, card = k) * C(z) = Ak(z)/k!, 

C = cycle(A, card = k) =+ C(z) = Ak(z)/k. 

(ii) Given a specijication, the corresponding enumerating sequences up to size n are all 

computable in 0(n2) arithmetic operations. 

Proof. We refer to standard texts on combinatorial analysis, see for instance 

[13,18,30,34,35,38]. The details of the 0(n2) algorithms are given in [ll, 15, 391, and 

they also result from the standard specifications of the next section. cl 

Observe that, by summation, one further derives translation rules such as 

A’(z) 
C = set(A, card d k) * C(z) = ~~=0 jl, 

A’(z) 
C = set(A, card > k) * C(z) = ea(‘) - ~~=0 7 

j! ’ 

(7) 

governing composite constructions with all sorts of cardinality restrictions. 

The generating functions corresponding to the structures of Table 1 are listed in 

Table 2. 

2. Standard specifications 

In this section, we show how to reduce specifications to standard form. The 

standard specifications constitute the basis of the random generation procedures to be 

developed in the paper. The reduction extends the usual Chomsky normal form for 

context-free grammars. Such a normal form has been used for the random generation 

problem [S], and an operation closely resembling it was also introduced by Greene 

[15] for labelled structures. Behind the transformation into standard form, there lies 

a “quadratization” technique whereby we perform replacements like 

f=eg =a $f=f& 
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Table 2 
The generating functions corresponding to the structures of Table 1 

Specification Generating function 

A = Z’ set,(A) 
B=Z+B.B 
C = Z. sequence(C) 

D = set(cycle)(Z) 

E = set(cycle(d)) 

F = set(set(Z, card > 1)) 

G=Z+Z,set(G,card=3) 

H = Z + set(H, card > 2) 

K = set(cycle(Z.set(G, card = 2))) 

L = set(set(set(Z, card > 1), card > 1)) 

M = sequence(set(Z, card > 1)) 

A = zeA 
B=z+B* 
c = z/(1 - C) 

D = exp(log(1 - z)~‘) 

E = exp(log(1 -A)-‘) 

F = exp(e’ - 1) 

G = z + zG3/3! 

H=z+e”-I-H 
K = exp(log(1 - zG*/2! I) 

L = exp(exp(exp(z) - 1) - 1) 

M = l/(1 - (e’ - 1)) 

i.e., we change a highly non-linear construction into a quadratic one. Actually the 

proper combinatorial equivalent of the analytic operator d/dz is the 0 operator to be 

introduced below; as is well known to combinatorialists, differential operators corres- 

pond to a “marking” or “pointing” operation.* 

The pointing operator plays a vital r61e in the process of random generation as 

recognized already by Nijenhuis and Wilf [29]. Given a class A of structures, the 

pointing of A is a class denoted @A and defined by 

@A= fi(&[l..n]), (9) 
II=1 

where sZ,, is the subclass of objects in A having size n and [l. . n] is the integer interval 

{l, 2, . . , n}. In other words, an object in the class @A can be viewed as an object of 

A with the additional property that one of the labels, corresponding to the field in 

[ 1. . n], is distinguished. 

From the definition we have that C = @A implies C, = nA,. Thus, the introduction 

of the pointing operation does not affect the conclusions of Theorem 1.2: the egfs are 

still computable by the added rule 

C = @A + C(z) = @A(z), where Of(z) = z.$f(z), (10) 

(In passing, we have employed the same notation for a set-theoretic operation and for 

its induced generating function operator.) 

Our developments in this section are markedly inspired by Joyal’s elegant theory 

Cl0 

’ An interesting outcome of this idea is the combinatorial differential calculus of Leroux and Viennot, see 
for instance [26]. 
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Definition 2.1. Let T = (TO, T1, , T,) be a tuple of classes of combinatorial struc- 

tures. A standard specification of T is a collection of m + 1 equations, the ith equation 

being of one of the forms 

Ti= 1; Ti = Zi; Ti = Uj + Uk; Ti = r/i’ Uk; OTi = Uj. Uk, (11) 

where each Uj E { l,Z, TO, . . . , T,, @TO, . . . , OT,,,]. 

Theorem 2.2 (Standardization algorithm). Every decomposable structure admits an 

equivalent standard specijication. 

Proof. The proof is actually a conversion algorithm, which we present by transforma- 

tion rules. We start with a specification where all composite types (sequences, sets, 

cycles) have been named. 

SO. Polynomials. A polynomial splits up into binary sums and products. For 

instance, the specification of binary trees B = Z + B.B yields the standard specification 

{B = z + B.B} ~ jB=Z+Cii: U1=B’B). 

S1. Sequences. The sequence construction is equivalent to a recursive specification, 

B = sequence(A) * B = 1 + A. B. (12) 

The equation B = 1 + A B is to be understood as an isomorphism between structures. 

What this amounts to is presenting a sequence s = (sl, s2, , sk) E sequence(A) 

under its equivalent right associative binary form s g (sl, (s2,(. .))). 

The translation of B = sequence(A, card = k) reduces to that of a polynomial, 

since B = Ak, which is dealt with using binary powering, for instance Al3 = 

((A (A2))2)2. A. Next, B = sequence(A, card d k) also reduces, being a polynomial. 

Finally, the construction B = sequence(A, card 3 k) is itself equivalent to 

B = Ak. sequence(A). 

S2. Sets. The reduction inspires itself of Eq. (8). We claim that 

B=set(A) + OB=B.OA, (13) 

this being again understood as a fundamental combinatorial isomorphism: Pointing 

at a node in a set individuates the component containing the node and the component 

becomes pointed; this leaves aside a set of components, the non-marked ones. 

The translation of Btk’ = set(A, card = k) unwinds by recurrence as 

Btk) = set(A, card = k) + @B(k) = B(k-1). @A with B(l) = A. (14) 

Similarly, we have 

and 

BCk) = set(A, card < k) =z- OBtk’ = BCk-“. @A with B(l) = 1 + A, 

BCk’ = set(A, card 3 k) + @B(k) = B(k-1). @A with @B(O) = B(O). @A, 
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The intuition behind these equations is obvious when we examine them in the light of 

differential equations satisfied by generating functions like (8). 

S3. Cycles. We claim that 

B = cycle(A) + OB = C. @A, C = sequence(A), (15) 

which reduces cycles to sequences that are already reducible. The meaning is as 

follows: A pointed cycle of components decomposes into the pointed component and 

the rest of the cycle; the directed cycle can then be opened at the place designated by 

the marking and a sequence results. This same combinatorial principle applies to the 

reduction of cycles under cardinality constraints, for instance 

B = cycle(/l, card = k) * OB = Ak-‘. @A. 0 

As illustration, a standard form for hierarchies as defined in (1) is 

{H = z + ul, @Ui, = U2.0H, OU2 = Uz. OH, @u, = Uj.@H). 

We observe that there is some arbitrariness in our choices of fundamental isomor- 

phisms in Eq. (13)-( 15): the product operation on structures is noncommutative, in 

general A. B # B. A, although the two products are isomorphic. This simple observa- 

tion has important consequences for the complexity of random generators, as we will 

see later. The transformation 

A.Bc+ B.A. 

when used appropriately, may lead to substantial optimizations. 

Our appeal to the pointing construction bears some formal resemblance to the use 

of the minimum rooting operator (the so-called “box” operator) by Greene [ 15). We 

prefer the approach via pointing, however, since it generalizes readily to unlabelled 

structures [29]. 

Notice finally that the standardization theorem constitutes a simple way of proving 

part (ii) of Theorem 1.2, since the enumeration sequences associated with standard 

specifications are clearly all tabulated in time O(n2) and storage O(n) by exploiting 

their quadratic convolution recurrences. 

3. Basic generation schemes 

From the preceding section, it is sufficient to exhibit generation routines for 

standard specifications. This goal is achieved by means of a set of translation rules or 

templates. These are based on standard technology for random generation 

[ 15,17,29], and require only a single pass over the specifications. A preprocessing 

staye furnishes the enumerating sequences, up to size n, of structures intervening in 

a specification. This is accomplished once and for all in time 0(n2) and in storage O(n) 

(by Theorem 1.2). 
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Given any class C, recall that c, = C,/n! is its normalized counting sequence, from 

now on assumed to be available separately from the preprocessing stage. We let gC 

denote a random generation procedure relative to class C. We discuss the process of 

generating the shapes of structures, not their actual labellings3, and let Z denote 

a generic labelled node. 

T,. Initial structures. The generation procedures corresponding to 1 and Z are trivial. 

Case: C = 1. 

gC:= procedure (n: integer); 

if n = 0 then Return(l) 

end. 

Case: C = Z. 

gC:= procedure (n: integer); 

if y1 = 1 then Return(Z) 

end. 

T1. Unions. If C = A + B, the probability that a C-structure of size n arises from 

A is simply a,/c,. The random generation procedure uses a uniform variate U drawn 

from the real interval [0, I]. 

Case: C = A + B. 

gC:= procedure (n: integer); 

U:= Uniform( [0, 11); 

if U < (a,/~-,) 

then Return (gA(n)) 

else Return (gB(n)) 

end. 

T2. Products. If C = A. B, the probability that a C- structure of size II has an 

A-component of size k and a B-component of size n - k is 

Ak ‘Bn-, 
C, 

@‘h-k 
C, 

The random generation procedure results from this equation. 

Case: C = A B. 

gC:= procedure (n: integer); 

Li:= Uniform([O, 11); 

K:= 0; S:= (a,. b,)/c,; 

while U > S do 

{K:= K + 1; S:= S + (aK.hn_K)/c,,] 

Return([gA(K), gB(n - K)]): 

end. 

31f needed, the labelling can be added, after the shape has been built, by applying to the Z nodes 

a random permutation of [I II]. The process requires only linear time. 
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T3. Pointing. Generating A and @A are clearly equivalent processes. Given an 

object a from a class A with size n, we let point (CX, k) denote its associate obtained by 

pointing at the kth atomic node (1 < k < n). Then from a procedure g.4 that generates 

A, we obtain a procedure gC that generates C = @A as follows. 

Case: @A. 
gC:= procedure (n: integer); 

U:= Uniform( [0, 11); 

Return(point(gA(n), 1 + Ln. UJ)) 
end. 

Conversely, given a generation procedure gC for C = @A, a procedure for A ob- 

tains by simply erasing the mark. We thus introduce the procedure erase(p), such that 

erase(point(x, k)) = r. 

The algorithm becomes: 

Case: A is defined implicitly by @A = C. 
gA:= procedure (n: integer); 

if (n = 0) and (a0 # 0) then Return(l); 

if (n 3 1) then Return(erase(gC(n))) 

end. 

In practice, we can directly generate A through OA by never actually generating the 

marks, only operating with the probabilities that the marks induce. Observe carefully 

that the algorithm necessitates the value of a0 z A,; this is where “initial conditions” 

accompanying standard specifications-these resemble a differential system!-inter- 

vene. The initial conditions are easily computed during the standardization process; 

we have purposely omitted such details. A variant approach consists in producing 

standard specifications with the assumption that each equation @A = C carries 

automatically the initial condition a o = 0, and in introducing then empty structures 

explicitly in standard specifications, wherever required. 

These constructions (see Fig. 1 for an outline) are conveniently summarized by 

a theorem. 

Theorem 3.1 (Sequential random generation). The template To, T,, T2, and T, pro- 
duce from any standard specijication Co a collection of random generation routines 

gCo. Each routine of gCo uses precomputed tables consisting of O(n) integers: its 
worst-case time complexity is of O(2) arithmetic operations. 

Proof. The correctness of the algorithm follows from our previous discussion. To each 

execution of a generation algorithm, there corresponds a binary parse tree: the parse 

tree of y = (a, fl) E A. B is recursively defined as the binary tree with root subtrees 

equal to the parse trees of c( and /I; the parse trees of Z and 1 are single leaves tagged by 

Zor 1. 
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Algorithm Random Generation 

Input: A specification Z. 

Ph. Flajolet 

Outpur: A collection of routines that achieve random generation of Z. 

Use the algorithm of the standardization theorem (Theorem 2.2) to produce a standard specification 

zfl. 
For each type U appearing in the standard specification Z,, tabulate the normalized enumeration 
sequences u,, and Ou, = nu.. This is to be done once and for all. It is effected by creating counting 

routines of complexity O(n’) that implement the convolution recurrences underlying the standard 

specification, see [l 1, 151. 

For each type (I appearing in the standard specification Z,, generate a pair of routines yU and g@U 

corresponding to type I/ and type @U. Proceed by a single pass over Z, using the templates T,, T,, 

T,. J-3. 

Fig. 1. The general purpose random generation algorithm. 

In order to establish the complexity property, observe that the parse tree of 

a structure of size n has itself size proportional to n. The path length of a tree [19] is, 

we recall, the sum of distances of all nodes to the root of the tree, and it is also the sum 

of the sizes of all subtrees in the tree. The number of arithmetic operations attached to 

the generation of a node v in the parse tree is at most a linear function in the subtree of 

the parse tree rooted at V. It is thus seen that the arithmetic complexity of the random 

generation of a structure is bounded above by a linear function in the path length of its 

parse tree, which is itself O(n’) at worst. C 

An algorithm provided by the process of Theorem 3 and Fig. 1 produces a binary 

parse tree for the structure specified by Co. A simple traversal needing linear time in 

the size of the structure generated can then recover a form corresponding to an 

original (nonstandard) specification Z. This postprocessing, being of cost O(n) per 

object of size n generated, does not affect the conclusions of our complexity studies. 

Furthermore at the expense of some programming effort, it can be effected “on the 

fly”. This is a mere variant of the classical rotation correspondence that transforms 

binary trees into general trees [19, Section 2.3.21. 

4. Boustrophedonic random generation 

It turns out to be possible to combine the ideas underlying standard specifications 

with others that have also proved useful in detecting cycle leaders in permutations or 

in transposing rectangular matrices [20], as well as in managing dynamic equivalence 

relations by means of weighted union-find trees [4,32]. 

The standardization theory implies that all the complexity lies in the random 

generation of products. More precisely, when measured in the number of while-loops 

executed, the cost of generating (x, p) by the sequential method in the size of the first 

component, Ial. In fact, a worst-case complexity of O(n logn) can be achieved for all 

decomposable structures. The principle is simply a boustrophedonic4 search. 

’ Boustrophedonic: turning like oxen in ploughing (Webster). 
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Theorem 4.1 (Boustrophedonic random generation). Any decomposable structure has 
a random generation routine that uses precomputed tables of size O(n) and achieves 
O(n log n) worst-case time complexity. 

Proof (sketch). Given a product C = A. B, we let K be the random variable denoting 

the size of the A-component of a C-structure. Amongst C-structures of size n, we have 

ak’ bn-k 
Pr(K = k} = -, 

cll 

and we let r~,,~ denote this probability. 

The idea is to appeal to a special search for the drawing of K with the probability 

distribution {x,, ,}‘&. Instead of the order of increasing values of k, we explore the 

possibilities of K in the boustrophedonic order 

Tl.0~ % n> %3 19 7t n,n-I, ... 7 

that sweeps alternatively from left to right and back. Then, the cost of drawing (a, fi) is 

at most 

2min(lal, WI) + 2. 

Thus, up to a quantity which is O(l), the cost of generating a single product becomes 

twice the size of the smallest component in the product. (The corresponding template 

T$ is a simple modification of T,.) 

Recurrences of the form 

f(n) = m;x (f(k) +f(n - k) + min(k, n - k)) (16) 

have been studied by Knuth in relation to in situ permutation [ 16,201, where a similar 

search technique is employed. The solution, given f(0) =f(l) = 0 and f(2) = 1, 

involves the sum-of-digits function, and asymptotically, we have 

f(n) = & n log n + O(n). (17) 

Up to terms that globally remain O(n), we find that the cost of generating 

a structure of size n, using boustrophedonic search, satisfies a recurrence of the form 

(16), but with a coefficient 2 in front of the minimum. The estimate (17) applied to 

boustrophedonic search then yields the O(n logn) worst-case cost. In passing, the 

argument is similar to that proving that the weighted version of union find trees has 

worst-case complexity O(n log n), see [4]. A systematic treatment of such recurrences 

is given in [27]. 0 

The purpose of the calculus of rearrangements to be developed in the next sections 

is precisely to produce adequate specifications that permit one to attain a complexity 

of O(n log n) involving low multiplicative factors by exploiting “natural” regularities 
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present in combinatorial structures. To algorithms designers, the situation resembles 

that of heapsort-which has guaranteed O(n log n) complexity-versus quick- 

sort-which is O(n logn) only on average but with small constants-, so that 

quicksort is actually preferred in practice (see [32]). 

5. The cost algebra of sequential generation 

We have seen how automatically to compile random generation routines starting 

from standard specifications. By the standardization theorem, itself relying on an 

effective reduction process, the method works for any decomposable structure. We 

propose to examine in great detail the cost structure underlying the random genera- 

tion procedures of the sequenzial group. The cost measure that we adopt counts only 

the number of while loops executed in procedures corresponding to products. In other 

words, the cost of generating a product (cc.fi) is simply taken to be the size of the first 

component, 1~11. 

In so doing, we neglect terms that are at worst only O(n) in terms of the number of 

integer operations performed. Furthermore, an easy adaptation of the method would 

enable us to analyse in any detail all the other operations (tests, procedure calls, other 

arithmetic operations, see Section 9 for a brief discussion). 

In the process, we assign constant cost to operations on large numbers, so that our 

model belongs to the category of arithmetic complexity models. Empirical data for 

a bit complexity model will be discussed in Section 8. 

Consider a procedure gA that generates random elements in a decomposable class 

A given by a standard specification according to the rules governing Theorem 3.1; we 

let yA, denote its expected cost. We set 

TA, = A, x ?A,, 

and introduce the cost generating function 

TA(z) = f TA, 2 
n=O 

This notion corresponds to that of complexity descriptor in [l 11. 

We abbreviate TA(z) by TA. This notational trick permits us to regard symbolically 

r as an operator acting on classes or, better, on systems of equations that correspond 

to specifications. 

Theorem 5.1 (The cost algebra identities). The cost operator r satisfies the identities, 

l-z = r1 = 0; r(A + B) = rA + m; 

r(A.B)=rA.B+A.rB+ @A.B; T(OA)= @(TA). (18) 
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Thus, r has the features of a nonhomogeneous differential operator that satisfies 

the important commutation rule r 0 0 = 0 0 r. The operator 0 = z d/dz itself satis- 

fies the usual rules of a standard differential operator, namely, 

Ol=O; OZ=Z; O(A+B)=OA+OB; O(A~B)=OA.B+A~OB. 

Proof. The proof proceeds inductively, tracing the complexity in each of the templates 

of Theorem 3.1. 

Co Initial structures. This case is obvious. 

C1 Unions. If C = A + B, then from the template Tr, 

C2 Products. Similarly, with C = A. B, we have 

[y.‘dk + y&k + k] 

C3 Pointing. If C = @A, we find 

both algorithms gC and gA having the same average case complexity. Only the 

underlying sets on which the averages are taken differ. Since C, = nA,, we have 

TC, = nTA,. 

The result follows in each case by normalizing and taking generating functions. 0 

5.1. Binary trees 

The rules of the cost algebra allow us to compute effectively complexity descriptors 

associated with various random generation algorithms. As a first illustration, we 

describe the cost structure of the generation of binary tree corresponding to the 

specifications 

First, applying properties of r to Z,, we form the system 

i-U1 = TB.B + B.TB + OB.B. 
(19) 

This is a linear algebraic system in the unknown {TB, TU1}, so that 

0B.B 
TB=- 

1 -2B’ 
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On the other hand, the generating function of class B is computable by Theorem 

1.2, 

B=l-J1-42 

2 ’ 

being the solution of the quadratic equation B = z + 8’. Thus, B, U1, OB are 

rationally expressible in terms of z and ,,/‘m, as is TB in turn. 

Theorem 5.2 (Binary trees, nai’ve method). The generation algorithm for binary plane 

trees corresponding to the standard spec$cation 

{B = Z + U1; U1 = B.B} 

has average case complexity that satisfies 

‘qB, = + JGn”!’ + O(n). 

Proof. Expand the closed form of TB, 

l-B=IL__ 1 z 

21-4~ 2~“’ 

which gives 

The conclusion follows since there are B, = (n!/n)(:I:) labelled trees of size n, and, 

using Stirling’s formula for factorials, we have b, = B,/n! h 4”-l/~‘%?. 0 

This proof is almost isomorphic to the analysis of path length in binary trees, see 

[19, Section 2.3.4.51. This is not surprising, since we are in fact analysing a variant of 

the left path length in such trees. Very similar computations arise in the analysis of the 

general plane trees (class C), corresponding to the standard specification 

{C = z.u,; Ur = 1 + uz; u2 = C.Ur}. 

This specification results in a generation complexity also asymptotic to )$&I~“, and 

thus equivalent to that of binary trees. 

Of course, specific combinatorial properties-the bijective correspondence with 

ballot sequences for instance-lead to algorithms having bit complexity close to 

linear, both for binary trees and for general plane trees. In fact, we shall see in Section 

7 that algorithms with appreciably lower costs than that of Theorem 5.2 can also be 

obtained within our framework. These first examples are meant only to demonstrate 

the mechanical character of computations involving the cost functions, using the cost 

algebra. 
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5.2. Schemas 

The cost algebra is also powerful enough that we can come up with general results 

regarding the construction of composite structures. To keep notations simple, we 

introduce the integral operator 

s s 
f(z) = ’ j(r)dt. 

0 

Theorem 5.3 (Composite schemas). (i) Let C = sequence(A) be generated according 
to the standard specijication 

Co=(C=l+U1;U,=AC). 

Assume that A is given by a generation routine of cost TA. Then, 

@A + l-A 
” = (1 _ A)2 ’ 

(ii) Let C = set(A) be generated by the standard specijication 

Co = (OC = C.OA). 

Then, 

(iii) Let C = cycle(A) be generated by the standard specification 

Co={OC=B.OA;B=l+U,;U1=A.B). 

Then, 

12(@A)2+TA.0A+(1-A).0TA 

(1 - A)2 1. 
Proof. For sequences, we have C = 1 + A. C, so that TC satisfies the linear algebraic 

equation 

For sets, OC = C. @A, so that 

This is an inhomogeneous differential equation of order 1; the homogeneous equation 

admits the solution eA; the inhomogeneous equation is solved by the variation- 

of-constant method. 

A similar reasoning applies to cycles for which the result follows by direct integra- 

tion (cycles are integrals of sequences!). q 
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5.3. Cycles in permutations 

As a direct application of this theorem we examine the generation of permutations 

as sets of cycles. This is our class D of Table 1. The generation algorithm analysed in 

Theorem 5.3 makes use of the standard specification 

&={OD=D.OU}, 

in agreement with the standardization rule S3. Assume that cycles, U, are given by 

a direct routine; if only shapes are considered, generating a cycle of size k is achieved 

simply by outputting an undifferentiated cycle of k atoms, (Zk). In the cost algebra, 

we thus take TU = 0. We next have U(z) = log(1 - z)-’ (by Theorem 1.2), and thus, 

by the cost algebra (Theorem 5.1), 

rD = (14 z)2 ~-&log&, 

so that, 

?D, = n - H, with H, = 1 + i + . . . +;. 

It is interesting to compare the alternative strategy given by the modified specifica- 

tion 

2, = (OD = OU.D> 

By the algebraic rules, this means replacing in each equation 

OD,OUc+ 0011.0. 

This gives 

TD = z/(1 - z)’ so that yD, = n. 

The second strategy sweeps over cycles, a cycle of length k being found at cost k. Thus, 

its overall complexity when generating a permutation c is exactly n = 101. (This 

phenomenon will be further explored in Section 7.) 

In conclusion, replacing a specification Lo by an equivalent one 2, leads to different 

costs. Though the difference is marginal in the case of permutations, it is often the case 

that complexity exponents get affected. The purpose of the next sections is to gain 

a deeper insight into such phenomena. 

6. The analysis of cost generating functions 

The cost algebra developed in the previous section attains its full scope when we 

examine it in the light of asymptotic properties of combinatorial structures. This 

means that orders of growth of coefficients should be taken into account. The way to 
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do so is to examine the complex analytic structure of intervening generating functions 

which, as is well known, directly relates to the growth of coefficients (see especially 

[lo], and the systematic use in [ll]). More precisely, we can interpret the equations 

provided by the cost algebra locally as analytic relations between singular orders of 

growth. We are not yet in a position to formalize the algebraic rules of a singular cost 
algebra. Nonetheless, consideration of asymptotic properties of structures using the 

classical arsenal of complex analysis does provide, in all cases of practical interest, 

valuable guidelines regarding the design of generation algorithms. We propose to base 

the discussion on examples drawn from several of our reference structures. 

6.1. Nonplane trees 

The family of nonplane trees corresponds to the specification A = Z * set(A). 

It furnishes a first example where two random generation algorithms derived 

from combinatorially equivalent specifications lead to rather different complexity 

behaviours. 

We make use of the general principles of the standardization method. However, 

computations turn out to be a little simpler (without affecting the end result) if we 

directly apply the 0 operator to the specification of A, namely A = Z. set(A). We 

have Z. @(set(A)) 2 Z. set(A). @A z A.OA. Thus, our starting point is the pair of 

equivalent specifications 

OAEA+((OA.A)E A+(A.OA). 

Theorem 6.1 (Non-plane trees). (i) The random generation algorithm for labelled trees 
corresponding to the standard specijcation 

@A= A+(OA.A) 

has average cost 

;‘A,, = + O(n). 

(ii) The generation algorithm for labelled trees corresponding to the specijication 

OA=A+(A.OA) 

has average cost 

yA, = in log n + O(n). 

Proof. Applying the cost algebra to the specifications, we find that TA satisfies 

a differential equation, 

OTA=TA+A.OTA$-OA.TA+R, 
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where we have, corresponding to cases (i) and (ii), 

R=OOA.A and R=OA.OA. 

We have, from Theorem 1.2, A = zeA, and a solution to the homogeneous differential 

equation is found to be Y = A/(1 - A). The variation-of-constant method does the 

rest. In case (i), we get by integration that 

rA=& @@A SF 1 A2 __ c--------- 

Z (1 - A)2 ’ 

where we have used z = Ae-* and dz = (1 - A)e-*dA. 

In case (ii), we derive 

(The computations somewhat resemble the analysis of union find trees under the 

random spanning tree model, see [22,23].) 

It is quite well known that A(z), which is a root of Ae-* = z is singular at z = e-‘, 

where its singular expansion is 

A(z) = 1 - $(l - ez)‘;’ + i(1 - ez) + ..., (20) 

the expansion proceeding in ascending powers of (1 - ez)ii2. Sources for this are for 

instance to be found in [9,22, 361, where it is used in the analysis of random 

mappings, union find trees, and linear probing hashing. 

Insertion of the expansion (20) into the two variants of TA provides the singular 

forms 

1 2-3/Z 1 

2(1 - ez) and (1 _ ez)1/2 log 
__ (z +e-‘). 
1 - ez 

The corresponding asymptotic forms of the coefficients are respectively 

en en log n 

z 
and ~ 

2&l 

The two asymptotic forms of TA, then follow by singularity analysis [lo] which 

enables us to derive the asymptotics of coefficients from the asymptotics of the 

corresponding generating functions at their singularity, here z = e ‘. Full expansions 

are also computable. The estimates of coefficients are finally to be compared to 

[z”]A - ____ 4’ 2nn3 ’ 

derived by the same device, and the statement follows. 0 
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It is to be noted that, eventually, the difference in behaviour of these two algorithms 

rests on the fact that the second derivative, @@A, and the square of the first derivative, 

@A. @A, have different orders of growth at their singularity (here z = e-l). 

The result of Theorem 6.1 may be surprising at first sight. While for the cycle 

decomposition of permutations, the ordering of products is almost immaterial, here 

rather different orders of growth result. In fact, no syntactic rule may be expected to 

give the “best” ordering of products. Finding such an ordering has to rely on analysis, 

but simple general guidelines may be given. 

6.2. Optimization transformations 

The specification of A, under the form 

@A - A = (A. @A), 

in essence generates a family of pointed trees by first generating an unmarked tree, 

then the rest of the tree containing the mark. The pointed trees are much more 

numerous than the basic trees, the ratio being OA,/A, = n. Accordingly, the mark 

tends to fall on larger portions of the tree. Thus, viewed on the underlying binary 

parse tree, the random generation has a complexity that, at least in an intuitive 

probabilistic sense, should behave like a parameter )! of binary trees given by 

xCtl .t21 = min(ltlI, Id) + xCtll + xCt21. 

This relates to the modified form of path length occurring in boustrophedonic search, 

whose value on any tree of size n is O(n log n). 

In contrast, the random generation corresponding to the specification 

@A-A=(OA.A) 

has a complexity that behaves like standard path length, which is known to be 0(n312) 

in such varieties of trees [28]. 

In order to make this discussion precise, we introduce a formal definition. 

Definition 6.2. Given two generating functions F and G, F dominate G, in symbols 

F 9 G, if 

kc0 asn + +x. 
gn 

This is only a partial order on generating functions; nonetheless, most naturally 

occurring generating functions are pairwise comparable with respect to ordering. See 

[l l] for some plausible reasons related to the existence of smooth asymptotic 

expansions for “many” generating functions of decomposable structures. 
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The considerations regarding labelled trees then suggest a simple heuristic: 

Biy-endian heuristic. Given a standard specification Co, reorganize all comparable 

pairs in products using the isomorphism transformation 

(A,B) w (B./t), 

each time A $ B. 

This heuristic applied to the two specifications of nonplane trees leads to the “good 

choice” with an O(n log n) behaviour. (The generation of (A. B) may be implemented 

by forming the parse tree relative to the transformed specification with (B . A) and then 

applying a reflection that exchanges left and right subtrees; alternatively, one may 

generate (A. B) starting from high values of K, namely K = II, n - 1, . . , 1.) 

A further optimization suggested by this discussion consists in obtaining, whenever 

possible, specifications in which products are imbalanced so as to take full advantage 

of the big-endian heuristic. To that purpose, the 0 operator can be employed. For 

instance, let us re-examine the binary trees, B = Z + B. B. Consider the induced 

relation obtained by differentiation. 

OB=Z+OB.B+B.OB. 

Let K designate the size of the first component in B. B, and K’ denote the size of the 

first component in B. OB. We have, for the B-objects of size ~1, and with b, = (2,“_-:)/n, 

b&n-k 
Pr(K = kj = b and Pr(K’ = li) = 2 

Mn - M-k 

n nb, 

Objects of (B. OB) are generated faster than objects of (B. B); Table 3 for n = 10 

illustrates the situation. 

The expectation of K equals 5, while that of K’ is only 2.69. A symmetrical 

probability distribution with an “organ pipe” shape has been replaced by a smoothly 

decaying distribution resulting in a gain of about 2. In general, the expectation of K is 

n/2 while that of K’ is O(d%), so that a global gain of order close to O(G) is to be 

anticipated. 

This suggests another heuristic, going back to the early days of random generation 

[29]: 

Diferential heuristic. When feasible, replace polynomial relations in specifications 

by differential relations. 

Let us examine more precisely the effect of both heuristics on the generation of 

binary trees. We have 

@B=Z+OB.B+B.OBzZ+(B+B).OB, (21) 

where the first line is the raw differential specification, and the second one 

is its big-endian rearrangement. Taking advantage of the equivalence between the 
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Table 3 

1 2 3 4 5 6 7 8 9 

Pr{K = k} 0.294 0.088 0.054 0.043 0.040 0.043 0.054 0.088 0.294 
Pr{K’ = k} 0.529 0.141 0.076 0.051 0.040 0.034 0.032 0.035 0.058 

generation procedures gB and g@B, and performing simple programme transforma- 

tions, we are thus led to a new algorithm which we list in full. 

gB:= procedure(n: integer); 

if (n = 1) then Return(Z) 

else ( 

U:= Uniform( [0, 11); 

K:= 0; s:= 0; 

while U > S do 

{K:= K + 1; 

S:= S + 2b,.(n - K)b,_./(nb,)}; 
V:= Uniform([O, I]) 

if V<i 

then Return( [gII(K), gB(n - K)]) 

else Return( [gB(n - K), gB(K)]) 

end. 

We call this algorithm the differential algorithm for generating binary trees. 

Theorem 6.3. (Binary trees, differential algorithm). For binary trees, the dlfirential 
algorithm corresponding to the specijication OB = Z + (B + B)‘OB has expected 
complexity 

yB, = inlogn + O(n). 

Proof. We have 

B=1-J1-4z 

2 . 

Start from the specification and apply the r operator, 

@l-B = 2l-B.OB + 2B.OTB + 20B.OB. 
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This is a differential equation of order 1, with solution 

f-l?+ log---- 
! 

1 

1 - 42 4z & 1 

The result follows again by singularity analysis, comparing coefficients with 

[z”]B - 4n-1,J2. 0 

Both nonplane trees and binary trees under the differential algorithm are generated 

in time asymptotic to ) II log n. This is in fact a general phenomenon common to many 

families of trees. 

7. Trees, graphs and iterative structures 

We show here that all polynomial families of trees as well as functional graphs can 

be generated in time asymptotic to $n logn. Furthermore, the class of iterative 

structures admits O(n) random generation algorithms. 

7.1. Polynomial ,fhmilies qf’ trees 

A polynomial family of trees is a family defined by allowing only a finite collection 

Q of node degrees. The generating functions for such families are, in the case of plane 

trees, 

T= z.@(T) with Q(T) = 1 Th, 
ktR 

and, in the nonplane case, 

T = z.@(T) with Q(T) = ,FDg. 

Computations for plane trees, whether labelled or unlabelled, are identical, so that we 

defer them to a future paper dealing specifically with unlabelled combinatorial 

structures. 

Theorem 7.1 (Polynomial families). Consider a polynomial family of nonplane trees 

de$ned by 

T = 2. c set(T, card = k), 
k E B 

where each uk = set( T, card = k) is specijed by OUk = U,_ 1. OT. The expected 

generation time for a random tree of size n, where [z”] T # 0, satisfies 

yT, = trzlog n + O(n). 
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Proof. Sets ofjxed cardinality. Let first U be an arbitrary class of structures, and 

U, = set(U, card = k). In line with Theorem 5.3, we examine the generation process 

for sets of fixed cardinality associated to the specification 

uo= 1; LJ1 = u; ou, = uk_l.ou. 

(This specification is for instance always big-endian for k = 2, and it is modelled after 

the big-endian generation of Cayley trees.) 

Applying the cost operator, we find the differential recurrence 

l-u0 = 0; Ol-Uk = rUk-l.OU + Uk-l.Ol-U + OUk_i.OU, (22) 

the second equation being valid for all k >, 1. Introduce the generating function 

G = G(Z, t) = f ruktk. 
k=l 

From (22), we get 

OG = tG. OU + teru. OTU + t2e’U(OU)2, 

where 0 operates with respect to the variable z, and use has been made of the fact that 

Uk = Uk/k!, for generating functions. The homogeneous differential equation admits 

the solution e’“. The variation-of-constant method yields 

G = ezu(trU + t’jr?]). 

Extracting coefficients provides the explicit form of rUk, 

Uk-1 Uk-2 (ou)2 
“‘=(k- l)fU+(k_2)! 7 ’ S[ 1 (23) 

More generally, for @ a polynomial in U, Q(U) = Ck E n Uk/k!, we have symbolically 

m(u) = fl(u).ru + w(u). (ouy 
K 1 __ z . 

Trees. The class T is constructed by 

T= Z. c Uk, 
ktR 

(24) 

where Uk = set(T, card = k). The relations (23) applied to (24) provide the form of 

l-T> 

I-T = z.@‘(T).TT + z.@“(T). 
(OT)’ 

S[ 1 ~ + z@(T). 
Z 
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The equation is linear in TT. Also, from the defining equation for T, we have 

1 - z@‘(T) = T/(zT’). Thus, 

(25) 

Asymptotics. We find in the works of Meir and Moon [28] (see also [36, p. 477]), 

a general analysis of the singularities of the function T. Let r be the smallest positive 

root of the equation. 

Q(5) - t@‘(r) = 0. 

The function T(z) admits a branch point at z = /-‘, with 

z 1 

Near this point, we have 

(26) 

(27) 

(28) 

From Eq. (28), all expressions involving T and T’ in (25) can be analysed near z = p, so 

that 

l-T- OT. ;log (z -+ P). 

The end result follows then directly from singularity analysis. (In the so-called 

periodic case, where Q(u) = cp(ud) for some d > 1, conjugate singularities combine 

their contributions on the circle of convergence. The coefficients of TT are then 

nonzero provided y1 satisfies congruence conditions modulo d themselves equivalent 

to [z”] T # 0. Details of this classical argument are omitted.) 0 

This theorem applies for instance to nonplane ternary trees (specification G), for 

which@(U)=1+U3/3!,ands=31’3,p=2.3P ‘I3 A similar result holds for hierar- 

chies (specification H), the structures that originally motivated the present research. 

The general plane trees defined by C = Z. sequence(C) are also amenable to 

a differential algorithm: a relation U = sequence(C) implies 

ou = U.(U. OC), (29) 

both at the combinatorial level and at the level of generating functions. There results 

a differential algorithm for general plane trees with asymptotic complexity again of 

the form ) n log n. 

7.2. Functional graphs 

Functional graphs, or equivalently finite mappings (see, e.g., [9]), present us with an 

instance of a structure defined by a specification involving several intermediate classes. 
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Theorem 7.2 (Functional graphs). Functional graphs (E) corresponding to the stan- 
dard specification 

are generated in average time 

YE,, = in log n + O(n). 

Proof. Functional graphs (E) are sets of components (U,), themselves cycles of trees 

(A), cycles being generated from sequences (U J, and trees being generated recursively 

by the big-endian algorithm. 

Algebraically, the complexity equations result from the general formulae for 

schemas (Theorem 5.3) and the computation of TA given in Theorem 6.1. Using 

computer algebra, it is then a simple matter to find the singular expansion of TE near 

z-e-‘, 

I-E Jz 1 
- 8 (1 - ez)3’2 

log ’ 
1 - ez’ 

The statement follows. 0 

A similar result holds for mappings satisfying degree constraints (like specification 

K) whose probabilistic properties have been explored by Arney and Bender [l]. 

7.3. Set partitions and iterative structures 

Set partitions correspond to the specification F = set(U) where U = 
set(Z, card >, 1) denotes the class of blocks in partitions. We assume that U is given: 

to generate the shape of a block of size k in partition, just output an undifferentiated 

set of k atoms, {Zk}, and thus, take TU = 0, since no sequential search is involved. The 

standard specification for U resulting from the standardization algorithm is 

Z,={OF=F4U}. (30) 

The associated generating functions are F = e”, U = eZ - 1 and OU = ze’. All are 

entire functions that are singular at co. Since F increases much faster as z -+ co than 

the other two, its coefficients f, decrease more slowly as n + co. (The asymptotics of 

fn was solved by a variety of authors, see [S].) Thus, the specification (30) is little- 

endian. 

This suggests considering instead the big-endian specification, 

r, = {OF= OU.F}. (31) 

We arrive at an algorithm that generates a partition of size n by selecting a block of 

size K (starting from low values of K), then recursively generating a partition of size 
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n - K, where the splitting probability is 

This is identical to the random generation algorithm RANEQU of Nijenhuis and Wilf 

[29, Ch. 121 which has thus been deduced automatically from general principles. 

The algorithm constructed in this way has, like for the corresponding decomposi- 

tion of permutations, a complexity exactly equal to n. Such a linear complexity does 

hold under rather general conditions. 

We say that a class of structures is iterative or non-recursive if the dependency graph 

of the classes entering the unstandardized specification (allowing sequences, sets and 

cycles) is acyclic. Trees, hierarchies and functional graphs are typical recursive struc- 

tures, while permutations, partitions, surjections and balanced hierarchies of any fixed 

height are iterative. 

Theorem 7.3 (Iterative structures). Any iterative class I admits a random generation 

algorithm of linear worst-case complexity in particular 

yl, = O(n). 

Proof. The proof is easily completed by induction on the structure of specifica- 

tions. The linearity property holds trivially for polynomials. It then carries over 

inductively to products. For sequences, sets, and cycles, the result depends on the 

translation 

C = sequence(A) + C = 1 + A.C 

C = set(A) 3 OC=OA.C (32) 

C = cycle(A) =a OC=OA.UI; U, = 1 + A.U1. 

For instance, for C = sequence(A), a sequence y = (c(~, Q, . . , qJ gets generated at 

a cost equal to Cilclil = n plus the sum of the costs for generating each of the Ei, which 

is assumed to be linear by the induction hypothesis. Thus the total cost for C is itself 

linear. 

Similar reasonings (see also the example of the cycle decomposition of permuta- 

tions) apply to sets and cycles. 0 

The theorem applies to set partitions (specification F), the cycle decomposition of 

permutations (D), 3-balanced hierarchies (L), and surjections (M). For instance, for 

surjections, a simple computation based on the cost algebra and Theorem 5.3 

confirms that TM = OM, so that yM, = n, as anticipated. 

In general the constant in the O(n) complexity increases with the degree of nesting 

of the iterative specification. 
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Table 4 
Generation time in seconds for the eleven reference structures 

Specification 

n A A’ B B’ C c’ D E F G H K L M 

50 0.7 0.3 0.6 0.4 0.6 0.3 0.2 0.4 0.2 0.2 0.5 0.3 0.3 0.2 

100 2.3 0.7 1.8 0.9 1.8 0.8 0.4 0.8 0.4 0.5 1.0 0.6 0.5 0.5 

200 11.6 1.9 8.5 2.4 8.4 2.2 1.1 2.2 0.8 1.3 2.6 1.5 1.1 1.3 

400 70.6 7.0 48.9 1.5 53.1 7.0 4.5 8.3 1.9 3.3 7.9 4.1 2.8 3.5 

Fit +4 nI 51 &I4 n1.41 nZ. 16 n1.45 n1.53 ,I 46 nl 07 n1.35 n1.33 nl.2h n’ 08 nl.Zh 

8. Numerical data 

The generation method for decomposable structures has been implemented in the 

symbolic manipulation system Maple by Zimmermann. The complete programme 

tests specifications for well-foundedness, puts them in standard quadratic form, and 

compiles two sets of procedures from standard specifications: the counting routines 

that implement the convolution recurrences, and the random generation routines 

based on the templates. The whole set, in its current stage, represents some 800 lines of 

Maple code. The random generation procedures produced are in the Maple language 

itself, and they take advantage of the multiprecision arithmetic facilities5 available in 

MAPLE. The texts of the generation procedures compiled are quite short: the number 

of Maple instructions for a structure whose standard specification involves m non- 

terminals is only about 8m for the counting routines and 10~1 for the drawing routines. 

Table 4 provides a brief table of computation times in seconds based on 100 

simulations for objects of size n = 50,100,200,400. The timings were measured on 

a workstation performing about 2 x lo7 operations per second. Using suitable speci- 
jications, all structures can be generated in time ranging from 2 to 9 seconds&or n = 400. 
The preprocessing that builds the counting tables necessitates typically about 15 min 

of computer time for n = 400. The various input specifications are verbatim transcrip- 

tions of those used earlier in the paper (notably, Table 1). In the case of nonplane trees, 

we have compared the figures corresponding to the little-endian standard specifica- 

tion (A, case (i) of Theorem 6.1) and to the big-endian specification (A’, case (ii) of 

Theorem 8); for binary and general plane trees, the display corresponds to the “nai’ve” 

method (B and C, see Theorem 5.2) and to the differential algorithm (B’, see Theorem 

6.3 and C’, see remarks following Theorem 7.1). 

There are 3 groups of specifications that emerge quite clearly. Considering the data 

for n = 400, we observe the following. 

5 For instance, numbers of the order of 10”“ are used in the random generation of binary trees of size 
400. 
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- The little-endian specification of nonplane trees (A), as well as the non-differential 

specifications of binary trees (B) and general plane trees (C), lead to computation 

times that are of the order of 60 s, in line with the 0(n3”’ complexity results of the 

paper. 

- The recursive structures with specifications corresponding to an O(n log n) genera- 

tion algorithm are illustrated by the big-endian differential generation of nonplane 

trees (A’) and of binary or general plane trees (B’, C’). They require about 7 seconds, 

an improvement by a factor of about 10 over the naive method (A, B, C). Similar 

figures hold for hierarchies and unconstrained functional graphs. Ternary trees and 

ternary functional graphs lie at the lower end of the spectrum, a fact perhaps to be 

explained by the peculiarity that about two thirds of their counting coefficients are 

zero (G, # 0 only if II E 1 (mod 3), K, # 0 only if II = 0 (mod 3)). The complexity 

result of in log n is indirectly perceptible in the fact that binary trees (B’) and 

hierarchies (H) are generated in almost identical times although the number of 

nonterminals intervening in their standard specifications and the growth of their 

coefficients are rather different. 

- The iterative structures, permutations (D), partitions (F), balanced hierarchies (L) 

and surjections (M) necessitate from 2 to 5 s per structure generated. This is in 

accordance with the theoretical predictions, since they admit linear time algorithms. 

Simulations thus fully confirm the validity of optimizations guided by the cost 

algebra. The algorithms are practicable beyond n = 1000 (though the preprocessing 

cost may become large): for instance hierarchies of size n = 1000 get generated in 

about 25 s of computer time on our reference machine. 

Our current version of the Maple programme automatically compiles random 

generation routines by implementing a version of the big-endian heuristic in the 

following way: Given a product (A B) to be generated, the programme tests, for some 

small value of n (n = 20 for instance), the values of the products uk. bn_k for low and 

high values of k, and decides, based on this experiment, the suitable ordering of 

products. Such a strategy is not universal. Nonetheless, it is extremely effective in 

practice, and all the translations to which the optimization applies are automatically 

generated in the proper big-endian order. Thus, with the exception of plane tree 

structures B and C -for which differential specifications have to be explicitly 

provided-, the generation algorithms, as compiled directly from the raw specifica- 

tions of Table 1 for the remaining 9 classes, are of complexity O(n) or O(n log n). 

It is also of some interest to gain understanding into bit complexity questions; they 

are indirectly accessible via the elapsed time that is observed in each random 

generation. The table of Fig. 1 gives a rough empirical fit with functions of the form na 

(last line). It is notable that optimizations dictated by the cost algebra result in clear 

savings by factors of about 5, already for n = 200. 

The precise analysis of the bit complexity of random generation is outside the scope 

of this paper. Its development would have to rely on an adequate treatment of 

Hadamard products within the framework of singularity analysis methods (work in 

preparation with Salvy, see also [2]). We only note that, since the generating functions 
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all have a nonzero radius of convergence, the sizes of the large integers intervening in 

the generation process remain O(n log n) at worst. Thus, a random generation proce- 

dure with arithmetic complexity f(n) has bit complexity which is 

wfkm log n)*) 

at most, when nai’ve multiprecision multiplication is employed. In other words, the bit 

complexity is at most O(n4+‘) f or g eneral sequential generation and at most 0(n3+“) 

for either boustrophedonic random generation or optimized sequential generation. 

The experimentally determined exponents in Table 4 are actually better than the 

bounds that this argument suggests. This is another boon of the big-endian specifica- 

tions, since most of the multiprecision multiplications (ak. bn_k) tend to take place 

between numbers of different sizes, with ak 4 bn_k. 

9. Conclusions 

The random generation of a wide collection of labelled structures can be automated 

using symbolic manipulation systems. The compiled procedures corresponding to 

structures of size a few hundred are then generated according to an exact uniform 

distribution in a matter of seconds of computer time. The computation times could be 

further decreased (at the expense of a minuscule loss of uniformity) by using floating 

point arithmetics and, if necessary, transcription into a lower level language. 

Several extensions of this work are possible. We have concentrated here on 

a simplified complexity measure, where the cost function reflects the cost of forming 

products. This leaves aside operations of total cost O(n) while leading to an elegant 

cost algebra system. Should the need arise, other exotic algebras of cost measures are 

easily introduced. For instance an operator r counting a cost of 1 for each union 

would admit the rules 

T(Z) = r(1) = 0; T(A + B) = TA + rI3 + A + B 

T(A.B) = FA.B + A.TB; T(OA) = @(FA). 

Rules for a variance analysis could also be given, an operator T2 for moments of order 

2 being characterized by the rules 

r2(A + B) = r2A + l-*B; r2(A.B) = T,A.B + A.T2B + @*A*B. 

(Cost algebras of a similar flavour might also be introduced in order to provide upper 

and lower bounds to the bit complexity.) 

Several of the optimizations that we have discussed can in principle be decided 

automatically (or at least in a computer assisted fashion), since the asymptotic analysis 

of coefficients of large classes of generating functions is known to be decidable [11] 

while being also implemented within computer algebra [31]. This aspect constitutes 
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an extension to the realm of random generation of the design philosophy of the 

Lambda-Upsilon-Omega (A YQ) system [ 11,3 1,391. 

At a more theoretical level, general optimization rules for schemas dependent on the 

asymptotic profile of structures could be stated. This line of research relates to the 

general study of combinatorial schemas outlined in [7] and investigated in depth by 

Soria [33]. 

Last, the approach developed here, largely based on pointing (marking), extends 

naturally to the random generation of unlabelled structures. The situation becomes 

more intricate because of the appearance of Polya operators for unlabelled multisets 

and cycles. However, the asymptotic analysis based on singularities applies. This 

subject is to be explored in a companion paper [12]. In particular, all context-free 

languages as well as rooted unlabelled trees are generated in worst case O(n log pi) 

using boustrophedonic search. A precise analysis of the random generation of rooted 

unlabelled trees by the Nijenhuis-Wilf algorithm will also be given. The average case 

arithmetic complexity again turns out to be - $i log n. In this way, a suitable cost algebra 

and its associated singularity transformations solve an open problem of Wilf [37]. 
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