
Theoretical Computer Science 132 (1994) 1-35

Elsevier

Fundamental Study

A calculus for the random
generation of labelled
combinatorial structures

Philippe Flajolet
Algorithms Project, INRIA Rocquencourt, B.P. 105. F-78153 Le Chesnay Cedex, France

Paul Zimmerman
INRIA-Lorraine, Campus Seientifique, Technopole de Nancy-Brabois, B.P. 101,

F-54602 Villers-&Nancy Cedex, France

Bernard Van Cutsem
Laboratoire de Modklisation et Calcul. Universitt Joseph Fourier, B.P. 53X. F-38041 Grenoble Cedex.

France

Communicated by J. Diaz

Received January 1993

Revised October 1993

Abstract

Flajolet, Ph., P. Zimmermann and B.V. Cutsem, A calculus for the random generation of labelled

combinatorial structures, Theoretical Computer Science 132 (1994) l-35.

A systematic approach to the random generation of labelled combinatorial objects is presented. It

applies to structures that are decomposable, i.e., formally specifiable by grammars involving set,

sequence, and cycle constructions. A general strategy is developed for solving the random generation

problem with two closely related types of methods: for structures of size n, the boustrophedonic

algorithms exhibit a worst-case behaviour of the form O(n logn); the sequential algorithms have

worst case 0(n2), while offering good potential for optimizations in the average case. The complexity

model is in terms of arithmetic operations and both methods appeal to precomputed numerical table
of linear size that can be computed in time O(n2).

A companion calculus permits systematically to compute the average case cost of the sequential

generation algorithm associated to a given specification. Using optimizations dictated by the cost
calculus, several random generation algorithms of the sequential type are developed; most of them

Correspondence to: Ph. Flajolet, Algorithms Project, INRIA Rocquencourt, B.P. 105, F-78153 Le Chesnay
Cedex, France. Email: philippe.flajolet@inria.fr.

0304-3975/94/%07.00 c 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0206-J

2 Ph. Flajolet

have expected complexity :n log n, and are thus only slightly superlinear. The approach is exempli-

fied by the random generation of a number of classical combinatorial structures including Cayley

trees, hierarchies, the cycle decomposition of permutations, binary trees, functional graphs, surjec-

tions, and set partitions.

Contents

Introduction

I. Combinatorial structures and constructions

2. Standard specifications

3. Basic generation schemes

4. Boustrophedonic random generation

5. The cost algebra of sequential generation

6. The analysis of cost generating functions

7. Trees. graphs, and iterative structures

8. Numerical data

9. Conclusions

Acknowledgements

References

..........

..........

..........

..........

..........

..........

..........

..........

..........

2

5

8

11

14

16

20

26

31

33

34

34

0. Introduction

This work started with a question of Van Cutsem to the first two authors. How can

one generate a random “hierarchy”? The problem arises in statistics where one would

like to generate random hierarchies and compare their characteristics to hierarchical

classifications obtained from real-life statistical data, this in order to determine how

meaningful are the latter. In combinatorial terms, the generation problem simply

amounts to drawing, uniformly at random, a tree with internal nodes of degree at least

2 and with leaves (external nodes) labelled by distinct integers, the number n of leaves

being fixed.

There are well-known methods for coping with this type of tree generation prob-

lems, the general strategy relying on a divide-and-conquer principle: generate the root

with the suitable probability distribution, then recursively generate the root subtrees.

Several of the basic principles of this recursive top-down approach have been for-

malized by Nijenhuis and Wilf in their reference book on combinatorial algorithms

[29], by Hickey and Cohen in the case of context-free languages [17], and under

a fairly general setting by Greene’ within the framework of labelled grammars [15].

The present work is in many ways a systematization and continuation of the pioneer-

ing research of these authors.

The class H of all hierarchies can be viewed as a recursively defined type,

H = Z + set(H, card 3 2), (1)

’ It is to be regretted that Greene’s outstanding thesis [15] never appeared in the published literature.

Generation of labelled combinatorial structures 3

where + denotes union of types, set(H, card 3 2) builds all unordered combinations

of elements of H of cardinality at least 2, and Z designates the initial type of labelled

nodes. A class of structures like H, that admits an equational specification, like (l), is

said to be decomposable. (The detailed meaning of such specifications will be spelled

out later.)

The methods that we are going to examine enable us to start from any high level

specification of a decomposable class and automatically to compile procedures that

solve the corresponding random generation problem. Two closely related groups of

methods are given: the sequential algorithms are based on a linear search and have

worst-case time complexity O(n2) when applied to objects of size n; the bous-

trophedonic algorithms are based on a special search technique that proceeds in

a bidirectional fashion and exhibit O(n log n) worst-case time complexity. The sequen-

tial method relies on existing technologies set forth in [S, 17,291; the boustrophedonic

search extends to the realm of random generation an idea of Knuth for finding cycle

leaders in permutations [20]. Both methods appeal to precomputed numerical tables

of size O(n) produced in a preprocessing phase (effected once only) of cost O(n’).

In the process of developing such random generation algorithms, several alternative

possibilities of implementation emerge. It is therefore desirable to have a means of

evaluating and comparing the resulting random generation routines provided by the

general theory.

The main contribution of this work is to introduce in this range of problems

a calculus that automatically produces generation routines from formal specifications.

A companion cost algebra of a rather exotic type is developed in order to attain

precise average case complexity estimates of the sequential algorithms. The approach

thus yields simultaneously a sequential generation algorithm and its associated

complexity descriptor. Complexity descriptors, being in the form of generating func-

tions of average costs, contain, at least in principle, all the necessary information

needed to predict an algorithm’s behaviour. This part is strongly influenced by an

approach introduced earlier for the automatic analysis of some classes of algorithms

over decomposable structures by Flajolet et al. [l 11.

The real dimension of generating functions lies in their complex-analytic properties,

especially when we contemplate them near their singularities. Without this aspect, the

collection of formal generating function equations would remain somewhat devoid of

content. A systematic analysis of singularities, at either a finite or infinite distance

[lo, 111, permits us to extract in all cases of practical interest the asymptotic costs

involved. For instance, two different strategies, nicknamed “little-endian” and “big-

endian”, when applied to Cayley trees (labelled nonplane trees), lead to average

complexities of the forms O(H~‘~) and O(nlog n) respectively. Therefore, the big-

endian strategy is to be preferred. At the same time, it comes quite close to the

unavoidable lower bound of O(n).

Note that our complexity model is in terms of arithmetic complexity where we take

unit cost for the manipulation of a large integer. This is justifiable in practice on

two grounds: (i) optimizations dictated by the arithmetic complexity model are

realistically reflected in the global computation times observed; (ii) the computations

could be programmed using fixed-precision floating point arithmetic, all our proced-

ures being numerically stable, in which case the arithmetic complexity model directly

applies. In addition, an extension of the cost algebra would even make it possible in

principle to approach bit complexity questions. We have here purposely avoided

such detailed machine level complexity considerations in order to keep the paper

short. (See Section 8 for quick indications on bit complexity and empirical execution

time.)

The path taken here is eminently practical. A medium size programme (in the

Maple language) suffices for the full compiler that produces a random generation

procedure from an arbitrary specification. The resulting random generation algo-

rithms, ranging in complexity from quadratic to linear, can then be used routinely to

generate objects of size a few hundred or about a thousand, which is often an adequate

territory for simulations. Given proper tools (the Maple system), the whole program-

ming chain from a specification to the actual generation then requires only the writing

of a correct specification, a matter of minutes of human interaction at most. Once

some auxiliary numerical tables have been set up, random structures of size up to

about 1,000 are obtained in a matter of seconds of computer time.

Last, the interest of the approach here developed lies in its generality and simplicity.

The most elementary combinatorial structures are often endowed with special proper-

ties that can be exploited by ad hoc methods, a fact that has been put to use by

a variety of authors (as general references, see C&29,37]). Complexity results that we

obtain, often of the form f n log n, demonstrate the possibility of achieving near-

optimality by general purpose methods. At the same time, one gains access to the

random generation of arbitrarily complex objects.

Plan of the paper: Section 1 defines the basic combinatorial language for the

specification of decomposable structures to be used throughout this work. Section

2 presents a reduction method to bring specifications to a binary form amenable to

efficient random generation. Sections 3 and 4 introduce the two groups of methods

based on the sequential search and the boustrophedonic search.

The rest of the paper is devoted to an extensive analysis of the sequential

algorithms. General heuristics are developed to attain either O(n logn) or O(n)

average case complexity for sequential search, while optimizing the implied

constants. Section 5 introduces the cost algebra with some first applications. Sections

6 and 7 are concerned with general purpose optimization issues and some further

examples.

Section 8 presents numerical simulation data. Finally, Section 9 offers some brief

conclusions and directions for further research. For instance, similar principles appear

to apply to the random generation of unlabelled structures. This is to be explored in

a forthcoming paper.

Note: An extended abstract of this article has been published in T. Lengauer, ed.,

AIgorithmsESA’93, Lecture Notes in Computer Science, Vol. 726 (Springer, Berlin,

1993) 169-180.

Generation of labelled combinatorial structures 5

1. Combinatorial structures and constructions

We consider labelled objects, which may be viewed as special graphs, where some

designated nodes are labelled by distinct integers; the size of an object is the number of

its labelled nodes, and we further assume that the labelling is canonical in the sense

that an object of size n bears labels from the set [I. . n].

1.1. Specijications

We start from the initial objects 1 that designates the “empty” structure of size 0 that

bears no label, and Z that generically designates a single labelled node of size 1. We

operate with the collection of constructions,

+, .> sequence()) set(), cycle(). (2)

There, (A + B) denotes the disjoint union (i.e., the union of disjoint copies) of A and B;

(A. B) consists in forming all pairs with a first component in A and a second

component in B; sequence(A) forms sequences of components from A, set(A) forms

sets (the order among components does not count), and cycle(A) forms directed

cycles (or equivalently sequences taken up to circular shift). In the product as well as in

the composite constructions of sequences, sets, and cycles it is understood that all

consistent relabellings are performed. As encountered already with hierarchies, a no-

tation like set@, card 3 k) uses a modifier (card 3 k) to indicate sets that have at

least k elements.

The language is that of [l l] to which we refer for detailed definitions. Though more

in the style of computer science’s data types, this language is consistent with common

practice in the combinatorial analysis of labelled structures; there the product is

sometimes called the labelled product or the partitional product. The interested reader

can consult [13,18,30,34,35,38] for background information on these classical

notions.

Definition 1.1. Let T = (TO, T1, , T,,,) be an (m + 1)-tuple of classes of combina-

torial structures. A specijication of T is a collection of m + 1 equations, with the ith

equation being of the form

Ti = !J’i(To, T1, . . . , T,) (3)

where ‘Pi is a term built from 1, Z, and the Tj, using the standard constructions listed

in (2).

We shall also say, for short, that the system (3) is a specification of TO. A structure

that admits a specification is called decomposable. The framework of specifications

resembles that of context-free grammars for formal languages, but enriched with

additional constructions. Its expressive power is analogous to that of Greene’s

labelled grammars.

6 Ph. Flajolet

Table 1
Eleven basic combinatorial structures and their specifications

Specification Objects

A = Z. set(A)
B=Z+B.B

C = Z. sequence(C)
D = set(cycle)(Z)
E = set(cycle(ii))
F = set(set(Z, card 2 1))
G = Z + Z. set(G, card = 3)
H = Z + set(H, card > 2)

K = set(cycle(Z’set(G, card = 2)))
I. = Set(SSt(Set(Z, card 2 l), card > 1))

A4 = sequence(set(Z, card 2 I))

Non plane trees

Plane binary trees

Plane general trees

Permutations

Functional graphs

Set partitions

Non plane ternary trees

Hierarchies

3-constrained functional graphs

3-balanced hierarchies

Surjections
-

We proceed with a list of specifications for eleven basic combinatorial structures

that will serve as our driving examples throughout the paper, see Table 1. The class of

hierarchies of Eq. (1) has a one line recursive specification (m = 0). Functional graphs,

E, have m = 1 corresponding to the specification,

{A = Z. set(A), E = set(cycle(A))},

since their definition first necessitates that of trees. Clearly, a specification can be

decomposed by naming intermediate classes that arise in it. Thus, a specification

equivalent to (4) is

{A = Z.set(A), U = cycle(/l), E = set(U)}.

Use will be made of this feature in the next section.

(5)

Some comments regarding the list of Table 1 are in order. Several entries are

(rooted) tree structures. Nonplane trees are to be taken as trees in the pure graph

theoretical sense so that subtrees dangling from a node are not ordered between

themselves; plane trees are viewed as embedded in the plane so that a left-to-right

order between subtrees is distinguished. This distinction is reflected by the use of the

set construction for nonplane trees, versus the sequence construction for plane trees

which further reduces to a simple product in the binary case. Permutations are given

by their cycle decomposition. Functional graphs are directed graphs with every node

having outdegree 1. Hierarchies have their previously assigned meaning. The 3-

constrained functional graphs are functional graphs with the additional constraint

that all nodes have indegree 0 or 3 only; the 3-balanced hierarchies can be viewed as

special trees that are balanced (having all leaves at the same level) and of depth 3.

In these examples the occurrence of the basic type Z in specifications indicates

where labelled nodes are to be placed in a structure. (This perhaps unexpected

notation is justified by the fact that the generating function of the basic type Z is the

Generation of labelled combinatorial structures 7

variable 2.) For instance, in plane binary trees as specified, only external nodes are

labelled. In contrast, we have elected to define (nonplane) ternary trees with both

internal and external nodes being labelled. This manifests itself in the specifica-

tions,

B = Z + B. B and G = Z + Z. set(G, card = 3).

As a consequence of the theory to be developed, we shall automatically derive

random generation procedures from such specifications. As previously announced,

the random generation routines obtained are all quadratic at worst and often almost

linear on average.

These objects relate to classical combinatorial structures, for which we refer the

reader to Comtet’s superb book [3]. For instance, what we called here a hierarchy is

called a Schriider system in [3, p. 2253, and ternary trees are related to “regular

chains” in [3, p. 1651. A set partition is a partition of a set into classes, a familiar object

of combinatorics [3, p. 2251 related to Stirling numbers and counted by the Bell

numbers. Surjections, also known as preferential arrangements or ordered partitions,

are discussed in [30, p. 993; they also represent the possible order types of sequences

with repetitions [21, p. 951. Balanced hierarchies can be viewed alternatively as nested

partitions [25].

Simulation problems for such combinatorial structures arise in a diversity of

applications. For instance, statistics originally motivated the consideration of hierar-

chies; there binary trees are also of some interest [24]. Functional graphs of various

sorts intervene in cryptology as well as in some integer factorization methods; see

[l, 91 for a treatment of their probabilistic properties.

1.2. Generating functions

We turn next to the enumeration of decomposable structures via generating

functions. If C is a class, we let C, denote the number of objects in C having size n, and

introduce the exponential generating function (egf)

C(z) = f cn;.
n=O .

We let c, be the rational number c, = CJn! and, using the classical notation for

coefficients of generating functions [14], we write c, = [z”]C(z). Throughout the

paper, we consistently reserve the same groups of symbols for a class, C or T1, its

generating function, C(z), T1 (z), and the enumeration sequence either normalized, c,,

tl,,,, or not, C,, T1,,.

Theorem 1 (Folk theorem of combinatorial analysis). (i) Gioen a speci$cation Zfor

a class C, a set of equations for the corresponding generating functions is obtained

8 Ph. Fiajolet

automatically by the following translation rules:

C=A+B * C(z) = A(z) + B(z),

C=A,B = C(z) = A(z). B(z),

C = sequence(A) * C(z) = (1 - A(z))-‘,

C = set(A) => C(z) = &@),

C = cycle(A) = C(z) = log(1 - A(z))-‘,

C = sequence(A, card = k) * C(z) = Ak(z),

C = set(A, card = k) * C(z) = Ak(z)/k!,

C = cycle(A, card = k) =+ C(z) = Ak(z)/k.

(ii) Given a specijication, the corresponding enumerating sequences up to size n are all

computable in 0(n2) arithmetic operations.

Proof. We refer to standard texts on combinatorial analysis, see for instance

[13,18,30,34,35,38]. The details of the 0(n2) algorithms are given in [ll, 15, 391, and

they also result from the standard specifications of the next section. cl

Observe that, by summation, one further derives translation rules such as

A’(z)
C = set(A, card d k) * C(z) = ~~=0 jl,

A’(z)
C = set(A, card > k) * C(z) = ea(‘) - ~~=0 7

j! ’

(7)

governing composite constructions with all sorts of cardinality restrictions.

The generating functions corresponding to the structures of Table 1 are listed in

Table 2.

2. Standard specifications

In this section, we show how to reduce specifications to standard form. The

standard specifications constitute the basis of the random generation procedures to be

developed in the paper. The reduction extends the usual Chomsky normal form for

context-free grammars. Such a normal form has been used for the random generation

problem [S], and an operation closely resembling it was also introduced by Greene

[15] for labelled structures. Behind the transformation into standard form, there lies

a “quadratization” technique whereby we perform replacements like

f=eg =a $f=f&

Generation oflabelled combinatorial structures 9

Table 2
The generating functions corresponding to the structures of Table 1

Specification Generating function

A = Z’ set,(A)
B=Z+B.B
C = Z. sequence(C)

D = set(cycle)(Z)

E = set(cycle(d))

F = set(set(Z, card > 1))

G=Z+Z,set(G,card=3)

H = Z + set(H, card > 2)

K = set(cycle(Z.set(G, card = 2)))

L = set(set(set(Z, card > 1), card > 1))

M = sequence(set(Z, card > 1))

A = zeA
B=z+B*
c = z/(1 - C)

D = exp(log(1 - z)~‘)

E = exp(log(1 -A)-‘)

F = exp(e’ - 1)

G = z + zG3/3!

H=z+e”-I-H
K = exp(log(1 - zG*/2! I)

L = exp(exp(exp(z) - 1) - 1)

M = l/(1 - (e’ - 1))

i.e., we change a highly non-linear construction into a quadratic one. Actually the

proper combinatorial equivalent of the analytic operator d/dz is the 0 operator to be

introduced below; as is well known to combinatorialists, differential operators corres-

pond to a “marking” or “pointing” operation.*

The pointing operator plays a vital r61e in the process of random generation as

recognized already by Nijenhuis and Wilf [29]. Given a class A of structures, the

pointing of A is a class denoted @A and defined by

@A= fi(&[l..n]), (9)
II=1

where sZ,, is the subclass of objects in A having size n and [l. . n] is the integer interval

{l, 2, . . , n}. In other words, an object in the class @A can be viewed as an object of

A with the additional property that one of the labels, corresponding to the field in

[1. . n], is distinguished.

From the definition we have that C = @A implies C, = nA,. Thus, the introduction

of the pointing operation does not affect the conclusions of Theorem 1.2: the egfs are

still computable by the added rule

C = @A + C(z) = @A(z), where Of(z) = z.$f(z), (10)

(In passing, we have employed the same notation for a set-theoretic operation and for

its induced generating function operator.)

Our developments in this section are markedly inspired by Joyal’s elegant theory

Cl0

’ An interesting outcome of this idea is the combinatorial differential calculus of Leroux and Viennot, see
for instance [26].

10 Ph. Flqjolet

Definition 2.1. Let T = (TO, T1, , T,) be a tuple of classes of combinatorial struc-

tures. A standard specification of T is a collection of m + 1 equations, the ith equation

being of one of the forms

Ti= 1; Ti = Zi; Ti = Uj + Uk; Ti = r/i’ Uk; OTi = Uj. Uk, (11)

where each Uj E { l,Z, TO, . . . , T,, @TO, . . . , OT,,,].

Theorem 2.2 (Standardization algorithm). Every decomposable structure admits an

equivalent standard specijication.

Proof. The proof is actually a conversion algorithm, which we present by transforma-

tion rules. We start with a specification where all composite types (sequences, sets,

cycles) have been named.

SO. Polynomials. A polynomial splits up into binary sums and products. For

instance, the specification of binary trees B = Z + B.B yields the standard specification

{B = z + B.B} ~ jB=Z+Cii: U1=B’B).

S1. Sequences. The sequence construction is equivalent to a recursive specification,

B = sequence(A) * B = 1 + A. B. (12)

The equation B = 1 + A B is to be understood as an isomorphism between structures.

What this amounts to is presenting a sequence s = (sl, s2, , sk) E sequence(A)

under its equivalent right associative binary form s g (sl, (s2,(. .))).

The translation of B = sequence(A, card = k) reduces to that of a polynomial,

since B = Ak, which is dealt with using binary powering, for instance Al3 =

((A (A2))2)2. A. Next, B = sequence(A, card d k) also reduces, being a polynomial.

Finally, the construction B = sequence(A, card 3 k) is itself equivalent to

B = Ak. sequence(A).

S2. Sets. The reduction inspires itself of Eq. (8). We claim that

B=set(A) + OB=B.OA, (13)

this being again understood as a fundamental combinatorial isomorphism: Pointing

at a node in a set individuates the component containing the node and the component

becomes pointed; this leaves aside a set of components, the non-marked ones.

The translation of Btk’ = set(A, card = k) unwinds by recurrence as

Btk) = set(A, card = k) + @B(k) = B(k-1). @A with B(l) = A. (14)

Similarly, we have

and

BCk) = set(A, card < k) =z- OBtk’ = BCk-“. @A with B(l) = 1 + A,

BCk’ = set(A, card 3 k) + @B(k) = B(k-1). @A with @B(O) = B(O). @A,

Generation of labelled combinatorial structures II

The intuition behind these equations is obvious when we examine them in the light of

differential equations satisfied by generating functions like (8).

S3. Cycles. We claim that

B = cycle(A) + OB = C. @A, C = sequence(A), (15)

which reduces cycles to sequences that are already reducible. The meaning is as

follows: A pointed cycle of components decomposes into the pointed component and

the rest of the cycle; the directed cycle can then be opened at the place designated by

the marking and a sequence results. This same combinatorial principle applies to the

reduction of cycles under cardinality constraints, for instance

B = cycle(/l, card = k) * OB = Ak-‘. @A. 0

As illustration, a standard form for hierarchies as defined in (1) is

{H = z + ul, @Ui, = U2.0H, OU2 = Uz. OH, @u, = Uj.@H).

We observe that there is some arbitrariness in our choices of fundamental isomor-

phisms in Eq. (13)-(15): the product operation on structures is noncommutative, in

general A. B # B. A, although the two products are isomorphic. This simple observa-

tion has important consequences for the complexity of random generators, as we will

see later. The transformation

A.Bc+ B.A.

when used appropriately, may lead to substantial optimizations.

Our appeal to the pointing construction bears some formal resemblance to the use

of the minimum rooting operator (the so-called “box” operator) by Greene [15). We

prefer the approach via pointing, however, since it generalizes readily to unlabelled

structures [29].

Notice finally that the standardization theorem constitutes a simple way of proving

part (ii) of Theorem 1.2, since the enumeration sequences associated with standard

specifications are clearly all tabulated in time O(n2) and storage O(n) by exploiting

their quadratic convolution recurrences.

3. Basic generation schemes

From the preceding section, it is sufficient to exhibit generation routines for

standard specifications. This goal is achieved by means of a set of translation rules or

templates. These are based on standard technology for random generation

[15,17,29], and require only a single pass over the specifications. A preprocessing

staye furnishes the enumerating sequences, up to size n, of structures intervening in

a specification. This is accomplished once and for all in time 0(n2) and in storage O(n)

(by Theorem 1.2).

12 Ph. Flajolet

Given any class C, recall that c, = C,/n! is its normalized counting sequence, from

now on assumed to be available separately from the preprocessing stage. We let gC

denote a random generation procedure relative to class C. We discuss the process of

generating the shapes of structures, not their actual labellings3, and let Z denote

a generic labelled node.

T,. Initial structures. The generation procedures corresponding to 1 and Z are trivial.

Case: C = 1.

gC:= procedure (n: integer);

if n = 0 then Return(l)

end.

Case: C = Z.

gC:= procedure (n: integer);

if y1 = 1 then Return(Z)

end.

T1. Unions. If C = A + B, the probability that a C-structure of size n arises from

A is simply a,/c,. The random generation procedure uses a uniform variate U drawn

from the real interval [0, I].

Case: C = A + B.

gC:= procedure (n: integer);

U:= Uniform([0, 11);

if U < (a,/~-,)

then Return (gA(n))

else Return (gB(n))

end.

T2. Products. If C = A. B, the probability that a C- structure of size II has an

A-component of size k and a B-component of size n - k is

Ak ‘Bn-,
C,

@‘h-k
C,

The random generation procedure results from this equation.

Case: C = A B.

gC:= procedure (n: integer);

Li:= Uniform([O, 11);

K:= 0; S:= (a,. b,)/c,;

while U > S do

{K:= K + 1; S:= S + (aK.hn_K)/c,,]

Return([gA(K), gB(n - K)]):

end.

31f needed, the labelling can be added, after the shape has been built, by applying to the Z nodes

a random permutation of [I II]. The process requires only linear time.

Generation oflabelled combinatorial structures 13

T3. Pointing. Generating A and @A are clearly equivalent processes. Given an

object a from a class A with size n, we let point (CX, k) denote its associate obtained by

pointing at the kth atomic node (1 < k < n). Then from a procedure g.4 that generates

A, we obtain a procedure gC that generates C = @A as follows.

Case: @A.
gC:= procedure (n: integer);

U:= Uniform([0, 11);

Return(point(gA(n), 1 + Ln. UJ))
end.

Conversely, given a generation procedure gC for C = @A, a procedure for A ob-

tains by simply erasing the mark. We thus introduce the procedure erase(p), such that

erase(point(x, k)) = r.

The algorithm becomes:

Case: A is defined implicitly by @A = C.
gA:= procedure (n: integer);

if (n = 0) and (a0 # 0) then Return(l);

if (n 3 1) then Return(erase(gC(n)))

end.

In practice, we can directly generate A through OA by never actually generating the

marks, only operating with the probabilities that the marks induce. Observe carefully

that the algorithm necessitates the value of a0 z A,; this is where “initial conditions”

accompanying standard specifications-these resemble a differential system!-inter-

vene. The initial conditions are easily computed during the standardization process;

we have purposely omitted such details. A variant approach consists in producing

standard specifications with the assumption that each equation @A = C carries

automatically the initial condition a o = 0, and in introducing then empty structures

explicitly in standard specifications, wherever required.

These constructions (see Fig. 1 for an outline) are conveniently summarized by

a theorem.

Theorem 3.1 (Sequential random generation). The template To, T,, T2, and T, pro-
duce from any standard specijication Co a collection of random generation routines

gCo. Each routine of gCo uses precomputed tables consisting of O(n) integers: its
worst-case time complexity is of O(2) arithmetic operations.

Proof. The correctness of the algorithm follows from our previous discussion. To each

execution of a generation algorithm, there corresponds a binary parse tree: the parse

tree of y = (a, fl) E A. B is recursively defined as the binary tree with root subtrees

equal to the parse trees of c(and /I; the parse trees of Z and 1 are single leaves tagged by

Zor 1.

14

Algorithm Random Generation

Input: A specification Z.

Ph. Flajolet

Outpur: A collection of routines that achieve random generation of Z.

Use the algorithm of the standardization theorem (Theorem 2.2) to produce a standard specification

zfl.
For each type U appearing in the standard specification Z,, tabulate the normalized enumeration
sequences u,, and Ou, = nu.. This is to be done once and for all. It is effected by creating counting

routines of complexity O(n’) that implement the convolution recurrences underlying the standard

specification, see [l 1, 151.

For each type (I appearing in the standard specification Z,, generate a pair of routines yU and g@U

corresponding to type I/ and type @U. Proceed by a single pass over Z, using the templates T,, T,,

T,. J-3.

Fig. 1. The general purpose random generation algorithm.

In order to establish the complexity property, observe that the parse tree of

a structure of size n has itself size proportional to n. The path length of a tree [19] is,

we recall, the sum of distances of all nodes to the root of the tree, and it is also the sum

of the sizes of all subtrees in the tree. The number of arithmetic operations attached to

the generation of a node v in the parse tree is at most a linear function in the subtree of

the parse tree rooted at V. It is thus seen that the arithmetic complexity of the random

generation of a structure is bounded above by a linear function in the path length of its

parse tree, which is itself O(n’) at worst. C

An algorithm provided by the process of Theorem 3 and Fig. 1 produces a binary

parse tree for the structure specified by Co. A simple traversal needing linear time in

the size of the structure generated can then recover a form corresponding to an

original (nonstandard) specification Z. This postprocessing, being of cost O(n) per

object of size n generated, does not affect the conclusions of our complexity studies.

Furthermore at the expense of some programming effort, it can be effected “on the

fly”. This is a mere variant of the classical rotation correspondence that transforms

binary trees into general trees [19, Section 2.3.21.

4. Boustrophedonic random generation

It turns out to be possible to combine the ideas underlying standard specifications

with others that have also proved useful in detecting cycle leaders in permutations or

in transposing rectangular matrices [20], as well as in managing dynamic equivalence

relations by means of weighted union-find trees [4,32].

The standardization theory implies that all the complexity lies in the random

generation of products. More precisely, when measured in the number of while-loops

executed, the cost of generating (x, p) by the sequential method in the size of the first

component, Ial. In fact, a worst-case complexity of O(n logn) can be achieved for all

decomposable structures. The principle is simply a boustrophedonic4 search.

’ Boustrophedonic: turning like oxen in ploughing (Webster).

Generation of labelled contbinatorial structures 15

Theorem 4.1 (Boustrophedonic random generation). Any decomposable structure has
a random generation routine that uses precomputed tables of size O(n) and achieves
O(n log n) worst-case time complexity.

Proof (sketch). Given a product C = A. B, we let K be the random variable denoting

the size of the A-component of a C-structure. Amongst C-structures of size n, we have

ak’ bn-k
Pr(K = k} = -,

cll

and we let r~,,~ denote this probability.

The idea is to appeal to a special search for the drawing of K with the probability

distribution {x,, ,}‘&. Instead of the order of increasing values of k, we explore the

possibilities of K in the boustrophedonic order

Tl.0~ % n> %3 19 7t n,n-I, ... 7

that sweeps alternatively from left to right and back. Then, the cost of drawing (a, fi) is

at most

2min(lal, WI) + 2.

Thus, up to a quantity which is O(l), the cost of generating a single product becomes

twice the size of the smallest component in the product. (The corresponding template

T$ is a simple modification of T,.)

Recurrences of the form

f(n) = m;x (f(k) +f(n - k) + min(k, n - k)) (16)

have been studied by Knuth in relation to in situ permutation [16,201, where a similar

search technique is employed. The solution, given f(0) =f(l) = 0 and f(2) = 1,

involves the sum-of-digits function, and asymptotically, we have

f(n) = & n log n + O(n). (17)

Up to terms that globally remain O(n), we find that the cost of generating

a structure of size n, using boustrophedonic search, satisfies a recurrence of the form

(16), but with a coefficient 2 in front of the minimum. The estimate (17) applied to

boustrophedonic search then yields the O(n logn) worst-case cost. In passing, the

argument is similar to that proving that the weighted version of union find trees has

worst-case complexity O(n log n), see [4]. A systematic treatment of such recurrences

is given in [27]. 0

The purpose of the calculus of rearrangements to be developed in the next sections

is precisely to produce adequate specifications that permit one to attain a complexity

of O(n log n) involving low multiplicative factors by exploiting “natural” regularities

16 Ph. Flajolet

present in combinatorial structures. To algorithms designers, the situation resembles

that of heapsort-which has guaranteed O(n log n) complexity-versus quick-

sort-which is O(n logn) only on average but with small constants-, so that

quicksort is actually preferred in practice (see [32]).

5. The cost algebra of sequential generation

We have seen how automatically to compile random generation routines starting

from standard specifications. By the standardization theorem, itself relying on an

effective reduction process, the method works for any decomposable structure. We

propose to examine in great detail the cost structure underlying the random genera-

tion procedures of the sequenzial group. The cost measure that we adopt counts only

the number of while loops executed in procedures corresponding to products. In other

words, the cost of generating a product (cc.fi) is simply taken to be the size of the first

component, 1~11.

In so doing, we neglect terms that are at worst only O(n) in terms of the number of

integer operations performed. Furthermore, an easy adaptation of the method would

enable us to analyse in any detail all the other operations (tests, procedure calls, other

arithmetic operations, see Section 9 for a brief discussion).

In the process, we assign constant cost to operations on large numbers, so that our

model belongs to the category of arithmetic complexity models. Empirical data for

a bit complexity model will be discussed in Section 8.

Consider a procedure gA that generates random elements in a decomposable class

A given by a standard specification according to the rules governing Theorem 3.1; we

let yA, denote its expected cost. We set

TA, = A, x ?A,,

and introduce the cost generating function

TA(z) = f TA, 2
n=O

This notion corresponds to that of complexity descriptor in [l 11.

We abbreviate TA(z) by TA. This notational trick permits us to regard symbolically

r as an operator acting on classes or, better, on systems of equations that correspond

to specifications.

Theorem 5.1 (The cost algebra identities). The cost operator r satisfies the identities,

l-z = r1 = 0; r(A + B) = rA + m;

r(A.B)=rA.B+A.rB+ @A.B; T(OA)= @(TA). (18)

Generation of labelled combinatorial structures 17

Thus, r has the features of a nonhomogeneous differential operator that satisfies

the important commutation rule r 0 0 = 0 0 r. The operator 0 = z d/dz itself satis-

fies the usual rules of a standard differential operator, namely,

Ol=O; OZ=Z; O(A+B)=OA+OB; O(A~B)=OA.B+A~OB.

Proof. The proof proceeds inductively, tracing the complexity in each of the templates

of Theorem 3.1.

Co Initial structures. This case is obvious.

C1 Unions. If C = A + B, then from the template Tr,

C2 Products. Similarly, with C = A. B, we have

[y.‘dk + y&k + k]

C3 Pointing. If C = @A, we find

both algorithms gC and gA having the same average case complexity. Only the

underlying sets on which the averages are taken differ. Since C, = nA,, we have

TC, = nTA,.

The result follows in each case by normalizing and taking generating functions. 0

5.1. Binary trees

The rules of the cost algebra allow us to compute effectively complexity descriptors

associated with various random generation algorithms. As a first illustration, we

describe the cost structure of the generation of binary tree corresponding to the

specifications

First, applying properties of r to Z,, we form the system

i-U1 = TB.B + B.TB + OB.B.
(19)

This is a linear algebraic system in the unknown {TB, TU1}, so that

0B.B
TB=-

1 -2B’

18 Ph. Flajolrt

On the other hand, the generating function of class B is computable by Theorem

1.2,

B=l-J1-42

2 ’

being the solution of the quadratic equation B = z + 8’. Thus, B, U1, OB are

rationally expressible in terms of z and ,,/‘m, as is TB in turn.

Theorem 5.2 (Binary trees, nai’ve method). The generation algorithm for binary plane

trees corresponding to the standard spec$cation

{B = Z + U1; U1 = B.B}

has average case complexity that satisfies

‘qB, = + JGn”!’ + O(n).

Proof. Expand the closed form of TB,

l-B=IL__ 1 z

21-4~ 2~“’

which gives

The conclusion follows since there are B, = (n!/n)(:I:) labelled trees of size n, and,

using Stirling’s formula for factorials, we have b, = B,/n! h 4”-l/~‘%?. 0

This proof is almost isomorphic to the analysis of path length in binary trees, see

[19, Section 2.3.4.51. This is not surprising, since we are in fact analysing a variant of

the left path length in such trees. Very similar computations arise in the analysis of the

general plane trees (class C), corresponding to the standard specification

{C = z.u,; Ur = 1 + uz; u2 = C.Ur}.

This specification results in a generation complexity also asymptotic to)$&I~“, and

thus equivalent to that of binary trees.

Of course, specific combinatorial properties-the bijective correspondence with

ballot sequences for instance-lead to algorithms having bit complexity close to

linear, both for binary trees and for general plane trees. In fact, we shall see in Section

7 that algorithms with appreciably lower costs than that of Theorem 5.2 can also be

obtained within our framework. These first examples are meant only to demonstrate

the mechanical character of computations involving the cost functions, using the cost

algebra.

Generation oflabelled combinatorial structures 19

5.2. Schemas

The cost algebra is also powerful enough that we can come up with general results

regarding the construction of composite structures. To keep notations simple, we

introduce the integral operator

s s
f(z) = ’ j(r)dt.

0

Theorem 5.3 (Composite schemas). (i) Let C = sequence(A) be generated according
to the standard specijication

Co=(C=l+U1;U,=AC).

Assume that A is given by a generation routine of cost TA. Then,

@A + l-A
” = (1 _ A)2 ’

(ii) Let C = set(A) be generated by the standard specijication

Co = (OC = C.OA).

Then,

(iii) Let C = cycle(A) be generated by the standard specification

Co={OC=B.OA;B=l+U,;U1=A.B).

Then,

12(@A)2+TA.0A+(1-A).0TA

(1 - A)2 1.
Proof. For sequences, we have C = 1 + A. C, so that TC satisfies the linear algebraic

equation

For sets, OC = C. @A, so that

This is an inhomogeneous differential equation of order 1; the homogeneous equation

admits the solution eA; the inhomogeneous equation is solved by the variation-

of-constant method.

A similar reasoning applies to cycles for which the result follows by direct integra-

tion (cycles are integrals of sequences!). q

20 Ph. Flajolet

5.3. Cycles in permutations

As a direct application of this theorem we examine the generation of permutations

as sets of cycles. This is our class D of Table 1. The generation algorithm analysed in

Theorem 5.3 makes use of the standard specification

&={OD=D.OU},

in agreement with the standardization rule S3. Assume that cycles, U, are given by

a direct routine; if only shapes are considered, generating a cycle of size k is achieved

simply by outputting an undifferentiated cycle of k atoms, (Zk). In the cost algebra,

we thus take TU = 0. We next have U(z) = log(1 - z)-’ (by Theorem 1.2), and thus,

by the cost algebra (Theorem 5.1),

rD = (14 z)2 ~-&log&,

so that,

?D, = n - H, with H, = 1 + i + . . . +;.

It is interesting to compare the alternative strategy given by the modified specifica-

tion

2, = (OD = OU.D>

By the algebraic rules, this means replacing in each equation

OD,OUc+ 0011.0.

This gives

TD = z/(1 - z)’ so that yD, = n.

The second strategy sweeps over cycles, a cycle of length k being found at cost k. Thus,

its overall complexity when generating a permutation c is exactly n = 101. (This

phenomenon will be further explored in Section 7.)

In conclusion, replacing a specification Lo by an equivalent one 2, leads to different

costs. Though the difference is marginal in the case of permutations, it is often the case

that complexity exponents get affected. The purpose of the next sections is to gain

a deeper insight into such phenomena.

6. The analysis of cost generating functions

The cost algebra developed in the previous section attains its full scope when we

examine it in the light of asymptotic properties of combinatorial structures. This

means that orders of growth of coefficients should be taken into account. The way to

Generation of labelled combinatorial structures 21

do so is to examine the complex analytic structure of intervening generating functions

which, as is well known, directly relates to the growth of coefficients (see especially

[lo], and the systematic use in [ll]). More precisely, we can interpret the equations

provided by the cost algebra locally as analytic relations between singular orders of

growth. We are not yet in a position to formalize the algebraic rules of a singular cost
algebra. Nonetheless, consideration of asymptotic properties of structures using the

classical arsenal of complex analysis does provide, in all cases of practical interest,

valuable guidelines regarding the design of generation algorithms. We propose to base

the discussion on examples drawn from several of our reference structures.

6.1. Nonplane trees

The family of nonplane trees corresponds to the specification A = Z * set(A).

It furnishes a first example where two random generation algorithms derived

from combinatorially equivalent specifications lead to rather different complexity

behaviours.

We make use of the general principles of the standardization method. However,

computations turn out to be a little simpler (without affecting the end result) if we

directly apply the 0 operator to the specification of A, namely A = Z. set(A). We

have Z. @(set(A)) 2 Z. set(A). @A z A.OA. Thus, our starting point is the pair of

equivalent specifications

OAEA+((OA.A)E A+(A.OA).

Theorem 6.1 (Non-plane trees). (i) The random generation algorithm for labelled trees
corresponding to the standard specijcation

@A= A+(OA.A)

has average cost

;‘A,, = + O(n).

(ii) The generation algorithm for labelled trees corresponding to the specijication

OA=A+(A.OA)

has average cost

yA, = in log n + O(n).

Proof. Applying the cost algebra to the specifications, we find that TA satisfies

a differential equation,

OTA=TA+A.OTA$-OA.TA+R,

22 Ph. Flajolet

where we have, corresponding to cases (i) and (ii),

R=OOA.A and R=OA.OA.

We have, from Theorem 1.2, A = zeA, and a solution to the homogeneous differential

equation is found to be Y = A/(1 - A). The variation-of-constant method does the

rest. In case (i), we get by integration that

rA=& @@A SF 1 A2 __ c---------

Z (1 - A)2 ’

where we have used z = Ae-* and dz = (1 - A)e-*dA.

In case (ii), we derive

(The computations somewhat resemble the analysis of union find trees under the

random spanning tree model, see [22,23].)

It is quite well known that A(z), which is a root of Ae-* = z is singular at z = e-‘,

where its singular expansion is

A(z) = 1 - $(l - ez)‘;’ + i(1 - ez) + ..., (20)

the expansion proceeding in ascending powers of (1 - ez)ii2. Sources for this are for

instance to be found in [9,22, 361, where it is used in the analysis of random

mappings, union find trees, and linear probing hashing.

Insertion of the expansion (20) into the two variants of TA provides the singular

forms

1 2-3/Z 1

2(1 - ez) and (1 _ ez)1/2 log
__ (z +e-‘).
1 - ez

The corresponding asymptotic forms of the coefficients are respectively

en en log n

z
and ~

2&l

The two asymptotic forms of TA, then follow by singularity analysis [lo] which

enables us to derive the asymptotics of coefficients from the asymptotics of the

corresponding generating functions at their singularity, here z = e ‘. Full expansions

are also computable. The estimates of coefficients are finally to be compared to

[z”]A - ____ 4’ 2nn3 ’

derived by the same device, and the statement follows. 0

Generation of labelled combinatorial structures 23

It is to be noted that, eventually, the difference in behaviour of these two algorithms

rests on the fact that the second derivative, @@A, and the square of the first derivative,

@A. @A, have different orders of growth at their singularity (here z = e-l).

The result of Theorem 6.1 may be surprising at first sight. While for the cycle

decomposition of permutations, the ordering of products is almost immaterial, here

rather different orders of growth result. In fact, no syntactic rule may be expected to

give the “best” ordering of products. Finding such an ordering has to rely on analysis,

but simple general guidelines may be given.

6.2. Optimization transformations

The specification of A, under the form

@A - A = (A. @A),

in essence generates a family of pointed trees by first generating an unmarked tree,

then the rest of the tree containing the mark. The pointed trees are much more

numerous than the basic trees, the ratio being OA,/A, = n. Accordingly, the mark

tends to fall on larger portions of the tree. Thus, viewed on the underlying binary

parse tree, the random generation has a complexity that, at least in an intuitive

probabilistic sense, should behave like a parameter)! of binary trees given by

xCtl .t21 = min(ltlI, Id) + xCtll + xCt21.

This relates to the modified form of path length occurring in boustrophedonic search,

whose value on any tree of size n is O(n log n).

In contrast, the random generation corresponding to the specification

@A-A=(OA.A)

has a complexity that behaves like standard path length, which is known to be 0(n312)

in such varieties of trees [28].

In order to make this discussion precise, we introduce a formal definition.

Definition 6.2. Given two generating functions F and G, F dominate G, in symbols

F 9 G, if

kc0 asn + +x.
gn

This is only a partial order on generating functions; nonetheless, most naturally

occurring generating functions are pairwise comparable with respect to ordering. See

[l l] for some plausible reasons related to the existence of smooth asymptotic

expansions for “many” generating functions of decomposable structures.

24 Ph. Fhjolet

The considerations regarding labelled trees then suggest a simple heuristic:

Biy-endian heuristic. Given a standard specification Co, reorganize all comparable

pairs in products using the isomorphism transformation

(A,B) w (B./t),

each time A $ B.

This heuristic applied to the two specifications of nonplane trees leads to the “good

choice” with an O(n log n) behaviour. (The generation of (A. B) may be implemented

by forming the parse tree relative to the transformed specification with (B . A) and then

applying a reflection that exchanges left and right subtrees; alternatively, one may

generate (A. B) starting from high values of K, namely K = II, n - 1, . . , 1.)

A further optimization suggested by this discussion consists in obtaining, whenever

possible, specifications in which products are imbalanced so as to take full advantage

of the big-endian heuristic. To that purpose, the 0 operator can be employed. For

instance, let us re-examine the binary trees, B = Z + B. B. Consider the induced

relation obtained by differentiation.

OB=Z+OB.B+B.OB.

Let K designate the size of the first component in B. B, and K’ denote the size of the

first component in B. OB. We have, for the B-objects of size ~1, and with b, = (2,“_-:)/n,

b&n-k
Pr(K = kj = b and Pr(K’ = li) = 2

Mn - M-k

n nb,

Objects of (B. OB) are generated faster than objects of (B. B); Table 3 for n = 10

illustrates the situation.

The expectation of K equals 5, while that of K’ is only 2.69. A symmetrical

probability distribution with an “organ pipe” shape has been replaced by a smoothly

decaying distribution resulting in a gain of about 2. In general, the expectation of K is

n/2 while that of K’ is O(d%), so that a global gain of order close to O(G) is to be

anticipated.

This suggests another heuristic, going back to the early days of random generation

[29]:

Diferential heuristic. When feasible, replace polynomial relations in specifications

by differential relations.

Let us examine more precisely the effect of both heuristics on the generation of

binary trees. We have

@B=Z+OB.B+B.OBzZ+(B+B).OB, (21)

where the first line is the raw differential specification, and the second one

is its big-endian rearrangement. Taking advantage of the equivalence between the

Generation of labelled combinatorial structures 25

Table 3

1 2 3 4 5 6 7 8 9

Pr{K = k} 0.294 0.088 0.054 0.043 0.040 0.043 0.054 0.088 0.294
Pr{K’ = k} 0.529 0.141 0.076 0.051 0.040 0.034 0.032 0.035 0.058

generation procedures gB and g@B, and performing simple programme transforma-

tions, we are thus led to a new algorithm which we list in full.

gB:= procedure(n: integer);

if (n = 1) then Return(Z)

else (

U:= Uniform([0, 11);

K:= 0; s:= 0;

while U > S do

{K:= K + 1;

S:= S + 2b,.(n - K)b,_./(nb,)};
V:= Uniform([O, I])

if V<i

then Return([gII(K), gB(n - K)])

else Return([gB(n - K), gB(K)])

end.

We call this algorithm the differential algorithm for generating binary trees.

Theorem 6.3. (Binary trees, differential algorithm). For binary trees, the dlfirential
algorithm corresponding to the specijication OB = Z + (B + B)‘OB has expected
complexity

yB, = inlogn + O(n).

Proof. We have

B=1-J1-4z

2 .

Start from the specification and apply the r operator,

@l-B = 2l-B.OB + 2B.OTB + 20B.OB.

26 Ph. Fkzjolet

This is a differential equation of order 1, with solution

f-l?+ log----
!

1

1 - 42 4z & 1

The result follows again by singularity analysis, comparing coefficients with

[z”]B - 4n-1,J2. 0

Both nonplane trees and binary trees under the differential algorithm are generated

in time asymptotic to) II log n. This is in fact a general phenomenon common to many

families of trees.

7. Trees, graphs and iterative structures

We show here that all polynomial families of trees as well as functional graphs can

be generated in time asymptotic to $n logn. Furthermore, the class of iterative

structures admits O(n) random generation algorithms.

7.1. Polynomial ,fhmilies qf’ trees

A polynomial family of trees is a family defined by allowing only a finite collection

Q of node degrees. The generating functions for such families are, in the case of plane

trees,

T= z.@(T) with Q(T) = 1 Th,
ktR

and, in the nonplane case,

T = z.@(T) with Q(T) = ,FDg.

Computations for plane trees, whether labelled or unlabelled, are identical, so that we

defer them to a future paper dealing specifically with unlabelled combinatorial

structures.

Theorem 7.1 (Polynomial families). Consider a polynomial family of nonplane trees

de$ned by

T = 2. c set(T, card = k),
k E B

where each uk = set(T, card = k) is specijed by OUk = U,_ 1. OT. The expected

generation time for a random tree of size n, where [z”] T # 0, satisfies

yT, = trzlog n + O(n).

Generation of labelled combinatorial structures 27

Proof. Sets ofjxed cardinality. Let first U be an arbitrary class of structures, and

U, = set(U, card = k). In line with Theorem 5.3, we examine the generation process

for sets of fixed cardinality associated to the specification

uo= 1; LJ1 = u; ou, = uk_l.ou.

(This specification is for instance always big-endian for k = 2, and it is modelled after

the big-endian generation of Cayley trees.)

Applying the cost operator, we find the differential recurrence

l-u0 = 0; Ol-Uk = rUk-l.OU + Uk-l.Ol-U + OUk_i.OU, (22)

the second equation being valid for all k >, 1. Introduce the generating function

G = G(Z, t) = f ruktk.
k=l

From (22), we get

OG = tG. OU + teru. OTU + t2e’U(OU)2,

where 0 operates with respect to the variable z, and use has been made of the fact that

Uk = Uk/k!, for generating functions. The homogeneous differential equation admits

the solution e’“. The variation-of-constant method yields

G = ezu(trU + t’jr?]).

Extracting coefficients provides the explicit form of rUk,

Uk-1 Uk-2 (ou)2
“‘=(k- l)fU+(k_2)! 7 ’ S[1 (23)

More generally, for @ a polynomial in U, Q(U) = Ck E n Uk/k!, we have symbolically

m(u) = fl(u).ru + w(u). (ouy
K 1 __ z .

Trees. The class T is constructed by

T= Z. c Uk,
ktR

(24)

where Uk = set(T, card = k). The relations (23) applied to (24) provide the form of

l-T>

I-T = z.@‘(T).TT + z.@“(T).
(OT)’

S[1 ~ + z@(T).
Z

28 Ph. Flajolet

The equation is linear in TT. Also, from the defining equation for T, we have

1 - z@‘(T) = T/(zT’). Thus,

(25)

Asymptotics. We find in the works of Meir and Moon [28] (see also [36, p. 477]),

a general analysis of the singularities of the function T. Let r be the smallest positive

root of the equation.

Q(5) - t@‘(r) = 0.

The function T(z) admits a branch point at z = /-‘, with

z 1

Near this point, we have

(26)

(27)

(28)

From Eq. (28), all expressions involving T and T’ in (25) can be analysed near z = p, so

that

l-T- OT. ;log (z -+ P).

The end result follows then directly from singularity analysis. (In the so-called

periodic case, where Q(u) = cp(ud) for some d > 1, conjugate singularities combine

their contributions on the circle of convergence. The coefficients of TT are then

nonzero provided y1 satisfies congruence conditions modulo d themselves equivalent

to [z”] T # 0. Details of this classical argument are omitted.) 0

This theorem applies for instance to nonplane ternary trees (specification G), for

which@(U)=1+U3/3!,ands=31’3,p=2.3P ‘I3 A similar result holds for hierar-

chies (specification H), the structures that originally motivated the present research.

The general plane trees defined by C = Z. sequence(C) are also amenable to

a differential algorithm: a relation U = sequence(C) implies

ou = U.(U. OC), (29)

both at the combinatorial level and at the level of generating functions. There results

a differential algorithm for general plane trees with asymptotic complexity again of

the form) n log n.

7.2. Functional graphs

Functional graphs, or equivalently finite mappings (see, e.g., [9]), present us with an

instance of a structure defined by a specification involving several intermediate classes.

Generation of lahelled combinatorial structures 29

Theorem 7.2 (Functional graphs). Functional graphs (E) corresponding to the stan-
dard specification

are generated in average time

YE,, = in log n + O(n).

Proof. Functional graphs (E) are sets of components (U,), themselves cycles of trees

(A), cycles being generated from sequences (U J, and trees being generated recursively

by the big-endian algorithm.

Algebraically, the complexity equations result from the general formulae for

schemas (Theorem 5.3) and the computation of TA given in Theorem 6.1. Using

computer algebra, it is then a simple matter to find the singular expansion of TE near

z-e-‘,

I-E Jz 1
- 8 (1 - ez)3’2

log ’
1 - ez’

The statement follows. 0

A similar result holds for mappings satisfying degree constraints (like specification

K) whose probabilistic properties have been explored by Arney and Bender [l].

7.3. Set partitions and iterative structures

Set partitions correspond to the specification F = set(U) where U =
set(Z, card >, 1) denotes the class of blocks in partitions. We assume that U is given:

to generate the shape of a block of size k in partition, just output an undifferentiated

set of k atoms, {Zk}, and thus, take TU = 0, since no sequential search is involved. The

standard specification for U resulting from the standardization algorithm is

Z,={OF=F4U}. (30)

The associated generating functions are F = e”, U = eZ - 1 and OU = ze’. All are

entire functions that are singular at co. Since F increases much faster as z -+ co than

the other two, its coefficients f, decrease more slowly as n + co. (The asymptotics of

fn was solved by a variety of authors, see [S].) Thus, the specification (30) is little-

endian.

This suggests considering instead the big-endian specification,

r, = {OF= OU.F}. (31)

We arrive at an algorithm that generates a partition of size n by selecting a block of

size K (starting from low values of K), then recursively generating a partition of size

30 Ph. Flujolet

n - K, where the splitting probability is

This is identical to the random generation algorithm RANEQU of Nijenhuis and Wilf

[29, Ch. 121 which has thus been deduced automatically from general principles.

The algorithm constructed in this way has, like for the corresponding decomposi-

tion of permutations, a complexity exactly equal to n. Such a linear complexity does

hold under rather general conditions.

We say that a class of structures is iterative or non-recursive if the dependency graph

of the classes entering the unstandardized specification (allowing sequences, sets and

cycles) is acyclic. Trees, hierarchies and functional graphs are typical recursive struc-

tures, while permutations, partitions, surjections and balanced hierarchies of any fixed

height are iterative.

Theorem 7.3 (Iterative structures). Any iterative class I admits a random generation

algorithm of linear worst-case complexity in particular

yl, = O(n).

Proof. The proof is easily completed by induction on the structure of specifica-

tions. The linearity property holds trivially for polynomials. It then carries over

inductively to products. For sequences, sets, and cycles, the result depends on the

translation

C = sequence(A) + C = 1 + A.C

C = set(A) 3 OC=OA.C (32)

C = cycle(A) =a OC=OA.UI; U, = 1 + A.U1.

For instance, for C = sequence(A), a sequence y = (c(~, Q, . . , qJ gets generated at

a cost equal to Cilclil = n plus the sum of the costs for generating each of the Ei, which

is assumed to be linear by the induction hypothesis. Thus the total cost for C is itself

linear.

Similar reasonings (see also the example of the cycle decomposition of permuta-

tions) apply to sets and cycles. 0

The theorem applies to set partitions (specification F), the cycle decomposition of

permutations (D), 3-balanced hierarchies (L), and surjections (M). For instance, for

surjections, a simple computation based on the cost algebra and Theorem 5.3

confirms that TM = OM, so that yM, = n, as anticipated.

In general the constant in the O(n) complexity increases with the degree of nesting

of the iterative specification.

Generation of labelled combinatorial structures 31

Table 4
Generation time in seconds for the eleven reference structures

Specification

n A A’ B B’ C c’ D E F G H K L M

50 0.7 0.3 0.6 0.4 0.6 0.3 0.2 0.4 0.2 0.2 0.5 0.3 0.3 0.2

100 2.3 0.7 1.8 0.9 1.8 0.8 0.4 0.8 0.4 0.5 1.0 0.6 0.5 0.5

200 11.6 1.9 8.5 2.4 8.4 2.2 1.1 2.2 0.8 1.3 2.6 1.5 1.1 1.3

400 70.6 7.0 48.9 1.5 53.1 7.0 4.5 8.3 1.9 3.3 7.9 4.1 2.8 3.5

Fit +4 nI 51 &I4 n1.41 nZ. 16 n1.45 n1.53 ,I 46 nl 07 n1.35 n1.33 nl.2h n’ 08 nl.Zh

8. Numerical data

The generation method for decomposable structures has been implemented in the

symbolic manipulation system Maple by Zimmermann. The complete programme

tests specifications for well-foundedness, puts them in standard quadratic form, and

compiles two sets of procedures from standard specifications: the counting routines

that implement the convolution recurrences, and the random generation routines

based on the templates. The whole set, in its current stage, represents some 800 lines of

Maple code. The random generation procedures produced are in the Maple language

itself, and they take advantage of the multiprecision arithmetic facilities5 available in

MAPLE. The texts of the generation procedures compiled are quite short: the number

of Maple instructions for a structure whose standard specification involves m non-

terminals is only about 8m for the counting routines and 10~1 for the drawing routines.

Table 4 provides a brief table of computation times in seconds based on 100

simulations for objects of size n = 50,100,200,400. The timings were measured on

a workstation performing about 2 x lo7 operations per second. Using suitable speci-
jications, all structures can be generated in time ranging from 2 to 9 seconds&or n = 400.
The preprocessing that builds the counting tables necessitates typically about 15 min

of computer time for n = 400. The various input specifications are verbatim transcrip-

tions of those used earlier in the paper (notably, Table 1). In the case of nonplane trees,

we have compared the figures corresponding to the little-endian standard specifica-

tion (A, case (i) of Theorem 6.1) and to the big-endian specification (A’, case (ii) of

Theorem 8); for binary and general plane trees, the display corresponds to the “nai’ve”

method (B and C, see Theorem 5.2) and to the differential algorithm (B’, see Theorem

6.3 and C’, see remarks following Theorem 7.1).

There are 3 groups of specifications that emerge quite clearly. Considering the data

for n = 400, we observe the following.

5 For instance, numbers of the order of 10”“ are used in the random generation of binary trees of size
400.

32 Ph. Fiajolet

- The little-endian specification of nonplane trees (A), as well as the non-differential

specifications of binary trees (B) and general plane trees (C), lead to computation

times that are of the order of 60 s, in line with the 0(n3”’ complexity results of the

paper.

- The recursive structures with specifications corresponding to an O(n log n) genera-

tion algorithm are illustrated by the big-endian differential generation of nonplane

trees (A’) and of binary or general plane trees (B’, C’). They require about 7 seconds,

an improvement by a factor of about 10 over the naive method (A, B, C). Similar

figures hold for hierarchies and unconstrained functional graphs. Ternary trees and

ternary functional graphs lie at the lower end of the spectrum, a fact perhaps to be

explained by the peculiarity that about two thirds of their counting coefficients are

zero (G, # 0 only if II E 1 (mod 3), K, # 0 only if II = 0 (mod 3)). The complexity

result of in log n is indirectly perceptible in the fact that binary trees (B’) and

hierarchies (H) are generated in almost identical times although the number of

nonterminals intervening in their standard specifications and the growth of their

coefficients are rather different.

- The iterative structures, permutations (D), partitions (F), balanced hierarchies (L)

and surjections (M) necessitate from 2 to 5 s per structure generated. This is in

accordance with the theoretical predictions, since they admit linear time algorithms.

Simulations thus fully confirm the validity of optimizations guided by the cost

algebra. The algorithms are practicable beyond n = 1000 (though the preprocessing

cost may become large): for instance hierarchies of size n = 1000 get generated in

about 25 s of computer time on our reference machine.

Our current version of the Maple programme automatically compiles random

generation routines by implementing a version of the big-endian heuristic in the

following way: Given a product (A B) to be generated, the programme tests, for some

small value of n (n = 20 for instance), the values of the products uk. bn_k for low and

high values of k, and decides, based on this experiment, the suitable ordering of

products. Such a strategy is not universal. Nonetheless, it is extremely effective in

practice, and all the translations to which the optimization applies are automatically

generated in the proper big-endian order. Thus, with the exception of plane tree

structures B and C -for which differential specifications have to be explicitly

provided-, the generation algorithms, as compiled directly from the raw specifica-

tions of Table 1 for the remaining 9 classes, are of complexity O(n) or O(n log n).

It is also of some interest to gain understanding into bit complexity questions; they

are indirectly accessible via the elapsed time that is observed in each random

generation. The table of Fig. 1 gives a rough empirical fit with functions of the form na

(last line). It is notable that optimizations dictated by the cost algebra result in clear

savings by factors of about 5, already for n = 200.

The precise analysis of the bit complexity of random generation is outside the scope

of this paper. Its development would have to rely on an adequate treatment of

Hadamard products within the framework of singularity analysis methods (work in

preparation with Salvy, see also [2]). We only note that, since the generating functions

Generation of labelled combinatorial structures 33

all have a nonzero radius of convergence, the sizes of the large integers intervening in

the generation process remain O(n log n) at worst. Thus, a random generation proce-

dure with arithmetic complexity f(n) has bit complexity which is

wfkm log n)*)

at most, when nai’ve multiprecision multiplication is employed. In other words, the bit

complexity is at most O(n4+‘) f or g eneral sequential generation and at most 0(n3+“)

for either boustrophedonic random generation or optimized sequential generation.

The experimentally determined exponents in Table 4 are actually better than the

bounds that this argument suggests. This is another boon of the big-endian specifica-

tions, since most of the multiprecision multiplications (ak. bn_k) tend to take place

between numbers of different sizes, with ak 4 bn_k.

9. Conclusions

The random generation of a wide collection of labelled structures can be automated

using symbolic manipulation systems. The compiled procedures corresponding to

structures of size a few hundred are then generated according to an exact uniform

distribution in a matter of seconds of computer time. The computation times could be

further decreased (at the expense of a minuscule loss of uniformity) by using floating

point arithmetics and, if necessary, transcription into a lower level language.

Several extensions of this work are possible. We have concentrated here on

a simplified complexity measure, where the cost function reflects the cost of forming

products. This leaves aside operations of total cost O(n) while leading to an elegant

cost algebra system. Should the need arise, other exotic algebras of cost measures are

easily introduced. For instance an operator r counting a cost of 1 for each union

would admit the rules

T(Z) = r(1) = 0; T(A + B) = TA + rI3 + A + B

T(A.B) = FA.B + A.TB; T(OA) = @(FA).

Rules for a variance analysis could also be given, an operator T2 for moments of order

2 being characterized by the rules

r2(A + B) = r2A + l-*B; r2(A.B) = T,A.B + A.T2B + @*A*B.

(Cost algebras of a similar flavour might also be introduced in order to provide upper

and lower bounds to the bit complexity.)

Several of the optimizations that we have discussed can in principle be decided

automatically (or at least in a computer assisted fashion), since the asymptotic analysis

of coefficients of large classes of generating functions is known to be decidable [11]

while being also implemented within computer algebra [31]. This aspect constitutes

34 Ph. Flajolet

an extension to the realm of random generation of the design philosophy of the

Lambda-Upsilon-Omega (A YQ) system [11,3 1,391.

At a more theoretical level, general optimization rules for schemas dependent on the

asymptotic profile of structures could be stated. This line of research relates to the

general study of combinatorial schemas outlined in [7] and investigated in depth by

Soria [33].

Last, the approach developed here, largely based on pointing (marking), extends

naturally to the random generation of unlabelled structures. The situation becomes

more intricate because of the appearance of Polya operators for unlabelled multisets

and cycles. However, the asymptotic analysis based on singularities applies. This

subject is to be explored in a companion paper [12]. In particular, all context-free

languages as well as rooted unlabelled trees are generated in worst case O(n log pi)

using boustrophedonic search. A precise analysis of the random generation of rooted

unlabelled trees by the Nijenhuis-Wilf algorithm will also be given. The average case

arithmetic complexity again turns out to be - $i log n. In this way, a suitable cost algebra

and its associated singularity transformations solve an open problem of Wilf [37].

Acknowledgements

This work was partly supported by the ESPRIT Basic Research Action No. 7141

(ALCOM II).

The authors express warm thanks to Massimilliano Goldwurm and JeanMarc

Steyaert for early discussions relative to the random generation of context-free

languages, as well as to Henry Crapo for penetrating linguistic advice. The authors are

also grateful to the designers of the Maple system which provided a highly effective

implementation framework while rendering so easy many of the algebraic and

asymptotic computations of the paper. Finally, Bruno Salvy’s library for the analysis

of generating functions provided valuable help in checking several of the asymptotic

computations.

References

[l] J. Arney and E.D. Bender, Random mappings with constraints on coalescence and number of origins,

PaciJic J. Math. 103 (1982) 269-294.
[2] F. Bergeron, P. Flajolet and B. Salvy, Varieties of increasing trees, in: J.-C. Raoult, ed., Proc CAAP 92,

Lecture Notes in Computer Science, Vol. 581 (Springer, Berlin, 1992) 24448.

[3] L. Comtet, Advanced Combinatorics (Reidel, Dordrecht. 1974).

[4] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to AIyorithms (MIT Press, New York,

1990).

[S] N.G. De Bruijn, Asymptotic Methods in Analysis (Dover, New York, 1981).
[6] L. Devroye, Non-Uniform Random Variute Generarion (Springer, Berlin, 1986).

[7] P. Flajolet. Elements of a general theory of combinatorial structures, in: L. Budach, ed., Proc. FCT’85,
Lecture Notes in Computer Science Vol. 99 (Springer, Berlin, 1985) 112-127.

Generation of labelled combinatorial structures 35

[S] P. Flajolet, M. Goldwurm and J.-M. Steyaert, Random generation and context-free languages,

Manuscript. 1990.

[9] P. Flajolet and A.M. Odlyzko, Random mapping statistics, in: J.-J. Quisquater and J. Vandewalle,

eds., Advances in Cryptology, Proc. EUROCRYPT ‘89, Vol. 434 Lecture Notes in Computer Science,

(Springer, Berlin, 1990) 329-354.

[lo] P. Flajolet and A.M. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math.

3(2) (1990) 216-240.

[1 l] P. Flajolet, B. Salvy and P. Zimmermann, Automatic average-case analysis of algorithms. Theoret.

Comput. Sci. 79(l) (1991) 37-109.

[12] P. Flajolet, P. Zimmermann and B. Van Cutsem, A calculus for the random generation of unlabelled

combinatorial structures, 1994, in preparation.

[13] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration (Wiley, New York, 1983).

1141 R. Graham, D. Knuth and 0. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA 1989).

[15] D.H. Greene, Labelled formal languages and their uses, Ph.D. thesis, Stanford University, June 1983;

available as Report No. STAN-CS-83-982.

1161 D.H. Greene and D.E. Knuth, Mathematics,for the Analysis ofAlgorithms(BirkhHuser, Boston, MA, 1981).

[17] T. Hickey and J. Cohen, Uniform random generation of strings in a context-free language, SIAM J.

Comput. 12(4) (1983) 645-655.

[lS] A. Joyal, Une thborie combinatoire des stries formelles, Adu. in Math. 42(l) (1981) l-82.
[19] D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms (Addison-Wesley,

Reading, MA, 1968; 2nd ed., 1973).

1201 D.E. Knuth, Mathematical analysis of algorithms, in: Information Processing 71 (North-Holland,

Amsterdam, 1972) 19-27.

[Zl] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching (Addison-Wesley,

Reading, MA, 1973).

1221 D.E. Knuth and B.A. Pittel, A recurrence related to trees, Proc. Amer. Math. Sot. 105(2) (1989)

335-349.

[23] D.E. Knuth and A. Schiinhage, The expected linearity of a simple equivalence algorithm, Theort.

Comput. Sci. 6 (1978) 281-315.

[24] F.-J. Lapointe and P. Legendre, The generation of random ultrametric matrices representing dendo-

grams, J. Class$cation 8 (1991) 177-200

[25] T. Lengyel, On a recurrence involving Stirling numbers, European J. Combin. 5 (1984) 313-321.

[26] P. Leroux and X.G. Viennot, R&solution combinatoire des systimes d’kquations differentielles, II:

calcul inttgral combinatoire, Ann. Sci. Math. QuCbec 12(2) (1988), 233-253.

[27] Z. Li and E.M Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM J. Comput.

18(6) (1989) 1188%1200.

[28] A. Meir and J.W. Moon, On the altitude of nodes in random trees, Canad. J. Math. 30 (1978)

997~1015.

[29] A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms (Academic Press, New York, 2nd edn, 1978).

[30] G.-C. Rota, Finite Operator Calculus (Academic Press, New York, 1975).

[31] B. Salvy, Asymptotique automatique etfonctions gbntratrices, Ph.D. thesis, Ecole Polytechnique, 1991.

[32] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 2nd ed., 1988).

1331 M. Soria-Cousineau. Mtthodes d’analyse pour les constructions comhinatoires et les algorithmes,

Doctorat 6s sciences, Universitk de Paris-Sud, Orsay (1990).

[34] R.P. Stanley, Generating functions, in: G.-C. Rota, ed., Studies in Combinatorics, M.A.A. Studies in

Mathematics, Vol. 17 (Mathematical Association of America, 1978) 100-141.
[35] R.P. Stanley, Enumerative Combinatorics, Vol. I (Wadsworth, Belmont, CA, 1986).

[36] J.S. Vitter and P. Flajolet, Analysis of algorithms and data structures, in: J. van Leeuwen, ed.,

Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity (Elsevier, Amsterdam,
1990) ch. 9, 43 I-524.

[37] H.S. Wilf, Combinatorial Algorithms: An Update, CBMS-NSF Regional Conference Series, No. 55,
Society for Industrial and Applied Mathematics, Philadelpia, PA, 1989.

[38] H.S. Wilf, Generating functionology (Academic Press, New York, 1990).

[39] P. Zimmermann, Skries gkniratrices et analyse automatique d’algorithmes, Ph.D. thesis, Ecole
Polytechnique, 1991.

