
BOLTZMANN SAMPLERSFOR THE RANDOM GENERATIONOF COMBINATORIAL STRUCTURESPHILIPPE DUCHON, PHILIPPE FLAJOLET, GUY LOUCHARD, GILLES SCHAEFFERAbstrat. This artile proposes a surprisingly simple framework for the ran-dom generation of ombinatorial on�gurations based on what we all Boltz-mann models. The idea is to perform random generation of possibly omplexstrutured objets by plaing an appropriate measure spread over the whole ofa ombinatorial lass|an objet reeives a probability essentially proportionalto an exponential of its size. As demonstrated here, the resulting algorithmsbased on real-arithmeti operations often operate in linear time. They anbe implemented easily, be analysed mathematially with great preision, and,when suitably tuned, tend to be very eÆient in pratie.1. IntrodutionIn this study, Boltzmann models are introdued as a framework for the randomgeneration of strutured ombinatorial on�gurations, like words, trees, permuta-tions, onstrained graphs, and so on. A Boltzmann model relative to a ombina-torial lass C depends on a real-valued (ontinuous) ontrol parameter x > 0 andplaes an appropriate measure that is spread over the whole of C: This measureis essentially proportional to xj!j for an objet ! 2 C of size j!j. Random objetsunder a Boltzmann model then have a utuating size, but objets with the samesize invariably our with the same probability. In partiular, a Boltzmann sampler(i.e., a random generator that produes objets distributed aording to a Boltz-mann model) draws uniformly at random an objet of size n, when the size of itsoutput is onditioned to be the �xed value n.As we demonstrate, Boltzmann samplers an be derived systematially (andsimply) for lasses that are spei�ed in terms of a basi olletion of general-purposeombinatorial onstrutions. These onstrutions are preisely the ones that surfaereurrently in modern theories of ombinatorial analysis [4, 28, 30, 60, 61℄ and insystemati approahes to random generation of ombinatorial strutures [29, 51℄.As a onsequene, one obtains with surprising ease Boltzmann samplers overingan extremely wide range of ombinatorial types.In most of the ombinatorial literature so far, �xed-size generation has been thestandard paradigm for the random generation of ombinatorial strutures, and avast literature exists on the subjet. There, either spei� bijetions are exploitedor general ombinatorial deompositions are put to use in order to generate objetsat random based on ounting possibilities|the latter approah has ome to beknown as the \reursive method" originating with Nijenhuis and Wilf [51℄, thensystematized and extended by Flajolet, Zimmermann, and Van Cutsem in [29℄.Date: Version of January 1,2003. Submitted to Combinatoris, Probability, and Computing.1



2 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERIn ontrast, the basi priniple of Boltzmann sampling is to relax the onstraintof generating objets of a stritly �xed size, and prefer to draw objets with arandomly varying size. As we shall see, normally, one an then tune the value ofthe ontrol parameter x in order to favour objets of a size in the viinity of a targetvalue n. (A \tolerane" of, say, a few perents on size of the objet produed islikely to ater for many pratial simulation needs.) If the tuning mentioned aboveis not suÆient, one an always pile up a rejetion method to restrit further thesize of the element drawn. In this way, Boltzmann samplers may be employed forapproximate-size as well as �xed-size random generation.We propose Boltzmann samplers as an attrative alternative to standard om-binatorial generators based on the reursive method and implemented in pakageslike Combstrut (under the omputer algebra system Maple) and CS (under Mu-Pad). The algorithms underlying the reursive neessitate a preproessing phasewhere tables of integer onstants are set up, then they appeal to a boustrophe-doni strategy in order to draw a random objet of size n. In the abstrat, theinteger-arithmeti omplexities attahed to the reursive method and measured bythe number of (large) integer-arithmeti operations are as follows:(1) Prepro. memory Prepro. time Time per generationO(n) O(n2) or O(n1+") O(n logn)The integer-based algorithms require the ostly maintenane of large tables of on-stants (in number O(n)). In fat, they e�et arithmeti operations over large mul-tipreision integers, whih themselves have size O(n) (in the unlabelled ase) orO(n logn) (in the labelled ase); see [29℄. Consequently, the overall Boolean om-plexities involve an extra fator of O(n) at least, leading to a ost measured in ele-mentary operations that is quadrati or worse. (The integer-arithmeti time of thepreproessing phase ould in priniple be dereased from O(n2) to O(n1+") thanksto the reent work of van der Hoeven [65℄, but this does not a�et our basi on-lusions.) An alternative, initiated by Denise, Dutour, and Zimmermann [12, 13℄,onsists in treating integers as real numbers and approximating them using realarithmetis (\oating-point" implementations), possibly supplementing the teh-nique by adaptive preision routines. In the ase of real-based algorithms, theBoolean as well as pratial omplexities improve, and they beome fairly wellrepresented by the data of Equation (1), but the memory and time of the prepro-essing phase remains fairly large, while the time per generation remains inherentlysuperlinear.As we propose to show, Boltzmann algorithms an well be ompetitive whenompared to ombinatorial methods: Boltzmann samplers only neessitate a small�xed number of low preision real onstants that are normally easy to omputewhile their omplexity is always linear in the size of the objet drawn. Aordingly,uniform random generation of objets with sizes in the range of millions is beominga possibility, whenever the Boltzmann framework is appliable. The prie to be paidis an oasional loss of ertainty in the exat size of the objet generated, typially,a tolerane on sizes of a few perents should be granted; refer to Figure 10 inthe onluding setion. The table that summarizes the omplexities of Boltzmanngenerators, measured in real-arithmeti operations is then:(2) Prepro. memory Prepro. time Time per generationO(1) \small" with tolerane : O(n)



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 3The vague quali�er \small" refers to the fat that pratial implementations will bebased on oating point approximations to exat real number arithmetis, in whihase, typially, the preproessing time is likely to be a small power of logn. (Thatthis preproessing is pratially feasible and of a very low omplexity should atleast transpire from the various examples given, but a systemati disussion wouldarry us too far away from our main objetives1.)As regards random generation, the ideas presented here draw their origins frommany soures. First the reursive method of [29, 51℄ served as a key oneptualguide for delineating the types of objets that are systematially amenable to Boltz-mann sampling. Ideas from a statistial physis point of view on ombinatoris, ofwhih great use was made by Vershik and his ollaborators [10, 67℄, then providedruial insight regarding the new lass of algorithms for random generation thatis presented here. Another important ingredient is the olletion of rejetion al-gorithms developed by Duhon, Louhard, and Shae�er for ertain types of trees,polyominos, and planar maps [17, 45, 56℄. There are also similarities with thetehnique of \shifting the mean" (see Greene and Knuth's book [33, p. 78{80℄) aswell as the theory of large deviations [11℄ and \exponential families" of probabilitytheory|we have bene�ted from disussions with Alain Denise on these aspets.Finally, the priniples of analyti ombinatoris (see [28℄) provide essential luesfor deiding situations in whih the algorithms are likely to be eÆient. Furtheronnetions are disussed at the end of the next setion.Plan of this study. Boltzmann models and samplers are introdued in Se-tion 2. Boltzmann models exist in two varieties: the ordinary and the exponentialmodels. Ordinary models serve for ombinatorial lasses that are \unlabelled", theorresponding samplers being developed in Setion 3, where basi onstrution rulesare desribed. Setion 4 proeeds in a parallel way with exponential models and\labelled" lasses. Some of the omplexity issues raised by Boltzmann samplingare examined in Setion 5. There it is shown that, at least in the idealized senseof exat real-number omputations, a Boltzmann sampler suitably equipped with a�xed (and small) number of driving onstants operates in time that is linear in the(utuating) size of the objet it produes.Setions 2 to 5 develop Boltzmann samplers that operate freely under the solee�et of the de�ning parameter x. We examine next the way the ontrol parameter xan be tuned to attain objets at or near a target value: this is the subjet ofSetion 6, where rejetion is introdued and a tehnique based on the pointingtransformation is developed. Setion 7 desribes two types of situation where thebasi Boltzmann samplers turn out to be optimized by assigning a ritial value tothe ontrol parameter x. Setion 8 o�ers a few onluding remarks.An extended abstrat summarizing several of the results desribed here has beenpresented at the ICALP'2002 Conferene in Malaga [18℄.2. Boltzmann models and samplersWe onsider a lass C of ombinatorial objets of sorts, with j � j the size funtionmapping C to Z�0. By Cn is meant the sublass of C omprising all the objetsin C having size n, and eah Cn is assumed to be �nite. One may think of binary1The primary goal of this artile is on pratial algorithmi design, not analysis of algorithms,although a fair amount of analysis, by neessity, enters into the disussion.



4 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERwords (with size de�ned as length), permutations, graphs and trees of various types(with size de�ned as number of verties), and so on. Any set C endowed with a sizefuntion and satisfying the �niteness axiom will heneforth be alled a ombinatoriallass.The uniform probability distribution over Cn assigns to eah  2 Cn the proba-bility PCnfg = 1=Cn;with Cn := ard(Cn). Exat-size random generation means the proess of drawinguniformly at random from the lass Cn. We also onsider (see Setions 6 and 7 fora desription of various strategies) random generation from \neighbouring lasses",CN where N may not be totally under ontrol, but should still be in the viinityof n, namely, in some interval (1 � ")n � N � (1 + ")n, for some \tolerane"fator " > 0; this is alled approximate-size (uniform) random generation. It mustbe stressed that, even under approximate-size random generation, two objets ofthe same size are invariably drawn with the same probability.De�nition 1. The Boltzmann models of parameter x exist in two varieties, theordinary version and the exponential version. They assign to any objet  2 C thefollowing probability:Ordinary/Unlabelled ase: Px() = 1C(x) � xjj with C(x) = X2C xjj;Exponential/Labelled ase: Px() = 1bC(x) � xjjjj! with bC(x) = X2C xjjjj! :A Boltzmann sampler (or generator) �C(x) for a lass C is a proess that produesobjets from C aording to the orresponding Boltzmann model, either ordinary orexponential.The normalization oeÆients are nothing but the values at x of the ountinggenerating funtions, respetively of ordinary type (OGF) for C and exponentialtype (EGF) for bC: C(z) = Xn�0Cnzn; bC(z) = Xn�0Cn znn! :Coherent values of x de�ned to be suh that 0 < x < �C (or � bC), with �f theradius of onvergene of f are to be onsidered. The quantity �f is referred toas the \ritial" or \singular" value. (In the partiular ase when the generatingfuntion C(x) still onverges at �C , one may also use the limit value x = �C tode�ne a valid Boltzmann model; see Setion 7 for uses of this tehnique.)For reasons whih will beome apparent, we have introdued two ategories ofmodels, the ordinary and exponential ones. Exponential Boltzmann models areappropriate for handling labelled ombinatorial strutures while ordinary modelsorrespond to unlabelled strutures of ombinatorial theory2. In the unlabelleduniverse, all elementary omponents of objets (\atoms") are indistinguishable,while in the labelled universe, they are all distinguished from one another by bearinga distintive mark, say one of the integers between 1 and n if the objet onsidered2This terminology is standard in ombinatorial enumeration and graph theory; see, e.g., thebooks of Bergeron et al., Goulden{Jakson, Harary{Palmer, Stanley, and Wilf [4, 30, 34, 60, 61, 69℄or the preprints by Flajolet & Sedgewik [28℄.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 5has size n. Permutations written as sequenes of distint integers are typial labelledobjets while words over a binary alphabet appear as typial unlabelled objetsmade of \anonymous" letters, say fa; bg for a binary alphabet.For instane, onsider the (unlabelled) lass W of all binary words, W = fa; bg?.There are Wn = 2n words of length n and the OGF is W (z) = (1 � 2z)�1. Theprobability assigned by the ordinary Botzmann model to any word w is xjwj(1�2x).There, the oherent values of x are all the positive values less than the ritial value�W = 12 . The probability that a word of length n is seleted is (2x)n(1 � 2x), sothat the Boltzmann model of binary words is logially equivalent to the followingproess: draw a random variable N aording to the geometri distribution ofparameter 2x; if the value N = n is obtained, draw uniformly at random any ofthe possible words of size n. For the labelled ase, onsider the lass K of all ylipermutations, K = f[1℄; [1 2℄; [1 2 3℄; [1; 3; 2℄; : : :g. There are Kn = (n � 1)! ylipermutations of size n over the anonial set of \labels" f1; : : : ; ng. The EGF is(3) bK(z) = Xn�1(n� 1)!znn! = Xn�1 znn = log 11� z :The probability of drawing a yli permutation of some �xed size n is then,(4) 1log(1� x)�1 xnn ;a quantity de�ned for 0 < x < � bK = 1. (This is known as the \logarithmi seriesdistribution"; see Setion 4). Like in the ase of binary words, the Boltzmannmodel an thus be realized by �rst seleting size aording to the logarithmi seriesdistribution, and then by drawing uniformly at random a yli permutation of thehosen size. We are preisely going to revert this proess and show that, in manyases, it is of advantage to draw diretly from a Boltzmann model, (Setions 3 to 5),and from there derive random generators that are eÆient for a given range of sizes(Setions 6 and 7).The size of the resulting objet under a Boltzmann model is a random variabledenoted throughout by N . By onstrution, the probability of drawing an objetof size n is, under the model of index x,(5) Px(N = n) = CnxnC(x) ; or Px(N = n) = Cnxnn! bC(x) ;for the ordinary and exponential model, respetively. The law is well quanti�ed bythe following lemma. (See, e.g., Huang's book [37℄ for similar alulations from thestatistial mehanis angle.)Proposition 1. The random size of the objet produed under the ordinary Boltz-mann model of parameter x has �rst and seond moments satisfying(6) Ex (N) = xC 0(x)C(x) ; Ex(N2) = x2C 00(x) + xC 0(x)C(x) :The same expressions are valid, but with bC replaing C, in the ase of the expo-nential Boltzmann model. In both ases, the expeted size Ex (N) is an inreasingfuntion of x.



6 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERProof. Under the ordinary Boltzmann model, the probability generating funtionof N is Xn Px(N = n)zn = C(xz)C(x) ;by virtue of (5). The result then immediately follows by di�erentiation upon set-ting z = 1:Ex (N) = � ��z C(xz)C(x) �z=1 ; Ex (N(N � 1)) = � �2�z2 C(xz)C(x) �z=1 :The very same alulation applies to exponential Boltzmann models, but with theEGF bC then replaing the OGF C.The mean size Ex(N) is always a stritly inreasing funtion of x as soon as thelass C ontains at least two elements of di�erent sizes. Indeed one veri�es by atrite alulation the identity x ddxEx (N) = Vx(N);where V denote the variane operator. Sine the variane of a nondegenerate ran-dom variable is always stritly positive the derivative of Ex (N) is positive andEx (N) is inreasing. (This property is in fat a speial ase of Hadamard's onvex-ity theorem.)For instane, in the ase of binary words, the oherent hoie x = 0:4 leadsto a size with mean value 4 and standard deviation about 4.47; for x = 0:49505,the mean and standard deviation of size beome respetively 100 and 100.5. Foryli permutations, we determine similarly that the hoie x = 0:99846 leads toan objet of mean size equal to 100, while the standard deviation is somewhathigher than for words, being equal to 234. In general, the distribution of randomsizes under a Boltzmann model, as given by Formula (5), strongly depends on thefamily under onsideration. Figure 1 illustrates three widely di�ering pro�les: forset partitions, the distribution is \bumpy", so that a hoie of the appropriate xwill most likely generate an objet lose to the desired size; for surjetions (whosebehaviour is analogous to the one of binary words), the distribution beomes fairly\at" as x nears the ritial value; for trees, it is \peaked" at the origin, so thatvery small objets are generated with high probability. It is preisely the purposeof later setions (Setions 6 and 7) to reognize and exploit the \physis" of thesedistributions in order to dedue eÆient samplers for exat and approximate sizerandom generation.Relation to other �elds. The term \Boltzmann model" omes from the greatstatistial physiist Ludwig Boltzmann whose works (together with those of Gibbsand Maxwell) led to enuniate the following priniple: Statistial mehanial on�g-urations of energy equal to E in a system have a probability3 of ourrene propor-tional to e��E. If one identi�es size of a ombinatorial on�guration with energyof a thermodynamial system and sets x = e��, then what we term the ordinaryBoltzmann models beome the usual model of statistial mehanis. The ountinggenerating funtion in the ombinatorial world then oinides with the normaliza-tion onstant in the statistial mehanis world where it is known as the partition3Distributions of the type e��E play an important rôle in the study of point proesses andthey tend to be known to probabilists under the name of \Gibbs measures".
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1 2 3 4 5 6 7 8Figure 1. Size distributions under Boltzmann models for var-ious values of parameter x. From top to bottom: the \bumpy"type of set partitions (Example 5), the \at" type of surjetions(Example 6), and the \peaked" type of general trees. (Example 2).funtion|the Zustandsumme often denoted by Z. (Note: In statistial mehanis,� = 1=(kT ) is an inverse temperature. Thus situations where x! 0 formally orre-spond to low temperatures or \freezing" and give more weight to small strutures,while x ! �� orresponds to high temperatures or \melting", that is, to largersizes of the ombinatorial on�gurations being generated.)Exponential weights of the Boltzmann type are naturally essential to the sim-ulated annealing approah to ombinatorial optimization. In the latter area, forinstane, Fill and Huber [22℄ have shown the possibility of drawing at random in-dependent sets of graphs aording to a Boltzmann distribution, at least for ertainvalues of the ontrol parameter x = e��. Closer to us, Compton [7, 8℄ has madean impliit use of what we all Boltzmann models for the analysis of 0{1 laws andlimit laws in logi; see also the aount by Burris [6℄. Vershik has initiated in aseries of papers (see [67℄ and referenes therein) a programme that an be desribedin our terms as �rst developing the probabilisti study of ombinatorial objets un-der a Boltzmann model and then \returning" to �xed size statistis by means ofTauberian arguments of sorts. (A similar desription an be applied to Compton'sapproah; see espeially the work [50℄ for reent developments in this diretion.)As these examples indiate, the general idea of Boltzmann models is ertainly notnew, and, in this work, we may at best laim originality for aspets related to thefast random generation of ombinatorial strutures.



8 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERConstrution GeneratorSingleton C = f!g �C(x) = !Union C = A+ B �C(x) = �Bern� A(x)A(x)+B(x)� �! �A(x) j �B(x)�Produt C = A�B �C(x) = ��A(x); �B(x)�Sequene C = S(A) �C(x) = �Geom(A(x)) =) �A(x)�Figure 2. The indutive rules for ordinary Boltzmann samplers.3. Ordinary Boltzmann GeneratorsIn this setion and the next one, we develop a olletion of rules by whih onean assemble Boltzmann generators from simpler ones. The ombinatorial lassesonsidered are built by means of a small set of onstrutions that have wide expres-sive power. The language in whih lasses are spei�ed is in essene the same as theone underlying the reursive method [29℄: it inludes the onstrutions of union,produt, sequene, and, in the labelled ase treated in the next setion, the addi-tional set and yle onstrutions. For eah allowable lass, a Boltzmann sampleran be derived in an entirely systemati (and even automati) manner.A ombinatorial onstrution builds a new lass C from struturally simplerlasses A;B, in suh a way that Cn is determined from smaller objets, that is, fromelements of fAjgnj=0; fBjgnj=0. The unlabelled onstrutions onsidered here aredisjoint union (+), artesian produt (�), and sequene formation (S). We de�nethese in turn and onurrently build the orresponding Boltzmann sampler �C forthe omposite lass C, given random generators �A;�B for the ingredients andassuming the values of intervening generating funtions A(x); B(x) at x to be realnumbers whih are known exatly.Finite Sets. Clearly if C is �nite (and in pratie small), one an generate arandom element of C by seleting it aording to the �nite probability distributionde�ned by the Boltzmann model: If F = f!1; : : : ; !rg, then one selets fj withprobability proportional to zjfjj. Thus, drawing from a �nite set is equivalent toa �nite probabilisti swith. Drawing from a singleton set is then a deterministiproedure whih diretly outputs the objet in question. In partiular, in whatfollows, we make use of the singleton lasses, 1 and Z , formed respetively of oneelement of size 0 (analogous to the empty word of formal language theory) and ofone element of size 1 that an be viewed as a generi \atom" out of whih omplexombinatorial strutures are formed.Disjoint union. Write C = A+ B if C is the union of disjoint opies of A andB, with size on C inherited from A;B. By disjointness, one has Cn = An + Bn, sothat(7) C(z) = A(z) +B(z):Consider a random element of C under the Boltzmann model of index x. Then, theprobability that this random element is some � 2 A isPC;x(�) � xj�jC(x) = xj�jA(x) � �A(x)C(x)� :



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 9The Boltzmann model orresponding to C(x) is then a mixture of the modelsassoiated to A(x) and B(x), the probability of seleting a partiular  in C beingPC;x( 2 A) = A(x)C(x) ; PC;x( 2 B) = A(x)C(x) :Given a generator for a Bernoulli variable Bern(p) de�ned byBern(p) = 1 with probability p; Bern(p) = 0 with probability 1� p,two Boltzmann samplers �A(x);�B(x), and the values of the OGFs A(x); B(x), aBoltzmann sampler �C for lass C = A+ B is simply obtained by the proedure:funtion �C(x : real); fgenerates C = A+ Bglet pA := A(x)=(A(x) +B(x));if Bern(pA) then return(�A(x)) else return(�B(x)) �; end.We abbreviate this onstrution as(8) �Bern�A(x)C(x)� �! �A(x) j �B(x)�;where (X �! f j g) is a shorthand notation for: \if the random variable X is 1,then exeute f , else exeute g". More generally, if X ranges over a �nite set with relements endowed with a probability measure, p1; : : : ; pr, we shall use the extendednotation(9) (Bern(p1; : : : ; pr�1) �! f1 j : : : j fr)to represent the orresponding r-fold probabilisti swith.Cartesian Produt. Write C = A � B if C is the set of ordered pairs from Aand B, and size on C is inherited additively from A;B. Generating funtions satisfy(10) C(z) = A(z) � B(z) sine C(z) = Xh�;�i2A�B zj�j+j�j:A random element of  2 C with  = (�; �) then has probabilityPC;x() � xjjC(x) = xj�jA(x) � xj�jB(x) :It is thus obtained by forming a pair h�; �i with �; � drawn independently from theBoltzmann models �A(x);�B(x):funtion �C(x : real); fgenerates C = A�Bgreturn(h�A(x);�B(x)i) findependent allsg.We shall abbreviate this shema as�C(x) = ��A(x); �B(x)�;whih an be read either as funtionally produing a pair, or as sequential exeutionof the two proedures. We shall also use the natural extension (f1; : : : ; fr) whenr-tuples are involved.Sequenes. Write C = S(A) if C is omposed of all the �nite sequenes of ele-ments of A (with size of a sequene additively inherited from sizes of omponents).The sequene lass C is also the solution to the symboli equation C = 1 + A � C



10 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER(with 1 the empty sequene), whih only involves unions and produts and is re-eted by the relation between OGFs: C = 1 +AC. Consequently,(11) C(z) = 11�A(z) :This gives rise to two logially equivalent designs for a �C sampler:(i) the reursive sampler,funtion �C(x : real); fgenerates C = S(A)gif Bern(A(x)) then return(�A(x), �C(x)) freursive allgelse return(1).(ii) the geometri sampler,funtion �C(x : real); fgenerates C = S(A)gdraw k aording to Geom(A(x));return the k-tuple h�A(x); : : : ;�A(x)i fk independent allsg.The reursive sampler for sequenes is built from �rst priniples (union and produtrules). It might in priniple loop for ever. However, by design, it repeatedly drawsa Bernoulli random variable till the value 0 is attained. Thus, the number ofomponents generated is a geometri random variable with rate A(x), where, wereall, X is geometri of rate � ifP(X = k) = (1� �)�k :For oherene to be satis�ed, we must have A(x) < 1. Then, the reursive samplerhalts with probability 1 sine the expeted number of reursive alls is �nite andequal to (1 � A(x))�1. This disussion justi�es the geometri generator, whihunwinds the reursion of the basi reursive sampler using a generator Geom(�) forthe geometri variable of parameter �.In what follows, we use the notation,(12) �Y =) f�to mean: the random variable Y is drawn; if the value Y = y is returned, then yindependent alls, f1; : : : ; fy are launhed. The sheme giving the sequene samplerfor C = S(A) is then simply:�C(x) = (Geom(A(x)) =) �(x)) :Reursive lasses. As suggested by the sequene onstrution, reursivelyde�ned lasses admit generators that all themselves reursively. A spei�ationby means of onstrutors is \well-founded" if it builds objets from smaller ones.An equivalent ondition, when no reursion is involved, is that the sequene (and,for exponential Boltzmann models below, set, and yle) operations are never ap-plied to lasses that ontain objets of size 0. For reursive strutures this is atestable property akin to \properness" in the theory of ontext-free grammars. (Aontext-free grammar is proper if the empty word is not generated with in�nitemultipliity.) This well-foundedness ondition also guarantees that the equationsde�ning generating funtion equations are well-posed and ontrating in the spaeof formal power series endowed with the standard metri, dist(f; g) = 2� val(f�g);aordingly, iteration provides a geometrially onverging approximation shemethat makes it possible to determine generating funtion values for all oherent val-ues of x (by analytiity and dominated onvergene). See [27, 29℄ for a detaileddisussion of this topi and the orresponding deision proedures.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 11Theorem 1. De�ne as spei�able an unlabelled lass that an be �nitely spei�ed(in a possibly reursive way) from �nite sets by means of disjoint unions, artesianproduts, and the sequene onstrution. Let C be an unlabelled spei�able lass andx be a oherent parameter in (0; �C). Assume as given an orale that provides the�nite olletion of exat values at a oherent value x of the generating funtionsintervening in a spei�ation of a lass C. Then, the Boltzmann generator �C(x)assembled from the de�nition of C by means of the four rules summarized in Figure 2has a omplexity measured in the number of (+;�;�;�) real-arithmeti operationsthat is linear in the size of its output objet.Proof. For a oherent value of size, the expetation of size is �nite, so that, inpartiular, size is �nite with probability 1. Given a spei�ation � for C, eahobjet ! admits a unique parse tree (or syntax tree) � [!℄ relative to �. For well-founded spei�ations, this parse tree � is of a size linear in the size of the objetprodued. We shall see later (Lemma 1 in Setion 5) that in the real-arithmetimodel a Bernoulli hoie an be e�eted with omplexity O(1) and a geometrirandom variable whih assumes value k an be generated at ost O(k + 1). Fromthis fat, the total ost of a Boltzmann sampler is of the formO0� X�2� [!℄(deg(�) + 1)1A ;where the summation ranges over all the nodes � of tree � , and deg(�) is theoutdegree of node �. Sine, for any tree � , one has P� 1 = j� j and P� deg(�) =j� j � 1, the total ost is linear in the size of � , hene linear in the size of !. Thestatement follows.Given this proposition, one an ompile automatially spei�ations of ombina-torial lasses into Boltzmann samplers. The only piee of auxiliary data requiredis a table of onstants representing the values of the ordinary generating funtionsassoiated with the sublasses that intervene in a spei�ation. These are in �nitenumber and omputable.In the examples that follow, we enlarge the expressivity of the spei�ationlanguage by allowing onstrutions of the form(13) S
(A) = �h�1; : : : ; �ri �� �j 2 A; r 2 
	 ;where 
 � N is either a �nite or a o�nite subset of the integers. If 
 is �nite, thisonstrution redues to a disjuntion of �nitely many ases and the orrespondingsampler is obtained by Bernoulli trials. If 
 is o�nite, we may assume without lossof generality that 
 = fn � m0g for some m0 2 N, in whih ase, the onstrutionS�m0(A) redues to Am0 �S(A).Example 1. Words without long runs. Consider the olletion R of all binarywords over the alphabet A = fa; bg that never have more than m onseutive our-renes of any letter (suh onseutive sequenes are also alled \runs" and interveneat many plaes in statistis, oding theory, and genetis). Here we regard m as a�xed quantity. It is not a priori obvious how to generate a random word in Rof length n: a brutal rejetion method based on generating random unonstrainedwords and �ltering out those that satisfy the ondition R will not work in polyno-mial time sine the onstrained words have an exponentially small probability. On



12 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERthe other hand, any word deomposes into a sequene of alternations also alled itsore, of the form(14) (aa � � � a j bb � � � b) (aa � � �a j bb � � � b) � � � (aa � � � a j bb � � � b);possibly pre�xed with a header of b's and post�xed with a trailer of a's. In symbols,the set W of all words is expressible by a regular expression written in our notationW = S(b)�S (aS(a)bS(b))�S(a):The deomposition was ustomized to serve for R: simply replae any internalaS(a) by S1 : :m(a) and any bS(b) by S1 : :m(b), where S1 : :m means a sequeneof between 1 and m elements, and adapt aordingly the header and trailer:R = S�m(b)�S (S1 : :m(a)S1 : :m(b))�S�m(a):The omposition rules given above give rise to a generator for R that has thefollowing form: two generators that produe sequenes of a's or b's aording toa trunated geometri law; a generator for the produt C := (S1 : :m(a)S1 : :m(b))that is built aording to the produt rule; a generator for the sequene D :=S(C) onstruted aording to the sequene rule. The generator �nally assembledautomatially is:�R(x) = (X =) b); �Core(x); (X 0 =) a)�Core(x) = �Geom �x2(1�xm)2(1�x)2 � =) ((Y =) a); (Y 0 =) b))�X;X 0 2 Geom�m (x); Y; Y 0 2 Geom1 : :m (x):Observe that a table of only a small number of real-valued onstants rationallyrelated to x and inluding1 = x; 2 = C(x) = x2(1� xm)2(1� x)�2;needs to be preomputed in order to implement the algorithm. �Here are three runs of the sampler �R(x) for m = 4 produed with the oher-ent value x = 0:5 (the ritial value is �R := 0:51879), of respetive lengths 124(trunated), 23, and 35, with the oding a =�, b = :� ��� � � ��� �� � � � �� �� � � � �� � �� ���� ���� ��� ���� � �� � � � �� � �� �� �� � ���� ��� �� � ��� � ����With this value of the parameter, the mean size of a random word produed isabout 27. The distribution turns out to be of the \at" type, like for Surjetionsin Figure 1. We shall see later in Setion 7 that one an design optimized samplersfor suh types of distributions. The tehnique applies to any language omposed ofwords with exluded patterns, meaning words that are onstrained not to ontainany of a �nite set of words as fator. (For suh a language, one an spei�allyonstrut a �nite automaton by way of the Aho{Corasik onstrution [1℄, thenwrite the automaton as a linear system of equations relating spei�ations, and�nally ompile the set of equations into a reursive Boltzmann sampler.) Moregenerally, the method applies to any regular language: it suÆes to onvert adesription of the language into a deterministi �nite automaton and apply thereursive onstrution of a sampler, or alternatively to obtain an unambiguousregular expression and derive from it a nonreursive sampler based on the geometrilaw.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 13The next set of examples is relative to strutures that satisfy nonlinear reursivedesriptions of the ontext-free type.Example 2. Rooted plane trees. Take the lass B of binary trees de�ned by thereursive spei�ation B = Z + (Z � B � B);where Z is the lass omprising the generi node. The generator �Z is deterministiand onsists simply of the instrution \output a node" (sine Z is �nite and in fathas only one element). The Boltzmann generator �B alls �Z (and halts) withprobability x=B(x) where B(x) is the OGF of binary trees,B(x) = 1�p1� 4x22x :With the omplementary probability orresponding to the strit binary ase, it willmake a all to �Z and two reursive alls to itself. In shorthand notation, thereursive sampler is�B(x) = �Bern � xB(x)� �! Z �� (Z ; �B(x); �B(x))� :In other words: the Boltzmann generator for binary trees as onstruted automati-ally from the omposition rules produes a random sample of the branhing proesswith probabilities ( xB(x) ; xB(x)2B(x) ). Note that the generator is de�ned for x < 1=2 (theradius of onvergene of B(x)), in whih ase the branhing proess is subritial,so that the algorithm halts in �nite expeted time, as it should. Only two onstantsare needed for implementation, namely x and the quadrati irrational xB(x) .Unbalaned 2-3 trees in whih only external nodes ontribute to size are similarlyprodued by U = Z + U2 + U3. Figure 3 displays suh a tree for the value of theparameter x set at the ritial value �U = 527 . (This ritial value an be determinedby methods exposed in Setion 7.) In this ase, the branhing probabilities for anullary, binary, and ternary node are found to be respetivelyp0 = 59 ; p2 = 13 ; p3 = 19 ;and these three onstants are the only ones required by the algorithm. A typialrun of 30 Boltzmann samplings produes trees with total number of nodes equal to(15) 3; 6; 1; 1; 6; 7; 33; 1; 1; 1; 9; 1; 1; 3; 1; 3; 169; 1881; 1; 54; 6; 1; 1; 3; 3746; 1; 1; 1; 1; 1;whih empirially gives an indiation of the distribution of sizes (it turns out to beof the peaked type, like in Figure 1, bottom). We shall see later in Setion 7 thatone an atually haraterize the pro�le of this distribution (it deays like n�3=2)and put to good use some of its features.Unary-binary trees (also known as Motzkin trees) are de�ned by V = Z(1+V+V2). General plane trees, G, where all degrees of nodes are allowed, an be spei�edby the grammar G = Z �S(G);with OGF G(z) = (1�p1� 4z)=2. Aordingly, the automatially produed sam-pler is �G(x) = (Z ; (Geom(G(x)) =) �G(x))) ;whih orresponds to the well-known fat that suh trees are equivalent to trees ofa branhing proess where the o�spring distribution is geometri. �
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Figure 3. Random unbalaned 2{3 trees of 173 and 2522 nodes(in total) produed by a ritial Boltzmann sampler.Example 3. Seondary strutures. This example is inspired by works of Water-man et al., themselves motivated by the problem of enumerating seondary RNAstrutures [36, 62℄. To �x ideas, onsider rooted binary trees where edges on-tain 2 or 3 atoms and leaves (\loops") ontain 4 or 5 atoms. A spei�ation isW = (Z4 +Z5) + (Z2 +Z3)2 � (W �W). A Bernoulli swith will deide whetherto halt or not, two independent reursive alls being made in ase it is deided toontinue, with the algorithm being sugared with suitable Bernoulli draws. Here isthe omplete ode:�A(x) = �Bern( x4x4+x5 ) �! Z4 �� Z5��B(x) = �Bern( x2x2+x3 ) �! Z2 �� Z3�let p = (x4 + x5)=W (x) = 12 (1 +p1� 4x8(1 + x)3);�W (x) = �Bern(p) �! �A(x) �� �B(x); �W (x); �B(x); �W (x)� :The method is learly universal for this entire lass of problems. �Example 4. Nonrossing graphs. Consider graphs whih, for size n, have ver-ties at the nth roots of unity, vk = e2ik�=n, and are onneted and nonrossing inthe sense that no two edges are allowed to meet in the interior of the unit irle;see Figure 4 for a random instane. The generating funtion of suh graphs hasbeen �rst determined by Domb and Barret [15℄ motivated by the investigation ofertain perturbative expansions of statistial physis. Their derivation is not basedon methods onduive to Boltzmann sampling, though. On the other hand, theplanar struture of suh on�gurations entails a neat deomposition, whih is de-sribed in [24℄. At the top level, onsider the graph as rooted at vertex v0. Let viand vj be two onseutive neighbours of v0; the subgraph indued on the vertex setfvi; vi+1; : : : ; vjg is either a onneted graph of D or is formed of two disjoint om-ponents ontaining vi and vj respetively. Also, if v` is the �rst neighbour of v0 and
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Figure 4. A random onneted nonrossing graph of size 50.vm is the last neighbour, there are two onneted omponents on fv1; : : : ; v`g andon fvm; : : : ; vn�1g respetively. The grammar for onneted nonrossing graphs isthen a transription of this simple deomposition, although its detail is ompliatedas are must be exerised to avoid double ounting of verties. The lass of all suhonneted nonrossing graphs is denoted by X and the grammar is:X = Z +Z � E ; E = X �S(E + X � (1 + E)) �X :One �nds that E(z) = �1+X(z)=z while X(z) is a branh of the algebrai funtionde�ned impliitly by X3 +X2 � 3zX + 2z2 = 0;and the ritial value (the upper limit of all oherent values) is �X = 118p3 :=0:09622. The Boltzmann sampler ompiled from the spei�ation is then of theglobal form�X(x) = �Bern � xX(x)� �! Z �� Z; �E(x)��E(x) = (�X(x); (Geom(E(x) +X(x)(1 +E(x))) =) ((� � � ))) ; �X(x)) :The algorithm needs the parameter x, the ubi quantity y = X(x) and a smallnumber of quantities that are all rationally expressed in terms of x and y. Forinstane, the oherent hoie x = 0:095 whih is lose to the ritial value �X , leadsto X(x) := 0:11658. There is then a probability of about 17000 to attain a graphof size exatly 50; one suh graph drawn uniformly at random is represented inFigure 4. �In the last three ases (trees, seondary strutures, and nonrossing graphs), thepro�le of the Boltzmann distribution resembles that of general trees in Figure 1.Optimized algorithms adapted to suh tree-like pro�les are disussed in Setions 6and 7, where it is shown that random generation an be ahieved in linear timeprovided a �xed nonzero tolerane on size is allowed. The method applies to anylass that an be desribed unambiguously by a ontext-free grammar.4. Exponential Boltzmann GeneratorsWe onsider here labelled strutures in the preise tehnial sense of ombinatorialtheory [4, 28, 30, 34, 60, 61, 69℄. A labelled objet of size n is then omposed of ndistinguishable atoms, eah bearing a distintive label that is an integer in theinterval [1; n℄. For instane, the lass K of labelled irular graphs, where yles



16 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERConstrution GeneratorSingleton C = f!g �C(x) = !Union C = A+ B �C(x) = �Bern� bA(x)bA(x)+ bB(x)� �! �A(x) j �B(x)�Produt C = A ? B �C(x) = ��A(x); �B(x)�Sequene C = S(A) �C(x) = �Geom( bA(x)) =) �A(x)�Set C = P(A) �C(x) = �Pois( bA(x)) =) �A(x)�Cyle C = C(A) �C(x) = �Loga( bA(x)) =) �A(x)�Figure 5. The indutive rules for exponential Boltzmann samplers.are oriented in some onventional manner (say, positively) isK = ( h1 ; ����6h1h2 ; ����6h1h2 h3 ; ����6h1h3 h2 ; : : :) :Clearly, there are Kn = (n�1)! labelled objets of size n � 1, and the orrespondingexponential generating funtion bK(z) has been determined in (3). In what follows,we fous on generating the \shape" of labelled objets|for instane, the shape ofan n-yli graph would be a yle with n anonymous dots plaed on it. The reasonfor doing so is that labels an then always be obtained by superimposing a randompermutation4 on the unlabelled nodes. Note however, that the unlabelled (ordinary)and labelled (exponential) Boltzmann models assign rather di�erent probabilitiesto objets: in the unlabelled ase, there would be only kn � 1 objet of size n, withOGF k(x) = x=(1 � x) so that the distribution of omponent sizes is geometri,while in the labelled ase, the logarithmi series distribution (4) ours.Labelled ombinatorial lasses an be subjeted to the labelled produt de�nedas follows: if A and B are labelled lasses, the produt C = A ? B is obtained byforming all ordered pairs h�; �i with � 2 A and � 2 B and relabelling them inall possible order-onsistent ways. Straight from the de�nition, one has a binomialonvolution Cn =Pnk=0 �nk�AkBn�k; where the binomial takes are of relabellings.In terms of exponential generating funtions, this beomesbC(z) = bA(z) � bB(z):Like in the ordinary ase, we proeed by assembling Boltzmann generators forstrutured objets from simpler ones.Disjoint union. The unlabelled onstrution arries over verbatim to this aseto the e�et that, for labelled lasses A;B; C satisfying C = A+B, EGFs are relatedby bC(z) = bA(z) + bB(z) and the exponential Boltzmann sampler for C is�C(x) = �Bern � bA(x)bA(x)+ bB(x)� �! �A(x) �� �B(x)� :Labelled produt. The artesian produt onstrution adapts to this ase withminor modi�ations: to produe an element from C = A ?B, simply produe a pair4Drawing a random permutation of [1; n℄ only neessitates O(n) real operations [39, p. 145℄.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 17by the artesian produt rule using values bA(x); bB(x):�C(x) = (�A(x); �B(x)) :Complete by a randomly hosen relabelling if atual values of the labels are needed.Sequenes. In the labelled universe, C is the sequene lass of A, written C =S(A) i� it is omposed of all the sequenes of elements from A up to order-onsistentrelabellings. Then, the EGF relationbC(x) = Xk�0 bA(x)k = 11� bA(x)holds, and either of the two onstrutions of the generator �C from �A given inSetion 3 is appliable. In partiular, the nonreursive generator is�C(x) = �Geom( bA(x)) =) �A(x)�;where the stenographi onvention of (12) is employed.Sets. This is a new onstrution that we did not onsider in the unlabelled ase.The lass C is the set-lass of A, written C = P(A) (P is reminisent of \powerset")if C is the quotient of sequenes, C = S(A)= �, by the relation � that delares twosequenes as equivalent if one derives from the other by an arbitrary permutationof the omponents. It is then easily seen that the EGFs are related bybC(x) = Xk�0 1k! bA(x)k = e bA(x);where the fator 1=k! \kills" the order present in k{sequenes.The Poisson law of rate � is lassially de�ned byP(X = k) = e���kk! :On the other hand, under the exponential Boltzmann, the probability for a set in Cto have k omponents in A is1bC(x) 1k! bA(x)k = e� bA(x) bA(x)kk! ;that is, a Poisson law of rate bA(x). This gives rise to a simple algorithm forgenerating sets (analogous to the geometri algorithm for sequenes):�C(x) = �Pois( bA(x)) =) �A(x)�:Cyles. This onstrution, written C = C(A), is de�ned like sets but with twosequenes being identi�ed if one is a yli shift of the other. The EGFs satisfybC(x) = Xk�1 1k bA(x)k = log 11� bA(x) ;where the fator 1=k \onverts" k{sequenes into k{yles. The log-law of rate � <1, an \integral" of the geometri law also known as the logarithmi series distribu-tion, is the law of a variable X suh thatP(X = k) = 1log(1� �)�1 �kk :



18 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFER(This is the same as in Equation (4); the distribution ours in statistial eologyand eonomy and forms the subjet of Chapter 7 of [38℄.) Then yles under theexponential Boltzmann model an be drawn like in the ase of sets upon replaingthe Poisson law by the log-law:�C(x) = �Loga( bA(x)) =) �A(x)�:These onstrutions are summarized in Figure 5.For reasons idential to the ones that justify Theorem 1, one has:Theorem 2. De�ne as spei�able a labelled lass that an be �nitely spei�ed (ina possibly reursive way) from �nite sets by means of disjoint unions, artesianproduts, as well as the sequene, set and yle onstrutions. Let C be a labelledspei�able lass and x be a oherent parameter in (0; �C). Assume as given an or-ale that provides the �nite olletion of exat values at a oherent value x of thegenerating funtions intervening in a spei�ation of a lass C. Then, the Boltz-mann generator �C(x) assembled from the de�nition of C by means of the six rulesof Figure 5 has a omplexity measured in the number of (+;�;�;�) real-arithmetioperations that is linear in the size of its output objet.(We also allow onstrutionsS
;P
;C
 as in (13); in this ase, the random variableof geometri, Poisson, or logarithmi type should be onditioned to assume its valuesin the set 
.)Like in the unlabelled ase, Boltzmann samplers an be ompiled automatiallyfrom ombinatorial spei�ations. There is here added expressivity in the languageof spei�ations, thanks to the inlusion of the Set and Cyle onstrutions. Inthe examples that follow, we omit the hat-marker \ bf", whenever the exponen-tial/labelled harater of the model is lear from the ontext.Example 5. Set partitions. A set partition of size n is a partition of the integerinterval [1; n℄ into a ertain number of nonempty lasses, also alled bloks, thebloks being by de�nition unordered between themselves. Let P�1 represent thepowerset onstrution where the number of omponents is onstrained to be � 1.(This modi�ed onstrution is easily subjeted to random generation by using atrunated Poisson variable K, where K is onditioned to be � 1.) The labelled lassof all set partitions is then de�nable as S = P(P�1(Z)), where Z onsists of a singlelabelled atom, Z = f1g. Observe that the EGF of S is the well-known generatingfuntion of the Bell numbers, S(z) = eez�1. By the omposition rules, one gets arandom generator as follows: Choose the number K of bloks as Poisson(ex � 1).Draw K independent opies X1; X2; : : : ; XK from the Poisson law of rate x, buteah onditioned to be at least 1. In symbols:�S(x) = �Pois(ex � 1) =) �Pois�1 (x) =) Z�� :What this generates is in reality the \shape" of a set partition (the number of bloks(K) and the blok sizes (Xj)), with the \orret" distribution. To omplete thetask, it suÆes to transport this struture on a random permutation of the integersbetween 1 and N , where N = X1 + � � �+XK .The proess distintly di�ers from the lassial algorithm of Nijenhuis and Wilf [51℄that requires tables of large integers. It is related to a ontinuous model devised byVershik [67℄ that an be interpreted as generating random set partitions based onS(x) = ex=1! � ex2=2! � ex3=3! � � � ;
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Figure 6. A random partition obtained by the Boltzmann pa-rameter of parameter x = 6, here of size n = 2356 and omprisedof 409 bloks: (left) the suessive blok sizes generated; (right)the blok sizes in sorted order.i.e., by ordered blok lengths, as a potentially in�nite sequene of Poisson variablesof parameters x=1!, x2=2!, and so on. �Figure 6 represents a random set partition produed by the Boltzmann modelof parameter x = 6. This partiular objet has size n = 2356, the expeted sizebeing Ex (N) = 2420 for this value of the parameter. The loseness between theobserved size and its mean value agrees with the onentration that is pereptibleon Figure 1. In addition, the Boltzmann model immediately provides a simpleheuristi model of partitions of large size. Objets of size \near" n, are produedby the value xn de�ned by xnexn = n, that is, xn � logn � log logn. Then, thenumber of bloks is expeted to be about exn � n=(logn). This number beinglarge, and individual bloks being generated by independent Poisson variables ofparameter xn, we expet, for large n, the sorted pro�le of bloks to onverge tothe histogram of the Poisson distribution of rate xn (Figure 6, right). As shown byVershik [67℄, this heuristi model is indeed a valid asymptoti model of partitionsof large sizes.Example 6. Random surjetions (or ordered set partitions). These may be de�nedas funtions from [1; n℄ to [1; n℄ suh that the image of f is an initial segment of [1; n℄(i.e., there are no \gaps"). One has for the lass Q of surjetions Q = S(P�1(Z)).Thus a random generator for Q is:�Q(x) = �Geom(ex � 1) =) �Pois�1 (x) =) Z�� :In words: �rst hoose a number of omponents given by a geometri law and thenlaunh a number of Poisson generators onditioned to be at most 1. �Set partitions �nd themselves attahed to a ompound (PoissonÆPoisson) pro-ess, whereas surjetions are generated by a ompound (GeometriÆPoisson) proess(with suitable dependenies on parameters). This reets the basi ombinatorialopposition between freedom and order (for bloks). Here are two more examples.



20 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERExample 7. Cyles in permutations. This orresponds to P = P(C�1(Z)) and isobtained by a (PoissonÆLog) proess:�P (x) = �Pois(log(1� x)�1) =) (Loga(x) =) Z)� :This example is loosely related to the Shepp{Lloyd model [57℄ that generates per-mutations by ordered yle lengths, as a potentially in�nite sequene of Poissonvariables of parameters x=1, x2=2, and so on. The interest of this onstrution isto give rise to a number of useful partiularizations. For instane derangements(permutations suh that �(x) 6= x) are produed by P = P(C�2(Z)); involutions(permutations suh that � Æ �(x) = x) are given by P = P(C1 : : 2(Z)). �Example 8. Assemblies of �laments. Imagine assemblies of linear �laments oat-ing freely in a liquid. We may model these as sets of sequenes, F = P(S�1(Z)).The EGF is exp� z1�z�. The random generation algorithm is a ompound of theform (PoissonÆGeometri), with appropriate parameters:�F (x) = �Pois � x1�x� =) �Geom�1 (x) =) Z�� :The orresponding ounting sequene, 1; 1; 3; 13; 73; 501; : : :, appears as A000262 inSloane's enylopedia [58℄. This example is losely related to linear forests andposets as desribed in Burris' book (see [6℄, pp. 23{24 and Ch. 4). �At this stage, it may be of interest to note that many lassial probabilisti distri-butions of probability theory an be retrieved as (size distributions of) Boltzmannmodels assoiated to simple ombinatorial games. Consider an unbounded supplyof distinguishable (i.e., labelled) balls. View an urn as an unordered �nite olletionof balls (P(Z)) and a stak as an ordered olletion of balls (S(Z)). The geometriand Poisson distributions arise as the size distributions of the stak and the urn. If,by an exlusion priniple, an urn is only allowed to ontain 0 or 1 ball (1+Z), thenthe family of all basi Bernoulli distributions results. If m urns or staks are on-sidered, then the distributions are Poisson or negative binomial, respetively, and,with exlusion, one gets in this way the binomial distributions orresponding to mtrials. If balls and urns are taken to be indistinguishable, one obtains automatiallyVershik's model of integer partitions [67℄, whih is an in�nite produt of geometridistributions of exponentially deaying rates. (The reent work by Milenkovi� andCompton [50℄ disusses exat and asymptoti transforms assoiated to several suhdistributions.) For similar reasons, the two lassial models of random graphs dueto Erd}os and R�enyi are related to one another by \Boltzmannization". A largenumber of examples along similar lines ould learly be listed.5. The realization of Boltzmann samplersIn this setion, we make expliit the way Boltzmann sampling an be imple-mented and sketh a disussion of the main omplexity issues involved. Broadlyspeaking, samplers an be realized under two types of omputational models or-responding to omputations arried out over the set R of real numbers or theset S = f0; 1gN of in�nite-length binary strings. (In the latter ase, only �nitepre�xes are ever used.) These are the real-arithmeti model, R, whih is the oneonsidered here and the bit string model (or Boolean model), S, whose algorithmswill be desribed in a future publiation. The \ideal" real-domain model R om-prises the elementary operations +;�;�;� eah taken to have unit ost.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 21By de�nition, a Boltzmann sampler requires as input the value of the ontrolparameter x that de�nes the Boltzmann model of use. As seen in previous setions,it also needs the �nite olletion of values at x of the generating funtions thatintervene in a spei�ation, in order to drive Bernoulli, geometri, Poisson, andlogarithmi generators. We assume these values to be provided by what we all the(generating funtion) \orale":Oralex C(x); : : : Sampler�C(x)-Suh onstants need only be preomputed one; they an be provided by a multi-preision pakage or a omputer algebra system used as oroutine. We take herethese onstants as given, noting that the orresponding power series expansionsat 0 are omputable in low polynomial omplexity (this is, e.g., enapsulated inthe Maple pakage Combstrut; see [27, 29℄ for the underlying priniples) so thatvalues of the generating funtions of onstrutible lasses stritly inside their disof onvergene are omputable real numbers of low polynomial time omplexity.There remains to speify fully generators for the probabilisti laws Geom(�),Pois(�), Loga(�), as well as the Bernoulli generator Bern(p), where the latter out-puts 1 with probability p and 0 otherwise. What is assumed here is a randomgenerator `uniform()' that produes at unit ost a random variable uniformly dis-tributed over the real interval (0; 1).Bernoulli generator. The Bernoulli generator is simplyBern(p) := if uniform() � p then return(1) else return(0) �.This generator serves in partiular to draw from unions of lasses.Geometri, Poisson, and Logarithmi generators. For the remaininglaws, we let pk be the probability that a random variable with the desired distri-bution has value k, namely,Geom(�) : pk = (1� �)�k ; Pois(�) : pk = e���kk! ; Loga(�) : pk = 1log(1� �)�1 �kk :The general sheme that goes well with real-arithmeti models is the sequentialalgorithm:U := uniform(); S := 0; k := 0;while U < S do S := S + pk; k := k + 1; od;return(k).This sheme is nothing but a straightforward implementation based on inversionof distribution funtions (see [14, Se. 2.1℄ or [39, Se. 3.4.1℄). For the three dis-tributions under onsideration, the probabilities pk an themselves be omputedreurrently on the y as follows:(16) Geom(�) Pois(�) Loga(�)p0 = (1� �) p0 = e�� p1 = 1= �log(1� �)�1�pk+1 = �pk pk+1 = �pk 1k+1 pk+1 = �pk kk+1 :(Suh priniples also apply to onstrutions modi�ed by a onstraint on the num-ber of omponents; e.g., to generate a Pois�1(�) random variable, initialize thegenerator with p1 = (e� � 1)�1 and k = 1.)



22 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERObserve that the transendental values in (16) (like e��) are in the presentontext already provided by the orale. For instane, if one has to generate setsorresponding to C = P(A), then the generator for sets, Pois(A(x)) =) �A(x),requires the knowledge of e�A(x) whih is none other than 1=C(x). Under themodel that has unit ost for the four elementary real-arithmeti operations, thesequential generators thus have a useful property:Lemma 1. For either of the geometri, Poisson, or logarithmi generators, a ran-dom variable with outome k is drawn with a number of real-arithmeti operationswhih is O(k + 1).This lemma ompletes te justi�ation of Theorems 1 and 2.In pratie, one may realize approximately a Boltzmann sampler by trunatingreal numbers to some �xed preision, say using oating point numbers representedon 64 bits or 128 bits. The resulting samplers operate in time that is linear in the sizeof the objet produed, though they may fail (by lak of digits in values of generatingfuntions, i.e., by insuÆient auray in parameter values) in a small number ofases, and aordingly must deviate (slightly) from uniformity. Pragmatially, suhsamplers are likely to suÆe for many simulations.A sensitivity analysis of trunated Boltzmann samplers would be feasible, thoughrather heavy to arry out. One ould even orret perfetly the lak of uniformityby appealing to an adaptive preision strategy based on guaranteed multipreisionoating point arithmeti|-e.g., double the auray of omputations when moredigits are needed. In ase of oating-point implementations of the reursive method,suh ideas are disussed in Zimmermann's survey [71℄, and the reader may get afeeling of the type of analysis involved by referring to the works of Denise, Dutour,and Zimmermann [12, 13℄. In a ompanion paper, we shall explore another routeand desribe purely disrete Boltzmann samplers whih are solely based on binaryoin ips in the style of Knuth and Yao's work [40℄ and have the additional featureof \automatially" deteting when auray is insuÆient.6. Exat-size and approximate-size samplingOur primary objetive in this artile is the fast random generation of objetsof some large size. In this setion and the next one, we onsider two types ofonstraints on size.| Exat-size random sampling, where objets of C should be drawn uniformlyat random from the sublass Cn of objets of size exatly n.| Approximate-size random sampling, where objets should be drawn witha size in an interval of the form I(n; ") = [n(1 � "); n(1 + ")℄, for somequantity " � 0 alled the (relative) tolerane. In appliations, one is likelyto onsider ases where " is a small �xed number, like 0.05, orresponding toan unertainty on sizes of �5%. Though size may utuate (within limits),sampling is still unbiased in the sense that two objets with the same sizeare drawn with equal likelihood.The onditions of exat and approximate-size sampling are automatially satis�edif one �lters the output a Boltzmann generator by retaining only the elements thatobey the desired size onstraint. (As a matter of fat, we have liberally madeuse of this feature in previous examples, e.g., when seleting the trees of Figure 3to be large enough.) Suh a �ltering is simply ahieved by a rejetion tehnique.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 23The main question then beomes: \When and how an the rejetion strategy bereasonably eÆient?".The major onlusion of this setion is that in many ases, inluding all theexamples seen so far, approximate-size sampling is ahievable in linear time underthe (exat) real-arithmeti model. In addition, the onstants appear to be not toolarge if a \reasonable" tolerane on size is aepted. Preisely, we develop anal-yses and optimizations orresponding to the three ommon types of distributionsexempli�ed in Figure 1.| For size distributions that are \bumpy", the straight rejetion strategysueeds with high probability in one trial, hene the linear-time omplexityof approximate-size Boltzmann sampling results (Setion 6.1).| For size distributions that are \at", the straight rejetion strategy sueedsin O(1) trials on average, a fat that again ensures linear-time omplexitywhen a nonzero tolerane on size is allowed (Setion 6.2).| For size distributions that are \peaked" (at the origin), the tehnique ofpointing may be used to transform automatially spei�ations into equiv-alent ones of the at type (Setion 6.3).6.1. Size-ontrol and rejetion samplers. The basi rejetion sampler denotedby �C(x;n; ") uses a Boltzmann generator �C(x) for the lass C and is desribedas follows, for any x with 0 < x < �C , n a target size and " � 0 a relative tolerane:funtion �C(x;n; ");fReturns an objet of C in I(n; ") := [n(1� "); n(1 + ")℄grepeat  := �C(x) until jj 2 I(n; ");return(); end.The rejetion sampler �C depends on a parameter x that one may hoose arbitrarilyamongst all oherent values. It simply tries repeatedly until an objet of satisfatorysize is produed. The ase " = 0 then gives exat-size sampling.The outome of a basi Boltzmann sampler has a random size N whose distri-bution is desribed by Proposition 1. One hasEx (N) = �1(x); Ex(N2) = �2(x); Ex (N2)� Ex (N)2 = �(x)2;where � represents standard deviation, with�1(x) := xC 0(x)C(x) ; �2(x) := x2C 00(x)C(x) + xC 0(x)C(x) ; �(x) =p�2(x)� �1(x):If x stays bounded away from the ritial value �C , then �1(x) remains bounded,so that the objet drawn is likely to have a small size (on average and in probability).Thus, values of x approahing the ritial value � � �C have to be onsidered.Introdue the mean value ondition as(17) Mean Value Condition : limx!�� �1(x) = +1:(This ondition is satis�ed in partiular when C(��) = +1.) Then a \naturaltuning" for the rejetion sampler onsists in adopting as ontrol parameter x thevalue xn that satis�es(18) xn is the root in (0; �) of n = xC 0(x)C(x) ;whih is uniquely determined. One then has:
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Figure 7. A random assembly of �laments of size n = 46299 pro-dued by the exponential Boltzmann sampler tuned to x50000 :=0:9952 (left) and its �laments presented in inreasing order oflengths (right).Theorem 3. Let C be a ombinatorial lass and " a �xed (relative) tolerane onsize. Assume the Mean Value Condition (17) and the following variane ondition(19) Variane Condition : limx!�� �(x)�1(x) = 0:Then, the rejetion sampler �C(xn;n; ") equipped with the value x = xn impliitlydetermined by (18) sueeds in one trial with probability tending to 1 as n ! 1.In partiular, if C is spei�able, then the overall ost of approximate-size samplingis O(n) on average.Proof. This is a diret onsequene of Chebyshev's inequalities.The mean and variane onditions are satis�ed by the lass S of set partitions(Example 5, observe onentration on Figure 1, top) and the lass F of assemblies of�laments (Example 8 and Figure 7). In e�et, for set partitions, S, the exponentialgenerating funtion is entire, whih orresponds to � = +1. One �nds�1(x) = xex; �(x)2 = x(x + 1)ex;while xn determined impliitly by the equation xnexn = n satis�es xn � logn �log logn. These quantities are most easily interpreted when expressed in terms of nitself: �1(xn) = n; �(xn) �pn logn:For assemblies of �laments, F , one �nds � = 1 and �1(x) = x(1�x)2 , so that xnhas value xn = 1 + 12n � p1 + 4n2n � 1� 1pn:



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 25and �(xn) � p2n. Here is, for various values of n, a table of the sizes of objetsdrawn in bathes of 10 runs and the interval in whih sizes are found to lie:n xn N (bath of 10 runs) Nmin{Nmax50 0:85857 61; 80; 62; 13; 32; 65; 21; 34; 67; 16 13 { 80500 0:95527 647; 426; 323; 752; 599; 457; 505; 318; 358; 424 318 { 7525; 000 0:98585 4575; 4311; 4419; 4257; 4035; 4067; 4187; 4984; 4543; 5035 4035 { 5035The fat that onentration of distribution improves with larger values of n ispereptible on suh data. This feature in turn implies sampling in linear time, assoon as a positive tolerane on size is granted.Exat-size sampling. The previous disussion suggests investigating onditionsunder whih exat-size generation is still reasonably eÆient. The smooth aspetof the \bumpy" urves assoiated with set partitions suggests the possibility that,in suh ases, there exist a loal limit distribution for sizes, as x! �, implying anexpeted ost of O(n�(xn)) for exat-size sampling. It turns out that a suÆient setof omplex-analyti onditions an be stated by borrowing results from the theory ofadmissibility, an area originally developed for the purpose of estimating asymptoti-ally Taylor oeÆients of entire funtions. This theory was started in an importantpaper of Hayman [35℄ and is luidly exposed in Odlyzko's survey [52, Se. 12℄. Afuntion is said to be H-admissible if, in addition to the mean value ondition (17)and the variane ondition (19), it satis�es the following two properties:� There exists a funtion Æ(x) de�ned for x < � with 0 < Æ(x) < � suh that,for j�j < Æ(x) as x! ��,f(xei�) � f(x)eia�� 12 b�2 ; a = �1(x); b = �2(x):� Uniformly as x! ��, for Æ(x) � j�j � �,f(xei�) = o�f(x)�(x)� :These onditions are the minimal ones that guarantee the appliability of the saddle-point method to Cauhy oeÆient integrals. They imply in partiular knowledgeof the asymptoti form of the oeÆients of f , namely,fn � [zn℄f(z) � f(xn)p2�xnn�(xn) ; n!1:We state:Theorem 4. Consider a lass C whose generating funtion f(z) satis�es the omplex-analyti onditions of H-admissibility. Then exat size rejetion sampling base on�C(xn;n; 0) sueeds in a mean number of trials that is asymptoti top2��(xn):In partiular, if C is spei�able, then the overall ost of exat-size sampling isO(n�(xn)) on average.Proof. This is a diret adaptation of one of Hayman's estimates, see Theorem Iof [35℄ (speialized in the notations of [35℄ as r ! xn, n 7! m),fmxmnf(xn) � 1p2��(xn) exp�� (m� n)22�(xn)2 + o(1)� ;



26 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERuniformly for all m as xn ! �. This last equation means generally that the distri-bution of size values m is asymptotially normal as xn ! ��, that is, as n ! 1.The speialization m = n gives the statement.Hayman admissibility is easily heked to be satis�ed by the EGFs of set par-titions and assemblies of �laments. There results that exat size sampling has thefollowing osts:Set partitions : O(n3=2plogn); Assemblies : O(n3=2):Another result of Hayman states that, under H-admissibility, standard deviationis smaller than the mean, �(xn) = o(n) (see Corollary I of [35℄), so that exat-sizegeneration by Boltzmann rejetion is neessarily subquadrati (o(n2)).The usefulness of Hayman's onditions devolves from a rih set of losure prop-erties: under mild restritions, admissible funtions are losed under sum (f + g),produt (fg), and exponentiation (ef ). An informally stated onsequene is then:For lasses whose generating funtion is \dominated" by an exponential, i.e., the\prinipal" onstrution is of the set type, approximate-size generation is of lineartime omplexity and exat-size generation is of subquadrati omplexity. Here area few more examples.� Statistial lassi�ation theory superimposes a tree struture on objetsbased on a similarity measure (e.g., the number of ommon phenotypes orgenes). In this ontext, the value of a proposed lassi�ation tree may be as-sessed by omparing it to a random lassi�ation tree (strutural propertiesshould be substantially di�erent in order for the lassi�ation to be likely tomake sense). Suh omparisons in turn bene�t from random generation al-gorithms, a point originally made by Van Cutsem and ollaborators [63, 64℄.For instane, hierarhies are labelled objets determined byH = Z +P�2(H);and they orrespond to Shr�oder's systems of ombinatorial theory [9,p. 223{224℄. Hierarhies with a bounded depth of nesting are of interest inthis ontext, and their EGFsez � 1; z + eez�1 � ez; ez+eez�1�ez � 1� eez�1 + ez; : : : ;are all admissible, hene amenable to the onlusions of Theorem 4.� Similar omments apply to labelled trees (Cayley trees, T = Z ?P(T )) ofbounded height, with the sequene of EGFs starting asz; zez; zezez ; zezezez ; ; : : : ;and to \superpartitions" obtained by iterating the onstrution P�1:eez�1 � 1; eeez�1�1 � 1; eeeez�1�1�1 � 1;where, e.g., the number sequene (1; 3; 12; 60; 358; : : :) assoiated to theseond ase is A000258 of Sloane's EIS [58℄. Related strutures are ofinterest in �nite model theory; see [68℄ for an introdution.� Admissibility also overs generating funtions of the type eP (z), with P apolynomial with nonnegative oeÆients. This inludes permutations withsizes of yles onstrained to be in a �nite set 
, for instane involutions



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 27(I = P(C1;2(Z)), the solutions of �d = Id in the symmetri group, andpermutations whose longest yle is at most some �xed value m.The onditions of Theorem 3 are not satis�ed by words without long runs (Ex-ample 1), surjetions (Example 6, observe the lak of onentration on Figure 1,middle), and permutations (Example 7), although they fail by little, sine the meanand standard deviation, �1(x) and �(x), happen to be of the same order of mag-nitude. They fail more dramatially for binary trees (Example 2 and Figure 1,bottom), seondary strutures (Example 3), and nonrossing graphs (Example 4),where the ratio �(x)=�1(x) now tends to in�nity, in whih ase sizes produed byBoltzmann models exhibit a high dispersion. As disussed in the next two subse-tions and in Setion 7, suh situations an however be dealt with.6.2. Singularity types and rejetion samplers. It is possible to disuss at afair level of generality ases where rejetion sampling is eÆient. The disussionis fundamentally based on the types of singularities that the generating funtionsexhibit. This is an otherwise well-researhed topi as it is entral to asymptotienumeration [26, 28, 52℄.De�nition 2. A funtion f(z) analyti at 0 and a with �nite radius of analyti-ity � > 0 is said to be �{singular if it satis�es the two onditions:(i) The funtion admits � as its only singularity on jzj = � and it is ontinuablein a domain �(r; �) = �z �� z 6= �; jzj < r; arg(z � �) 62 (��; �)	 ;for some r > � and some � satisfying 0 < � < �2 .(ii) For z tending to � in the � domain, f(z) satis�es a singular expansion ofthe formf(z) �z!�P (z) + 0(1� z=�)�� + o((1� z=�)��); � 2 R n f0;�1;�2; : : :g;where P (z) is a polynomial. The quantity �� is alled the singular exponentof f(z).For reasons argued in [27℄, all the generation funtions assoiated with spei�-able models in the sense of this artile are either entire or, else, they have dominantsingularities whih are isolated, hene they satisfy ontinuation onditions simi-lar to (i). Condition (ii) is also granted in a large number of ases. Here, wordswithout long runs, surjetions, and permutations (Examples 1, 6, and 7) have gener-ating funtions with a polar singularity, orresponding to the singular exponent �1.Trees, seondary strutures, and nonrossing graphs (Example 2, 3, and 4), whihare reursively de�ned have singular exponent 12 ; see [24, 49℄ and Setion 8 below.Many properties go along with the onditions of De�nition 2. Most notably, theounting sequene assoiated with a generating funtion f(z) that is �-singularsystematially obeys an asymptoti law:(20) [zn℄f(z) � 0�(�)��nn��1; (n!1):(This results from the singularity analysis theory exposed in [26, 28, 52℄.)Returning to random generation, one has:



28 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERTheorem 5. Let C be a ombinatorial lass suh that its generating funtion is�-singular with an exponent �� < 0. Then the rejetion sampler �C(xn;n; ")orresponding to a �xed tolerane " > 0 sueeds in a number of trials whose expetedvalue is asymptoti to the onstant1��(") ; where ��(") = ���(�) Z "�"(1 + s)��1e��(1+s) ds:If C is spei�able, approximate-size Boltzmann sampling based on �C(xn;n; ") hasost that is O(n); exat-size sampling has ost O(n2).Here is a table of numerial values of the expeted number of trials (1=��(")) forvarious values of the singular exponent �� and tolerane ":(21) " = 0:2 " = 0:1 " = 0:05 " = 0:01�� = �2 4:619 9:236 18:47 92:36�� = � 32 5:387 10:80 21:61 108:0�� = �1 6:750 13:56 27:17 135:9�� = � 12 9:236 20:61 41:30 206:6For instane a tolerane of �10% is likely to neessitate about 10 trials when ��is �2 or � 32 , while this number doubles for the singular exponent � 12 .Proof. The rejetion sampler used with the value x has a probability of suess inone trial equal to Px(jN=n� 1j � ");whih is to be estimated. The inverse of this quantity gives the expeted numberof trials.Funtions that are �-singular are losed under di�erentiation, sine, by elemen-tary omplex analysis, asymptoti expansions valid in setors an be subjeted todi�erentiation [54, p. 9℄. Consequently, one has�1(x) �x!�� �x=�1� x=� ! 1;whih veri�es the mean value ondition, whereas a similar alulation shows �(x)to be of the same order as �1(x) and the variane ondition is not satis�ed. Thestrong form of oeÆient estimates in (20) then entails(22) Px(N = m) � 1�(�) m��1jx=�jm(1� x=�)�� ;for x! �� and m!1.Tune now the rejetion sampler at the value x = xn, so that �1(xn) = n. Onehas xn � ��1� �n� :Then, setting m = t�1(xn) = tn transforms the estimate (22) into(23) Px(N = btn) � 1�(�) t��1etn log(1�(�=n))���n� 1n�(�)��t��1e��t;uniformly for t in a ompat subinterval of (0;1). This is exatly a loal limit lawfor Boltzmann sizes in the form of a Gamma distribution [21, p. 47℄.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 29Cumulating the estimates in the formula above, one �nds (by Euler-Malaurinsummation),(24) Pxn(jN=n� 1j � ") � ���(�) Z "�"(1 + s)��1e��(1+s)dswhih gives the value ��(") of the statement. Linearity for the umulated sizethen follows from the moderate dispersion of sizes indued by the relation �(x) =�(�1(x)).The argument adapts when " is allowed to tend to 0. In this ase, as seen diretlyfrom (23), the suess probability of a single trial is asymptoti to2(�e)��(�) ";with the inverse of this quantity giving the mean number of trials. In partiular, ifthe target size lies in a �xed-width window around n (" = O(1=n)), whih oversexat-size random sampling, then a random generation neessitates O(n) trials,orresponding to an overall omplexity that is O(n2) under the real-arithmetimodel.Given the polar singularity involved, Theorem 5 applies diretly to words withoutlong runs (Ex. 1), surjetions (Ex. 6), and yles-in-permutations (Ex. 7).Example 9. Mappings with degree onstraints. By a mapping of size n is meanthere a funtion from [1; n℄ into [1; n℄. (Obviously, there are nn of these.) We �x a�nite set 
 and restrit attention to degree-onstrained mappings f suh that foreah x in the domain, the ardinality of f (�1)(x) lies in 
. (In the ombinatorisliterature, suh mappings are surveyed in [2, 25℄.) For instane, in a �nite �eld,a non-zero element has either 0 or 2 predeessors under the mapping f ;x 7! x2,so that (negleting one exeptional value) a quadrati funtion may be regardedas an element of the set of mappings onstrained by 
 = f0; 2g. Mappings are ofinterest in omputational number theory as well as in ryptography [55℄, and theeighth Fermat number, F8 = 228 + 1 was �rst fatored by Brent and Pollard [5℄in 1981 by means of an algorithm that preisely exploits statistial properties ofdegree-onstrained mappings.As is well known, a mapping an be represented as a direted graph (Figure 8)where eah vertex has outdegree equal to 1, while, by the degree onstraint, inde-grees must lie in 
. Then the graph of a mapping is made of omponents, whereeah omponent is made of a unique yle on whih trees are grafted (see, e.g., [4℄for this lassial onstrution). With P
 representing the set onstrution with anumber of elements onstrained to lie in 
, the lass M of 
{onstrained mappingsis M = P(C(U)); U = Z ?P
�1(T ); T = Z ?P
(T ):There T is the lass of rooted labelled trees with outdegrees in 
, U is the lass oftrees grafted on a yle, whih are suh that their root degree must lie in 
� 1.Let �(y) := P!2
 y!=!!. The EGF of trees, T , is impliitly de�ned by T =z�(T ) and one has U = z�0(T ). It has been �rst established by Meir and Moon [49℄that the EGF T (z) has systematially a singularity of the square-root type (orre-sponding to \failure" in the impliit funtion theorem, see also Lemma 3 below).Preisely, one has T (z) � � � p1� z=� as z ! �, where � � �T is given by
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Figure 8. A random ternary map (
 = f0; 3g) of size 846 pro-dued by Boltzmann sampling.� = �=�(�) and � is the positive root of �(�) � ��0(�) = 0. There results that theEGF of onstrained mappings satis�es as z ! �,M(z) � 11� ��0(� � p1� z=�) � dp1� z=�;for some d > 0. In view of this last expansion, Theorem 5 diretly applies.Approximate-size random generation of 
-onstrained mappings is thus ahievablein linear time. �6.3. The pointing operator. In this setion we further enlarge the types of stru-tures amenable to fast Boltzmann sampling. As a byprodut, we are able to liftthe restrition �� < 0 in Theorem 5, thus bringing in its sope trees, seondarystrutures, and nonrossing graphs (Examples 2, 3, and 4) whose singularity isknown [24, 49℄ to be of the square{root type, i.e., � = 12 .Given a ombinatorial lass C, we de�ne the lassC� = f(; i) j  2 C; i 2 f1; : : : ; jjgg; equivalently, C�n ' Cn � f1; : : : ; ng;of pointed objets. Pointing is for instane studied systematially in [4, Se. 2.1℄.Objets in C� may be viewed as standard objets of C with one of the atomsdistinguished by the mark \�". From the de�nition, one has jC�nj = njCnj, and theGF of the lass C� is C�(z) = z ddzC(z);regardless of the type of C(x) (ordinary or exponential). Pointing an then beviewed as a ombinatorial lifting of the usual operation of taking derivatives inelementary alulus. Sine any non-pointed objet of C gives rise to exatly npointed objets, random sampling an be equally well be performed on Cn or C�n: itsuÆes to \forget" the pointer in an objet produed by a sampler of C�n to obtainan objet of Cn. (Only the distributions of sizes under �C and �C� are di�erent.)The pointing operator � is related to an operator studied systematially byGreene [32℄ (his \box" operation) and it plays a entral rôle in the reursive method



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 31(where it has been used under the name of \Theta operator"). For Boltzmann sam-pling, pointing an be used in onjuntion with the previously de�ned operators+;� and ?;S;P;C in either the labelled or unlabelled universe.Lemma 2. Let C be a spei�able unlabelled or labelled lass (in the sense of The-orem 1 or 2). Then the lass C� is also spei�able, i.e., it admits a spei�ationwithout the pointing operator �.Proof. First, for a �nite lass C, the lass C� is also �nite and an be represented(and sampled) expliitly. Next, the pointing operator admits omposition ruleswith all the other operators; in the labelled ase, one has(25) 8<: (A+ B)� = A� + B�; (A ? B)� = A� ? B +A ? B�;(SA)� = SA ?A� ?SA; (CA)� = A� ?SA;(PA)� = A� ?PA:In the unlabelled ase, the �rst three rules apply, upon hanging the labelled prod-ut \?" into the artesian produt \�". These rules are a ombinatorial analogueof the usual di�erentiation rules, and have a simple interpretation: e.g., pointing ata sequene ((SA)�) implies pointing at a omponent (A�), whih breaks the hainand individuates a left (SA) and a right (SA) subsequene.Consider now a spei�ation of the lass C = F1 in the form of a system,S = fFi = �i(Z ;F1; : : : ;Fm); i = 1; : : : ;mg;where Fi are auxiliary lasses and the �i are funtional terms involving �nite lassesand the standard operators (without pointing). Then, one an build a spei�ationof the lass C� in the form of a derived system,S 0 = S [ fF�i = 	i(Z ;F1; : : : ;Fm;F�1 ; : : : ;F�m); i = 1; : : : ;mg;where the funtionals 	i do not involve the pointing operator \�": 	i is obtainedfrom ��i by appliation of the derivation rules until the pointing operator is ap-plied to variables only. In the derived spei�ation, eah F�i is treated as a newvariable, thereby leading to a omplete elimination of the pointing operator withinonstrutions.Our interest for pointing lies in the following two observations.{ If a lass C has a generating funtion C(z) that is �-analyti with exponent��, then the generating funtion zC 0(z) of the lass C� is also �-analytiand has an exponent ��� 1, whih is smaller.{ Uniform sampling in Cn is equivalent to uniform sampling in C�n. As aonsequene, the sampler �C�(x;n; ") is a orret approximate-size samplerfor the lass C (upon removing the mark).Let �C�k(x;n; ") denote the rejetion sampler of the lass derived from C by k su-essive appliations of the pointing operator. The last two observations immediatelylead to an extension of Theorem 5:Theorem 6. Let C be a ombinatorial lass suh that its generating funtion is �-singular with any exponent �� 6= f0; 1; : : :g. Let �+ = max(0; d��e) the integralpositive part of ��, and �0 = �+�+ its frational part. Then the rejetion sampler�C��+(xn;n; ") orresponding to a �xed tolerane " > 0 sueeds in a number of tri-als whose mean is asymptoti to the onstant 1��0 (") . In partiular, if C is spei�able,the total ost of the rejetion sampler �C��+(xn;n; ") is O(n) on average.



32 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERAs an illustration of Theorem 6, we examine the internal workings of the algo-rithm that results for the lass B of binary trees taken here for onveniene asB = Z + (B � B);so that only external nodes ontribute to size. The pointed lass satis�esB� = Z� + (B� �B) + (B � B�);whih ompletely de�nes it in terms of B and itself. Aordingly, the Boltzmannsamplers for B and B� are de�ned by the system of simultaneous equations� �B(x) = �Bern (p0) �! Z �� (�B(x); �B(x))��B�(x) = �Bern (p1; p2) �! Z� �� (�B�(x); �B(x)) �� (�B(x); �B�(x))�where p0 = 2x1�p1� 4x; p1 = p1� 4x; p2 = 12 � 12p1� 4x;and the notation (9) for probabilisti swithes is employed.Random generation of a tree of size near n is ahieved by a all to �B�(xn).For large n, the quantity xn is very lose to the ritial value � = 14 . Thus, �B�generates a terminal node with a small probability (sine p1 � 0), and, with highprobability, �B�(xn) triggers a long sequene of alls to �B, whih itself produeseah time a near-ritial tree (sine p0 � 12 ) . In partiular, the \danger" ofgenerating small trees is automatially ontrolled by �B�. Observe that a samplerformally equivalent to �B�(x) (by reursion removal) is then as follows: generatea long random branh (with randomly hosen ( 12 ; 12 ) left or right branhings) andattah to it a olletion of (near) ritial trees5. For instane, here are the sizesobserved in runs of 20 alls, one relative to �B equipped with the value x500 =0:2499997495, the other to �B� equipped with x0500 = 0:2497497497:2; 1; 4; 5; 4; 1; 1; 1; 1; 1; 1; 1; 56; 1; 1; 7; 2; 1; 2; 2831; 6; 76; 120; 1; 532; 15; 7; 11; 68; 99; 45; 1176; 12; 94; 81; 784; 3393; 21; 493:(See also (15) for more extensive data that are similar to the �rst line.) Whilethe parameters are hosen in eah ase suh that the resulting objet has expetedsize n = 500, it is lear that the �B� sampler gets a better shot at the target.Pointing also onstitutes a valuable optimization whenever strutures are drivenby a yle onstrution. De�ne a funtion f to be logarithmi if it is ontinuablein a �{domain and satis�esf(z) =  log 11� z=� +O(1); z ! �:This may somehow be regarded as the limit ase �! 0 of a singular exponent ��.As the table (21) suggests, the eÆieny of rejetion deteriorates in this ase: singu-larity analysis may be used to verify that �(xn) = nplogn, so that approximate-sizeis of superlinear omplexity, namely O(nplogn). This problem is readily �xed bypointing. If C = C(A), then the transformation rules of (25) imply that we analternatively generate a sequene, whih is amenable to straight rejetion samplingin linear time, sine its generating funtion now has a polar-like singularity (withexponent �� = �1). For instane, the lass K of onneted mappings is de�ned byfK = C(T ); T = Z ?P(T )g :5This onstrution is akin to the \size-biased" Galton{Watson proess exposed in [47℄. It is in-teresting to note that we are here led naturally to it by a systemati use of formal transformations.



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 33The derived spei�ation for K� is thenfK� = T � ?S(T ); T = Z ?P(T ); T � = Z� ?P(T ) +Z ?P(T ) ? T �g ;with nonterminalsK�; T ; T �. The generator �K� then ahieves linear time samplingfor any �xed tolerane " > 0. (Figure 8 has been similarly produed by pointing.)This tehnique applies to plane trees and variants thereof (Example 2), seondarystrutures (Example 3), and nonrossing graphs (Example 4). It also applies to allthe simple families of labelled nonplane trees, T = Z ?P
(T ) de�ned by restri-tions on node degrees (Example 9). In all these ases, linear-time approximate-sizesampling is granted by Theorem 6.7. Singular Boltzmann samplers.We now disuss two in�nite ategories of models, where it is possible to plaeoneself right at the singularity x = �C in order to develop rejetion samplers fromBoltzmann models. These \singular" rejetion generators are freed from the ne-essity to adapt the ontrol variable x to the target size n, thus making availableimplementations that only need a �xed set of onstants to be determined one andfor all, this independently of the value of n.7.1. Singular samplers for sequenes. The �rst type of singular generator wepresent is dediated to the sequene onstrution: de�ne a sequene onstrution tobe superritial if C = S(A) and �A > �C (so that A(��A) > 1)). Put otherwise, thegenerating funtion of omponents A(x) should ross the value 1 before it beomessingular. The generating funtion of C and A satisfy C(z) = 1=(1�A(z)), so thatthe superritiality ondition implies that A(�C) = 1 and the (dominant) singularity�C of C(x) is a pole. (This notion of superritiality is borrowed from Soria [59℄who showed it to be determinant in the probabilisti properties of sequenes.)Literally taken, the Boltzmann sampler �C of Setion 3 taken with x = �C loopsforever and generates objets of in�nite size, as it produes a number of ompo-nents equal to a \Geom(1)". This prevents us from using the rejetion algorithm�C(x;n; ") with x = �. However, one may adapt the idea by halting exeution assoon as the target size has been attained. Preisely, the early-interrupt singularsequene sampler is de�ned as follows:funtion �C(�;n); fEarly-interrupt singular sequene samplergi := 0; repeat i := i+ 1; i := �A(�) until j(1; : : : ; i)j > n;return((1; : : : ; i)); end.The priniple of the algorithm an be depited as \leapfrogging" over n:
Xn0 nThe singular early-interrupt sampler determined by the hoie x = �C has exellentprobabilisti and omplexity-theoreti harateristis summarized in the followingstatement. There, we assume without loss of generality that A(z) is aperiodi inthe sense that the quantity d := gdfn j An 6= 0g satis�es d = 1. (If d � 2, a linearhange of the size funtions brings us bak to the aperiodi ase.)Theorem 7. Consider a sequene onstrution, C = S(A) that is superritialand aperiodi. Then the early-interrupt singular sequene generator, �C(�C ;n) isa valid sampler for C. It produes an objet of size n + O(1) in one trial with



34 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERhigh probability. For a spei�able lass A, exat-size random generation in C isahievable from this generator by rejetion in expeted time O(n).Proof. Let Xn denote the random variable giving the size of the output of theearly-interrupt singular sequene generator with tarket size n. The analysis of Xnan be treated by lassial renewal theory [20, Se. XIII.10℄, but we opt for adiret approah based on generating funtions, whih integrates smoothly withinour general formalism.The bivariate (probability) generating funtion with variable z marking the tar-get size n and variable u marking the size Xn of the atually generated objetis F (z; u) := Xn�1 Xm�nP(Xn = m) znum:A trial deomposes into a sequene of samples of �A(�) ending by a sample thatbrings the total over n, whih impliesF (z; u) = 11�A(�zu)L[A(�zu)℄ = z1� z A(�u)�A(�zu)1�A(�zu) :There L[f(z)℄ := z(f(1)� f(z))=(1� z) is a linear operator, and, e.g.,L� 11� zu� = z(u+ u2 + � � � ) + z2(u2 + u3 + � � � ) + z3(u3 + u4 + � � � ) + � � � ;so that all powers of the form znu` with ` � n are produed.One heks that F (z; 1) = z=(1�z), as should be. Next the expeted size E(Xn )of the output is given by the oeÆient of zn in��uF (z; u)��u=1 = z1� z �A0(�)1�A(�z)= z(1� z)2 + �A00(�)2A0(�) � z1� z +O(1) (z ! 1):This expansion at the polar singularity 1 then yields the expeted \overshoot":E(Xn � n) = [zn℄ ��uF (z; u)��u=1 � n = �A00(�)2A0(�) +O(1=n):The seond moment of the expeted size of the output is similarly obtained via twosuessive di�erentiations. A simple omputation then shows the variane of theovershoot to satisfy E((Xn � n)2)� E(Xn � n)2 = O(1):As a matter of fat, the disrete distribution of the overshoot is desribed byP(Xn � n = m) = [znun+m℄F (z; u) = [znum℄ zu� z �1� 1�A(�u)1�A(�z)� ;= [zn+m℄ 11�A(�z) � m�1X̀=0 [zn+`℄ 11�A(�z) [um�`℄A(�u);= � 1�A0(�) +O(1=n)� 1� m�1X̀=0 P(N = `)!= P(N � m)E(N) +O(1=n):



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 35where N denotes the random size of an element of A under the Boltzmann modelof parameter � and the two last estimates hold for n ! 1 uniformly in m. Thedistribution of N has exponential tails (sine � � �C lies stritly within the dis ofonvergene of A(z)), and thus the probability of a large overshoot deays geomet-rially fast. This proves that exat size n is attained in O(1) trials.This theorem applies to \ores"of words without long runs (Equation (14) fromExample 1) and it an be adapted to yield a generator of the full set R. It applies tosurjetions (Example 6), for whih exat-size generation beomes possible in lineartime. It also provides a global setting for a variety of ad ho algorithms developed byLouhard [43, 44, 46℄ in the ontext of eÆient generation of ertain types (direted,onvex) of random planar diagrams known as \animals" and \polyominos".Example 10. Coin fountains (O). A fountain is formed by starting with a rowof oins, then staking additional oins on top so that eah new oin touhes twoin the previous row, for instane,
These on�gurations have been enumerated by Odlyzko and Wilf [53℄ and the ount-ing sequene starts as (A005169 of [58℄)1; 1; 1; 2; 3; 5; 9; 15; 26; 45; 78; 135; 234; 406; 704; : : :They orrespond to Dyk paths (equivalently, Bernoulli exursions) taken aordingto area but disregarding length. A deomposition by slies taken at an angle of 23�(on the example, this gives 1,2,2,2,1,2,3,1,1,2,3,3,4) is then expressed by an in�nitespei�ation (not a priori overed by the standard paradigm):S(ZS(Z2S(Z3S(� � � )))):The OGF is onsequently given by the ontinued fration (see also [23℄),O(z) = 11� z1� z21� z3� � � :At top level, the singular Boltzmann sampler of Theorem 7 applies (write O =S(Q) and O(z) = (1�Q(z))�1), this even though O is not �nitely spei�able. Theroot � of Q(z) = 1 is easily found to 50D,� := 0:5761487691427566022978685737199387823547246631189;see [53℄ for a transendental equation satis�ed by � that involves the q{exponential.The objets of Q needed are then with high probability of size at most O(logn)(by general properties of largest omponents in sequenes [31℄), so that they anbe generated by whihever subexponential method is onvenient (e.g., Maple'sCombstrut) to the e�et that the overall (theoretial and pratial) omplexityremains O(n).



36 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERPreisely, the implementation runs like this. First de�ne a family of �nitelyspei�able approximants to Q, as follows:Q[j℄ := ZS(Z2S(Z3S(� � � Zj�1S(Zj) � � � ))):At any given time, the program operates with the lass Q[d℄ of depth d: Q[d℄(z) andQ(z) oinide till terms of order �(d) = �d+12 ��1. The orresponding ounts till �(d)are assumed to be available, together with the orresponding exat-size samplersfor Q[d℄. (It is proves espeially onvenient here to appeal to algorithms based onthe reursive method as provided by Combstrut.) In this way, one \knows" how tosample from Q till size �(d), and from knowledge of the preise value of �, one also\knows" whenever a Q omponent of size larger than �(d) might be required. (Ifso, adaptively inrease the value of d and resume exeution.) For instane, takingd = 4 (with � = 9) already suÆes in 92% of the ases to produe an element of�Q, while d = 20 (and � = 104) suÆes with probability about 1� 2 � 10�19 and isthus likely to ater for all simulation needs one might ever have.The resulting implementation onstants are reasonably low, so that random gen-eration in the range of millions beomes feasible thanks to the singular Boltzmanngenerator. Here is for instane a fragment of a random fountain of size 100,004(n = 105) obtained in this way (in only about a trillion lok yles under Maple):Dutour et al. [19℄ have previously employed an adaptation of the reursive method,but it is limited to sizes perhaps in the order of a few hundreds. �Example 11. Weighted Dyk paths and adsorbing stairase walks. In [48℄, Martinand Randall examine (under the name of adsorbing walks) the generation of Dykpaths of length 2n, where a path reeives a weight proportional to �k if it hits thehorizontal axis k times. Their Markov hain based algorithm has a high polynomialtime omplexity, perhaps as muh as O(n10), if not beyond. In ontrast, for � > 2,a Boltzmann sampler based on superritial sequenes has a omplexity that isO(n), this even when exat-size random generation is required. Preisely, let D bethe lass of Dyk paths de�ned by the grammar D = 1+ % D & D with OGFD(z) = (1 � p1� 4z)=(2z) (with z marking size taken here to be half-length).One needs to generate objets from the weighted lass E := S(% D &), viewedas weighted sequenes of \arhes" with OGF (1� z�D(z))�1, where the oeÆient
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BOLTZMANN SAMPLERS FOR RANDOM GENERATION 37� takes the proper weighting into aount. The sequene is superritial as soonas � > 2, and the singular value of the Boltzmann parameter is found to be at� = (�� 1)=�2. Then, the linear time generator is, for � > 2:let � := ��1�2 , Dk = 1k+1�2kk �;repeat S := 0; repeatgenerate K aording to the distribution ���1� Dk�k	1k=0;S := S + 2K + 2; draw at random from % DK &; fe.g., in linear timeguntil S � 2n; until S = 2n.There, the last suessful run should be returned. (The ase where � � 2 is easilytreated in linear time by diret ombinatoris.) Figure 9 displays two suh pathsof length 500 (higher values of � inrease the number of ontats). �The book by van Rensburg [66℄ desribes models similar to the last two ones(in the ontext of ritial phenomena in polymers and vesiles), a number of whihare amenable to eÆient Boltzmann sampling as they orrespond to ombinatoriallasses that are spei�able.7.2. Singular samplers for reursive strutures. Reursive strutures tend toonform to a universal omplex-analyti pattern orresponding to a square-rootsingularity, that is, a singular exponent �� = 1=2. This spei� behaviour may beexploited, resulting in another variety of singular samplers.In the statement below, a reursive lass C is de�ned as the omponent C = F1of a system of mutually dependent equations,fF1 = 	1 (Z ;F1; : : : ;Fm) ; : : : ;Fm = 	m (Z ;F1; : : : ;Fm)gwhere the 	's are any funtional term involving any of the basi onstrutorspreviously de�ned (`+', `�' or `?', and S;P;C; pointing is not allowed here). Thesystem is said to be irreduible if the dependeny graph between the Fj is stronglyonneted (every nonterminal Fj depends on any other Fk). A lass F is said to beof lattie type if the index set of the nonzero oeÆients of F (z) is ontained in anarithmeti progression of some ratio d, with d � 2. (The terminology is borrowedfrom lassial probability theory.) For instane, the lass of \omplete" binary trees(F = Z+ZF2) only has objets of size n = 1; 3; 5; 7; : : :, and is onsequently lattieof ratio 2. Any lattie lass is equivalent to a nonlattie one, upon rede�ning sizevia a linear transformation.Lemma 3. Consider a ombinatorial lass C de�ned by a reursive spei�ation thatis irreduible and non-lattie. Then C(z) has a unique dominant singularity whihis algebrai and of the square-root type, that is, with singular exponent �� = 1=2in the notations of Setion 6.2.Proof (sketh). The Fj(x) are impliitly de�ned by an image system F = 	[F℄.The Jaobian matrix of 	, J(z) := � ��Fi	j(F)�i;jis at least de�ned near the origin. Let �(z) be the spetral radius of J(z). Forsmall enough positive x, the matrix J(x) is Perron{Frobenius by irreduibility. Aloal analysis of the Drmota{Lalley{Woods type [16, 41, 70℄ based on \failure"of the impliit funtion theorem in its analyti version establishes the following:eah Fj has a singularity at � whih is determined as the smallest positive root



38 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERof det J(x) = 1, and the behaviour of Fj there is of the square-root type in a �-domain. The non-lattie assumption implies that eah Fj satis�es jF (z)j < F (jzj)for any z satisfying 0 < jzj < � and z 62 R>0 ; by domination properties of analytifuntions with positive oeÆients and matries with omplex entries, this impliesthat �(z) < �(jzj), whene the fat that eah Fj is analyti on jzj = �, z 6= �.In view of Lemma 3, C(z) is �-singular with an expansion of the form(26) C(x) = C(�)� 0(1� z=�)1=2 +O(1� z=�);where C(�) > 0 and 0 > 0. Singularity analysis then implies that the oeÆientsare asymptotially given by(27) [zn℄C(z) = 02p���nn�3=2 �1 +O(n�1)� :(For details see [28, Ch. 8℄ and referene therein.) Consequently, the distribution ofsizes at the ritial value x = � is of the form P(N = n) / n�3=2, whih means thatit has heavy tails. In partiular, the expetation of size E(N) is in�nite (this fat iswell-known in the speial ase of ritial branhing proesses). Suh an observationpreludes the use of straight-rejetion Boltzmann sampling.The idea of an early interruption disussed in the previous setion may beadapted and extended. Consider in all generality a Boltzmann sampler �C(x) builtaording to the design priniples already exposed and let m be a eiling (i.e., anuppperbound) imposed on the size of the required objets. It is possible to build amodi�ation �C<m(x) of �C(x) as follows: maintain a running ount, implementedas a global ounter K, of the number of atoms produed at any given time duringa partial exeution of sampling by �C(x); the ounter is regularly inremented aslong as K � m eah time an atom is produed; however, as soon as K exeeds m,exeution is interrupted and the \unde�ned" symbol ? is returned. Then, rejetionan be piled on top of this sampler, whih orresponds to the sheme:funtion �C(x;n; "); fCeiled rejetion samplergrepeat  := �C<m(x;n(1 + ")) until ( 6=?) ^ (jj � n(1� "));return(); end.This eiling tehnique optimizes any Boltzmann sampler for any value of x. Thehoie of the singular value x = � makes the algorithm well-behaved for reursivelasses.Theorem 8. Let C be a ombinatorial lass given by a reursive spei�ation thatis irreduible and aperiodi. Then the singular eiled rejetion sampler �C(�;n; "),orresponding to a �xed tolerane " > 0 sueeds in a number of trials whose expetedvalue grows like n1=2=�(") for a positive onstant �(") given by (30) below.Moreover the umulated size Tn of the generated and rejeted objets during theall of �C(�;n; ") satis�es as n!1(28) E(Tn) � n" �(1� ")1=2 + (1 + ")1=2�with its variane, �2 = E(T 2n )� E(Tn )2, being(29) �2 � E(Tn)2 + n2" �13(1� ")3=2 + (1 + ")3=2� :Under these onditions, approximate-size sampling and exat-size sampling are ofaverage-ase omplexity respetively O(n) and O(n2).



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 39Proof. Let C(x) be the generating funtion of C, and let C<n1(x)C>n2 (x); C [n1;n2℄(x)be the generating funtion for the sublass of those objets with size respetivelystritly less than n1 = (1 � ")n, stritly greater than n2 = (1 + ")n, and betweenn1 and n2. The oeÆients of C(z) are known from Equation (27), so that �C(�)produes sizes aording toP(N = k) � 02C(�)p� k�3=2:For any " > 0, the probability that a single trial (one exeution of the repeat loop)of the eiled rejetion sampler �C(�;n; ") sueeds is obtained by summing over allvalues of k in the interval [n(1 � "); n(1 + ")℄. This probability thus deays like�(")n�1=2 where(30) �(") = 05C(�)p� ((1 + ")5=2 � (1� ")5=2):The expeted number of trials follows.Next, the probability generating funtion of the interruptive singular Boltzmannsampler targeted at [n1; n2℄ isF (u) = Xk P(Tn = k)uk:From the deomposition of a all to �C into a sequene of unsuessful trials (on-tributing to Tn) followed by a �nal suessful trial (not ontributing to Tn),F (u) = �1� 1C(�) �C<n1(�u) + C>n2(�)un2���1 C [n1;n2℄(�)C(�) :(This is the ost in addition to the size of the last suessful output, and it isassumed that the generation of objets with size larger than n2 is interrupted atsize n2.) The moments of the ost are then given byE(Tn ) = ��uF (u)��u=1; E(T 2n ) = (u�)2�u2 F (u)��u=1:Taking partial derivatives, then speializing to u = 1, and observing that C(x) �C<n1(x) � C>n2(x) = C [n1;n2℄(x), we getE(Tn) = �C 0<n1(�) + n2C>n2(�)C [n1;n2℄(�) ;E(T 2n ) = �2C 00<n1(�) + n2(n2 � 1)C>n2(�)C [n1;n2℄(�) + 2 E(Tn)2 + E(Tn):The asymptoti expression for the oeÆients of C(x) as given in (27) yields, bydiret Euler-MaLaurin summation:(31) �C 0<n1(�) � 20n1=21 ; �2C 00<n1(�) � 203 n3=21 ;C>n2(�) � 20n�1=22 ; C [n1;n2℄(�) � 20"n�1=2:The estimates (31) ombine with the exat expressions of E(Tn) and E(T 2n ) to givethe values stated in (28) and (29).For a relative tolerane " = "n depending on n and tending to zero, the estimatesbeome E(Tn ) � 2n" and � � E(Tn ), whih implies the quadrati ost of exat-sizesampling.



40 P. DUCHON, P. FLAJOLET, G. LOUCHARD, G. SCHAEFFERThe singular eiled rejetion sampler thus provides linear-time approximate-sizerandom generation for all the simple varieties of trees of Example 2, inludingbinary trees, unary-binary trees, 2-3 trees, and so on, for seondary strutures (Ex-ample 3), and for nonrossing graphs (Example 4). In all these ases, exat-sizeis also ahievable in quadrati time. The method does not require the pointingtransformations of Setion 6.3 and only neessitates a �xed number of onstants,themselves independent of the target value n. The tehnique is akin to the \Flo-rentine algorithm" invented by Barui{Pinzani{Sprugnoli [3℄ to generate pre�xesof Motzkin words and some direted plane animals. The ost analysis given aboveis related to Louhard's work [45℄.Note. Let T be a lass of trees determined by restriting the degrees of nodes to liein a �nite set 
, that is, T = S
(T ) or T = P
(T ), depending on whether the treesare embedded in the plane or not. The orresponding generating funtion satis�esT (z) = z�(T (z)) (see Example 9). For suh trees, exat-size sampling an be per-formed in time O(n3=2), whih improves on the general bound O(n2) of Theorem 8.Indeed, in order to generate a tree of size n, it suÆes to generate a  Lukasiewizode of length n, with steps in 
� 1. By Raney's onjugay priniple [42, Ch. 11℄(also known as Dvoretzky and Motzkin's yle lemma), this task itself redues togenerating at random a planar path of length n with steps in 
� 1 and with �nalaltitude �1. When one plaes oneself right at the singular value � (for T (z)), thelatter task is equivalent to sampling from n independent random variables, havingsupport 
 � 1 and probability generating funtion  (z) = �(�z)=(z�(�)), ondi-tioned to sum to the value �1. Rejetion (on the �nal value of the n{sum) ahievesthis in O(n1=2) trials, by virtue of the loal limit theorem for sums of disrete ran-dom variables. In this way, trees from any �nitely generated family of trees anbe sampled in total time O(n3=2); equivalently, the tehnique makes it possible tosample from any branhing proess (with �nitely supported o�spring distribution)onditioned upon the size of the total progeny being n, this again in time O(n3=2).8. ConlusionsAs shown here, ombinatorial deompositions allow for random generation inlow polynomial time. In partiular, approximate-size random generation an oftenbe e�eted in linear time, using algorithms that suitably exploit the \physis" ofrandom ombinatorial strutures. Given the large number of ombinatorial deom-positions that have been gathered over the past two deades (see, e.g., [4, 28, 30℄)we thus estimate to well over a hundred the number of lassial ombinatorialstrutures that are amenable to eÆient Boltzmann sampling. In ontrast with thereursive method [13, 29, 51℄, memory requirements are kept to a minimum sineonly a table of onstants of size O(1) is required.For the reader's onveniene, we gather in Figure 10 the best strategies that havebeen developed for eah of the eleven pilot examples of this artile. Naturally, afew of the basi ases are beaten by speial-purpose ombinatorial generators|thishappens for permutations (P), binary trees (B), or mappings (M) and Cayley trees(T ), where the ounting sequenes admit of a produt form and spei� bijetionsmay be exploited to ahieve exat-size sampling in linear time [51℄. In suh ases,however, the same omplexity estimates ontinue to hold when Boltzmann samplingis applied to a large number of related lasses, whereas dediated ombinatorialgenerators based on bijetions generally break down. For instane, Boltzmann



BOLTZMANN SAMPLERS FOR RANDOM GENERATION 41Strutures Approx. size Exat size1. Runs R O(n) (rejet.) O(n) (sing. seq.)2. Trees B O(n) (point.; sing. eil.) O(n2) (point.; sing. eil.); O(n3=2)3. Seondary S. W O(n) (point.; sing. eil.) O(n2) (point.; sing. eil.)4. Nonrossing G. X O(n) (point.; sing. eil.) O(n2) (point.; sing. eil.)5. Set Part. S O(n) (rejet.) O(n3=2plog n) (rejet.)6. Surjetions Q O(n) (rejet.) O(n) (sing. seq.)7. Permutations P O(n) (rejet.) O(n2) (rejet.)8. Filaments F O(n) (rejet.) O(n3=2) (rejet.)9. Mappings M O(n) (point.) O(n2) (point.; sing. eil.)10. Fountains O O(n) (rejet.) O(n) (sing. seq.)11. Weighted Dyk E O(n) (rejet.) O(n) (sing. seq.)Figure 10. The best strategies of the paper for Boltzmann sam-pling: rejetion (Setion 6.1, 6.2), pointing (Setion 6.3), singularsequene (Setion 7.1), and singular eiled (Setion 7.2).algorithms for permutations an be adapted to obtain derangements (P(C�2(Z))and the like) and involutions (P(C1;2(Z)) and related strutures); the branhingproess algorithms dedued automatially for binary trees apply equally well tounbalaned 2{3 trees (U = Z + U2 + U3) and to other families of trees de�ned bydegree restritions; random mappings satisfying various onstraints then beomeamenable to Boltzmann sampling, and so on.This artile has shown that ombinatorial samplers an be ompiled automat-ially from formal spei�ations (\grammars") desribing ombinatorial models.The proess is an eÆient one as the program size of the sampler is derived by asingle-pass linear-time formal transformation. A general-purpose implementationwould most onveniently be developed on top of Maple's Combstrut, as manyfuntionalities are already available there. As matter of fat, a prototype has beendeveloped by Marni Mishna; together with other experiments, it on�rms the easeof implementation and the pratial eÆieny of Boltzmann sampling for the ran-dom generation of many di�erent types of ombinatorial strutures.In forthoming works, we propose to demonstrate the versatility of Boltzmannsampling for a number of simulation needs inluding:| the extension of the set of allowed onstrutions, e.g., in the unlabelledase, sampling for multisets (M, repetitions are allowed), powersets (P, norepetitions allowed), yles (C), and the substitution operation;| multivariate extensions, meaning the sampling of on�gurations aordingto a onstraint on size and on an auxiliary parameter (e.g., words of somelength ontaining an unusual number of ourrenes of a designated pat-tern);| the realization of Boltzmann samplers using only disrete soures of ran-domness and basi logial operations in the style of Knuth and Yao's funda-mental study [40℄|nearly linear boolean (bit level) omplexity still seemsto be ahievable in many ases of pratial interest.Aknowledgements: The authors are grateful to Alain Denise, Bernard Yart, BrigitteVall�ee, Jim Fill, Marni Mishna, Paul Zimmermann, and Philippe Robert for bibliographi-al suggestions, programming ideas, as well as enouragements and arhitetural remarks.
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