
Figure 1 – A common test bench for cars. 
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Abstract 

The paper presents first results of a project that aims at a 
model-based tool for functional testing of control software 
for passenger vehicles. The objective is that this tool can be 
used in today’s engineering practice and, hence, the ap-
proach must not require costly changes in the current test 
generation process and not assume data and skills that do 
not exist in reality. Firstly, the input to test generation, i.e. 
the specification of functional requirements, exists mainly 
as natural language text, rather than in a formal language. 
Secondly, its output, i.e. a set of proposed tests, has to be 
justified and explained in terms that are comprehensible to 
the test engineers in order to allow them to inspect, revise, 
and complement it. We focus on design decisions that are 
motivated by this objective. The proposed solution offers a 
natural-language-template-based interface for acquiring 
software requirements. The content of the filled-in templates 
can be represented in propositional logic and temporal rela-
tions and form the model of the intended correct behavior. 
Models of potential faulty behaviors are generated from this 
OK model by a number of (types of) transformations. The 
fault types are defined mainly to match the intuition behind 
manually generated test cases and, hence, can deliver simi-
lar, but more systematic, test suites. This forms the basis for 
the intuitive justification of the tests and its manual post-
processing. 

1. Introduction  

As long as formal specification of software functions and 
software generation and verification based on formal speci-
fications are not established, testing of software is an es-
sential step in software development. And even if, some 
day, the precondition would be achieved, there would be 
no guarantee that the starting point, the specification, cap-
tures the intuitive user expectations appropriately, which 
again establishes a need for testing. This holds even more 
if the software has a high impact on safety of people and/or 
environment such as the control software on vehicles.  
Automotive companies spend high efforts on testing soft-
ware, often delivered by suppliers, on test benches with 
“hardware in the loop” [Boot et al. 99] describes automated 
testing techniques for HIL). Figure 1 shows an exemplary 
test bench. Large parts of the physical behavior of the 

vehicle are simulated, and the electronic control unit 
(ECU) is tested in this context. Today, the test suites for 
this process are generated by hand, based on the informa-
tion contained in the requirement documents. This results 
in high development costs and does not provide a reliable 
assurance of the scope of testing.  
In a project with a major German car manufacturer, we aim 
at addressing these issues by producing a tool that gener-
ates sets of tests automatically from the requirement speci-
fication. Since the software is to be tested in the context of 
the (simulated or real) vehicle, a coherent approach to 
testing software and physical parts in a uniform way is 
attractive. We are addressing this requirement by extending 
our model-based test generation algorithm [Struss 94] to 
software testing. A feasibility study for this approach was 
presented in [Esser-Struss 07]. 
The major challenge of the project is to build a tool that 
supports the existing work process, rather than requiring a 
major revision of the process, long education of the in-
volved staff, etc. This implies, in particular, 
- on the input side: we cannot expect the requirement 

engineers to learn and use a formal language for formu-
lating requirements. The current requirement docu-
ments state mainly functional requirements and are 
mainly natural language texts. 

75

In: G. Biswas et. al. (eds.), DX’07, 18th International Workshop on Principles of Diagnosis. May 29-31, 2007. Nashville (USA)



vcause

vobs\cause

Not discriminable

(NTI)

Definitely Discriminable

(DTI)

Possibly discriminable

(PTI)
R1

R2

vcausevcause

vobs\causevobs\cause

Not discriminable

(NTI)

Definitely Discriminable

(DTI)

Possibly discriminable

(PTI)
R1

R2

Figure 2 – Determining the inputs that do not, possibly 
and definitely discriminate between models R1 and R2. 

- on the output side: the automatically generated tests 
need to be inspected, revised, and extended by the test 
engineers and, therefore, presented, justified, and ex-
plained in intuitive terms. 

In this paper, we focus on the attempt to address these 
requirements. The proposed solution offers natural-
language-template-based interface for acquiring software 
requirements (section 3). The content of the filled-in tem-
plates is automatically transformed into a representation in 
propositional logic and temporal relations and forms the 
model of the intended correct behavior (section 4). Models 
of potential faulty behaviors are generated from this OK 
model by a number of (types of) transformations (section 
5). The fault types are defined mainly to match the intui-
tion behind manually generated test cases and, hence, can 
deliver similar, but more systematic, test suites. This forms 
the basis for the intuitive justification of tests and their 
postprocessing (section 6). 
In the following section, we give an overview of the ap-
proach and its elements. 

2. The Approach 

The perspective on testing is that confirmation of one be-
havior mode (OK) requires discriminating it from all pos-
sible faults. In the model-based test generation algorithm 
presented in [Struss 94], models (of physical systems) are 
represented as (finite) relations. Useful test inputs (the 
vertical axis in figure 2) are computed as the complement 
of those that may trigger the same observable response 
under both behavior modes (the horizontal axis). Such a 
test guarantees to refute at least one of the two beheviors. 
The task of test generating for conformance testing is find-
ing a set of test cases such that for each pair (mok, mfail,i), 
where mok is the model of the correct system and mfail,i is 
one out of a given set {mfail,1 , …,mfail,n} of models of sys-
tem faults, a definitely discriminating test exists in the set. 
Applying this approach to test generation of software re-
quires a process containing at least three steps (see figure 
3): 
1st Step: building a model of correct behaviour, mok, In our 

case, the OK behavior is (solely) given by the (high-
level, functional) requirements, 

2nd Step: deriving fault models {mfail,1 , …,mfail,n} from mok

according to some selected fault classes, 
3

rd
 Step: computing the test cases for mok and {mfail,1 , 
…,mfail,n}. 

The framework presented here can be seen as a refinement 
of these three steps under our objective, namely supporting 
the existing work process. Actually, it involves two differ-
ent types of experts (and, in fact, different departments): 
requirement engineers and test engineers. The latter needs 
the results of the former as an input to his work and this 
exchange happens via documents, discussions, and phone 
calls and ist time-consuming, error prone, and only weakly 
supported by software. Our tool can be understood as pro-
viding support to both types of experts and a channel for 
the exchange of well-defined information between them. 

In order to develop the foundation for a solution, we par-
ticipated in both work processes, requirement acquisition 
and test generation, related to a new version of the Auto-
matic Cruise Control System (ACC). This enabled us to 
develop the current working hypotheses for an appropriate 
representation of requirements and for identifying fault 
models that corresponds to the potential misbehaviors that 
the engineers hypothesize and their tests check for. This 
requires two more steps, namely 
0

th
 Step: obtaining a formal requirement specification from 
experts who are accustomed to using natural language 
for this purpose 

4
 th

 Step: presenting the generated tests and explaining the 
rationale behind them to the test engineers. 

Figure 3 also indicates the specific requirements in the 
process which are: 
A. The acquisition of requirements from the requirement 

engineer must be in a form that is close to their intui-
tions and the language they use, which is natural lan-
guage. 

B. The model (for mok) must be a formal one and  
C. must preserve the structure of the requirement specifi-

cation. 
D. The model formalism used for the fault models must be 

expressive enough to cover all relevant requirements 
and fault types. 

E. The purpose of the generated test cases must be com-
prehensible to the human expert. 

Preserving of the structure means that the individual ele-
ments of the (manually created) requirement specification 
can still be identified in the model mok. The reasons for 
this, which are explained in detail later, are: 
- to apply the same test criteria as in the current manual 

practice 
- to explain the reason for a test case in terms of the 

requirement specification, which leads to intuitive justi-
fications. 

These aims are addressed in this framework by introducing 
two representations used in different steps in the process: 
1. At the user interface: Template Based Natural Lan-

guage Specification (TBNLS), where each require-
ment is a filled template forming a natural language 
sentence. 
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Figure 3 – the steps of fault-based test generation, and the formalisms used in this framework. 

2. Internally, this is transformed into a Formal Require-
ment Language (FRL) where requirements are tuples 
(start-condition, consequence, end-condition). Condi-
tions and consequence are specified in terms of propo-
sitions, that characterize system states, time intervals, 
and temporal constraints. 

The human expert interacts only with TBNLS notation and 
only specifies the correct behavior. From this, the FRL 
specification is automatically generated and then used to 
generate fault models (see figure 3). 
In the following sections the formalisms are described. 

3. Natural-language-like Specification 

In current practice, functional requirements (except for a 
small set of critical applications) are usually stated infor-
mally in natural language. A requirement acquisition tool 
has to allow the expert to stick to this as far as possible. 
Therefore, we decided to use a natural-language-like speci-
fication. However, since it must provide the basis for the 
following formal representations and algorithms, it has to  

• have precise semantics and 
• cover at least the most important/common classes 

of the requirements. 
In order to achieve this, we studied current practice re-
quirement documents supplied by the industrial partner. 
The left-hand column of figure 4 lists three typical exam-
ples from such a document. Our analysis showed that al-
most all requirements can be structured using three ele-
ments: start-condition (if), consequence (then) and end-
condition (until). If a situation matches the start-condition, 
then also the consequence has to hold. Additionally, the 
termination of the consequence is specified by an end-
condition. Thus, e.g. requirement R2 can be reformulated as 
follows: 
if the system is in mode m1, lamp L3 is off, and button 

B4 is released, 
then immediately lamp L3 is lit 
until button B4 is down again or the system leaves m1. 
The end-condition may be missing, and, hence, the dura-
tion of the consequence is unspecified. If the start condi-

tion is also omitted, the consequence has to hold univer-
sally. 
The following description of the template-based natural-
language-like specification (TBNLS) comprises  
- the set of templates for representing requirements, and  
- a domain theory containing additional background 

information necessary for situating the requirements in 
a context and for generating tests that reflect and ex-
plaining this context. 

Sentence Templates for Requirement Rules 

A sentence template is a particular grammatical natural 
language pattern, which can be filled with state expressions 
and metrical time information. The right-hand column in 
figure 4 shows the filled in templates for the three sample 
requirements. 
The template itself fixes the temporal relationships (e.g. P1

must occur before P2) between situations characterized by 
state expressions and classifies the state expressions as 
start-condition, consequence and end-conditions. The abil-
ity to specify exact temporal relationships is missing in 
many other natural language representations, such as ACE 
(Attempt to Controlled English, [Fuchs-Schwitter 96]) 
which is a subset of English restricted in vocabulary and 
grammar. 
A state expression P characterizes a class of situations and 
is inductively defined from facts F∈FACTS: 
 P := F | (P1 AND P2) | (P1 OR P2) | NOT P1

Facts are atomic propositions and do not have a structure 
or explicit semantics a priori; a reader must know what 
they mean. However, dependencies among facts may be 
defined in the domain theory. E.g. in requirement R1 the 
facts are ‘Button B4 is not down’, ‘Button B4 is down’ and 
‘Lamp L3 is lit’. ‘5 seconds’ is metrical time information.  
The choice to use unstructured propositions was made in 
order to avoid putting too much burden on the requirement 
engineer by forcing him to introduce certain predicates, 
variables with associated domains etc. While it is straight-
forward to assign a value ‘30km/h’ to the quantity ‘veloc-
ity’, in other cases, it would be unnatural for requirements 
like ‘Transition from mode m1 to m2 must be comfort-
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Figure 4 – Examples of natural-language requirements and the respective templates, their notation in FRL, and graphical 
representation (from left). 

able’. Later, we plan to explore the gain of a more struc-
tured representation of the facts. A more complex repre-
sentation (which means more work!) may be more accept-
able if the resulting benefit can be demonstrated and quan-
tified.  
In a template, ‘A occurs’ always means that A was false 
before and changed to true now, and ‘A holds’ means, that 
A is true independent of its value before or after. 
The user can choose to activate a default rule, stating that a 
fact persists, unless specified otherwise in the template 
(which addresses the frame problem). However, this leads 
to disadvantages compared to specifying the behavior for 
entire time intervals explicitly: leaving the behavior un-
specified for certain intervals, which may be adequate 
during design stage, is not possible. 

Domain Theory 

The functional requirements are considered as a descrip-
tion of the intended behavior of the respective subsystem. 
However, it is only a partial description and is likely to be 
insufficient for generating reasonable tests for several 
reasons. Here, we are not referring to the fact that the re-
quirement engineer may have forgotten to specify some 
relevant aspects of the desired system behavior. The 
sources of incompleteness are more fundamental: 
- The collection of requirements may not contain the most 

basic ones, because they are obvious to anybody in-
volved in the process. (Actually, sometimes, they will 
only be assumed to be obvious, and e.g. the test engi-

neer may not be aware of them, which creates a prob-
lem). For instance, the fundamental function of a 
brake, namely to decelerate the vehicle will probably 
not be subject to an explicit requirement. 

- The collection of requirements concerns only one sub-
system, and, more specifically, its software and does 
not specify the behavior of the context, i.e. the physi-
cal components of this subsystem and other subsys-
tems it is interacting with. For instance, the Automatic 
Cruise Control (ACC) interacts with the braking sys-
tem, whose function will produce in turn an impact on 
the ACC (by reducing the speed and potentially in-
creasing the distance to the preceding vehicle). 

-  Also, the environment of the vehicle (road conditions, 
the driver’s actions, other vehicles etc.) will usually 
not show up in the requirements, but may be relevant 
to test generation. For instance, acceleration of the 
preceding vehicle influences the distance to it, which 
is a measured input to the ACC. Also, basic physical 
constraints will be missing, such as the fact that the 
vehicle cannot brake and accelerate at the same time. 

If this background knowledge is not available to the test 
generation algorithm, it may still be able to produce tests, 
but they may be unintuitive and overly complicated, and 
miss some “obvious” solutions. Complementing the model 
obtained from the requirements by this kind of knowledge 
will make automated test generation more powerful and 
provide results with higher acceptance. We expect that a 
very basic and qualitative model of vehicle functions and 
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its context will suffice to achieve this and, therefore, be 
highly reusable for different subsystems (and, in fact, for 
different work processes).   
There is another limitation that is due to the chosen granu-
larity of the current requirement representation:  
- Since the entries in the templates are treated as elemen-

tary propositions, their ontological relations (e.g. exclu-
siveness or a taxonomy) are not made explicit in the set 
of requirements.  In our example, ‘Button is down’ is 
the negation of ‘Button is up’.  

To exclude situations which are impossible in reality, such 
kind of dependencies have to be included in the domain 
theory. Otherwise, test generation, may produce test cases 
that cannot be executed. 
The axioms of the domain theory should be expressed in 
the same way as the requirements (e.g. for defining that the 
‘Button is pushed’ holds, if and only if ‘Button is down’ 
holds now and ‘Button is up” was true before), but repre-
sented separately from them, because 
- the requirement engineer is only interested in the re-

quirements and should not be forced to deal with the 
domain theory (which is obvious background knowl-
edge to him) 

- the domain theory plays a different role in the process, 
in that its interdependencies are not subject to testing,. 

At present, we use 15 different requirement sentence tem-
plates. They suffice to express the set of requirements in 
the current project. Of course, additional templates may be 
added if needed. Because it might be difficult to pick the 
right template from a larger set and because there may be a 
need to modify the template while formulating a require-
ment, in the future, we may consider supporting the con-
struction of templates from elementary fragments (logical 
connectors, temporal constraints) similar to configuring 
functions in Excel. In this paper, we refer only to the tem-
plates underlying R1, R2 and R3.  

4. Formal Requirement Language 

In order to build the model, the first step after acquiring the 
requirements in template form is to transform each tem-
plate instance into a requirement in the formal language 
(FRL). Figure 4 shows the example rules in FRL notation 
(left-hand column) and their graphical illustrations. 
The set of FRL requirement rules over a set of facts 
FACTS is defined inductively. 

Definition – FRL Requirement 
Let εstate=P be the set of state expressions defined in section 
3 and ~ be one of the relations =, <, >, ≤, ≥, and |. Then 

εinterval  = [ ]
2
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� t
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where A,C ∈ εunquant. 
The informal semantics is: 

- [ ]
2

state 1

t

t
ε  specifies that εstate holds all the time during the 

(closed) interval [t1,t2], where εstate may but not need to 
hold before and after that interval. 

- [ ]
2

state 1
[

t

t
ε  specifies a left-max interval where εstate must 

hold, i.e. additional to the above expression, εstate must 
not hold in the interval right before t1. The analogue 

holds for [ ]
2

state 1
]

t

t
ε . 

- t1 | t2 means t2 follows t1, i.e. there is an infinitely short 
time between t1 and t2. 

The formal semantics is given in predicate logic, where 
F(t) means, that fact F holds at time t: 
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where [a;b] is the closed interval between a and b. Figure 5 
shows the semantics of a requirement in predicate logic. C
is a copy of C, where each variable name v in v(C), except 
those occurring also in formula A, is renamed into v . The 
same holds for B . 

Preservation of Structural Information 

Requirements are constraints on the intended behavior of 
the system. While in verification one would simply check 
whether or not the set of constraints are fulfilled, test gen-
eration and test justification (section 6) requires the preser-
vation of some structural information. From a purely logi-
cal perspective, one could transform an FRL requirement 
into an implication and, thus, into a single constraint and a 
set of requirements into a constraint network. While this 
can be done to specify the semantics of 
then

→ and 
until

first
→ ,  

FRL maintains 
- the individual requirements as units and 
- within a single requirement, the distinction between 

start-condition, consequence and end-condition.  
This is essential because the tests have to be generated for 
each single requirement, and conditions and consequence 
play a different role in test generation. While the former 
(and their mutations) need to be established by other ac-
tions, the latter is what must be established by the system, 
can be affected by faults, and, hence, needs to be checked. 
Section 5 will show how this structure is exploited for 
generating fault models.  
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Figure 5 – Semantic of a FRL requirement rule in predi-
cate logic. 

Other possible representations, such as finite state ma-
chines representing the whole functionality of the system 
or formulae of the Duration Calculus (DC, see [Chaochen-
Hansen 03]) do not contain information about start-, end-
condition or consequence of the original requirements.  
Requirements in FRL do not only contain this structural 
information, but also provide a 1:1 mapping between each 
state expression in the template and in the formal require-
ment. This is relevant for the tool, because it forms the 
basis for presenting comprehensible justifications for the 
generated tests to the test engineer, which can be stated in 
terms of the elements of the original requirements (formu-
lated in a template). 

Expressiveness of FRL 

The formal requirement language is quite expressive, and, 
in fact, it is overly expressive from the application point of 
view. The included continuous time model results in unde-
cidability. For instance, consider the simple rule: ‘5 sec-
onds after pressing a button, the lamp must be lit’. The 
button could be pressed infinitely often during 5 seconds, 
and each time the requirement would have to hold. Thus 
during this period, an infinite amount of memory would be 
necessary to keep track of the individual time points the 
lamp must be lit. Of course, this is irrelevant under practi-
cal consideration, because the button may be pushed often, 
but not infinitely often.  
There are two ways to cope with this issue. One could 
restrict the language explicitly to a discrete time model 
with finite granularity. Alternatively, one can restrict the 
use of the language. This is what is currently guaranteed by 
the finite sets of templates (and requirements), the way 
fault models are constructed, and the fact that test genera-
tion considers a finite set of steps only. 

5. Fault Model Types 

We also analyzed how test cases of an existing test suite 
were generated and identified the motivation behind them. 
It is not surprising that tests are explicitly or (often) implic-
itly based on hypothesizing “what may go wrong” and 

designed to detect a certain type of misbehavior (deviation 
from the specification). It turned out that many of these 
fault types can be represented as defects in the requirement 
specification and can be described in terms of start-
condition, end-condition and consequence that are “muta-
tions” of the ones occurring in the requirements.  
In the following, we discuss some fault types that were 
used most frequently in the analyzed documents. We pre-
sent examples and the fault types informally and in FRL. 
Two of the most obvious fault types are, stated intuitively, 

• The conditions are satisfied, but the consequence 
does not occur. 

• The condition is not satisfied, but the consequence 
occurs, anyway. (At a second glance, this is not 
necessarily a fault, unless there are other require-
ments contradicting this). 

To illustrate the first case, consider the example require-
ment R: “if button B3 is down, lamp L1 is lit and the speed 
is below 130km/h, lamp L2 must be on for 5 seconds”. 
Then the first fault type states that in any situation match-
ing the start-condition (positive case), the lamp L2 is not 
on for 5 seconds (but may be on for less than 5 seconds). 

Simple Positive Fault 
Contrary to the specification, in all conditions that sat-
isfy the start condition of a requirement, its conse-
quence does not occur, i.e. the negated consequence 
occurs 

For a requirement Ri one fault model mfail,i is created 
which differs from the correct specification mok only 
in Ri by replacing B with its negation: 

fail, ok ,fail

until until

,fail .

i i i

i i

m m R R

R R B C B C

� 	
= ∧


 �
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 � 
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 �
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where [ ]X Y Z
�

means that Y is replaced by Z within 
X. 

Here, and in the following, the respective requirements 
are stated as 

then until

first
i

R A B C

� �

= → →
� �
� �

For the next fault type assume that it is known (via other 
requirements) that if even only one of the conjuncts in the 
start-condition of R is not true (negative case), e.g. the 
button is not down but L1 is off and speed is below 
130km/h, then the lamp L2 is not on for 5 seconds. In con-
trast the fault states that L2 is lit in such negative cases. 

Simple Negative Fault 
Contrary to the specification, in all conditions that dif-
fer from the start-condition of a requirement by ex-
actly one negated conjunct, the requirements conse-
quence does occur, although other requirements R2, … 
Rn implies a different consequence. 

For each fact occurrence FOj in start-condition A of a re-
quirement Ri, a fault model mfail,i,j is created which differs 
from the ok model by removing FOj from A:  
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The next fault type leads to a boundary value analysis. The 
fault states that in any borderline situation, like the speed is 
129,5km/h, the consequence does not occur. 
We therefore define that a value assignment v=’(v1,…vn) 
for all variables V=(V1,…Vn) is called a positive borderline 
situation of an expression expr, iff the expression is true 
under v and there exists a i≤n such that expr becomes false 
when in- or decreasing (only) the value vi.  

Boundary Value Positive Fault 
Contrary to the specification, for each positive border-
line situation of the start-condition, the consequence 
does not occur. 

Analogously, a negative borderline can be defined, where 
the expression is false but becomes true with an in-
/decrease, leading to the definition of a Boundary Value 
Negative Test. 
Representing this fault type is fairly clumsy using proposi-
tions only. It will be easier when we introduce value as-
signments to variables as state expressions.. 
Although the simple positive fault type appears very sim-
ple, there can be many state expressions that satisfy the 
respective condition (conjunctions that subsume the condi-
tion), and only some of them are reasonable to consider, 
because additional conjuncts interact with the other ones. 
This interaction can be due to shared resources. E.g. as-
sume that both the lamp L1 and the window lifter consume 
a significant amount of power from the battery. A faulty 
behavior because of resource shortage may occur if both, 
‘L1 is lit’ and ‘window lifter is on’ hold at the same time. 

Resource Shortage Fault
The starting conditions of two requirements are satis-
fied such that both consequences must hold during the 
same time, where both shares a common resource, one 
of the consequences does not occur. 

For each tuple (F1,F2)∈FACTS2 where both facts 
share the same resource, share-resource(F1, F2), two 
fault models mfail,1 and mfail2 are created. The first dif-
fers from mok in replacing each requirement Ri with 
consequence 
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Replacing each F1 in the formulas above by F2 and 
vice versa leads to the second model mfail,2.  

Note that all fault types above refer to the structure of the 
requirements stated as templates.  
There are more plausible fault types, and we list some of 
them: 

Unwanted Temporal Ordering Dependency  
Contrary to the specification, if the events of the start 
condition occur in a specific order, the consequence of 
a requirement does not occur. 

Example: The specification contains the requirement 
„When buttons A and B are both down for 5 seconds, then 
X must occur immediately” According to this requirement 
the consequence must occur independently of the order of 
pressing A and B.  

Wrong Requirement Priority 
Contrary to the specification, a requirement has a 
lower priority than another requirement (if a require-
ment has a higher priority than another, it over-writes 
it, i.e. in a condition matching both start conditions, 
only the consequence of the requirement with the 
higher priority if they are contradictory). 

Example: assuming the following two requirements, where 
the first is higher prioritized than the second. Requirement 
1: “If the main switch is turned to position ‚off’, the system 
must immediately turn off itself”. Requirement 2: “if the 
pedal is released in mode active1, the system must immedi-
ately switch to mode active2”. Here a Wrong Requirement 
Priority Fault exists, if the system switches to active2 in-
stead of deactivating itself, if the pedal and the switch are 
pressed simultaneously in active1. 

Requirement Violated in Temporary States 
In a specific temporary state the consequence of a re-
quirement does not hold.  

Example: assume in some situations mode m1 is active for 
500ms only and then becomes inactive without further 
interaction. The fault type states that the consequence of 
some selected or all applicable requirements do not hold 
during m1 although the start-conditions are fulfilled. The 
underlying hypothesis is that such short states may be 
easily overlooked during testing. 

Incorrect Bracketing 
Wrong brackets in a state expression  

For instance, the text “…button A or button B and button C 
is pressed…” in a requirement document could be inter-
preted as (A∨B)∧C is pressed or A∨(B∧C) is pressed. This 
fault type assumes that the wrong interpretation was cho-
sen for implementation. 
Note that for some fault types additional knowledge not 
contained in the requirement specification is needed, e.g. 
for an Unwanted Resource Shortage Fault, information 
about dependencies between facts (or requirements) and 
the resource are needed. 
Note that a faulty requirement may contradict other re-
quirements, thus it has to override them in order to get a 
faulty but consistent specification (e.g. by assigning each 
requirement a priority). 
In summary, we tried to illustrate in this section that 

• there exist intuitive concepts of fault types that 
motivate tests, 

• these fault types are obtained as transformations 
of the respective requirements (and that this re-
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quires the preservation of the structure of the re-
quirements) 

• they can be stated in the same language as the re-
quirements, FRL. 

6. Input and Output of Test Generation 

Based on the described foundations, a test generation 
specification TGS contains all information, besides the 
specification modelok of the system-under-test, needed to 
successfully perform fault-based test generation. A TGS is 
represented as a tuple: 
 TGS = (TESTBENCH, SETTESTIDEAS) , 
where  
 TESTBENCH = (FACTSobs, FACTScausal) 
describes the attributes of the test bench, which is the tech-
nical interface to the system-under-test. When switching to 
another test bench, TESTBENCH must be adopted prop-
erly. It declares the set FACTSobs of facts observable and 
the set FACTScausal of facts that can be  manipulated by the 
tester. Optionally the test bench’s maximal temporal reso-
lution of the observations, Δtobs, and of the stimuli, Δtobs, 
may be stated. For instance, Δtobs =10ms stating that events 
lasting less than ten milliseconds are not visible, becomes 
handy if the stimuli is observed only by a human tester.  
The set SETTESTIDEAS consists of test ideas 
 TESTIDEA = (TYPEfault, REQUIREMENT). 
A test idea specifies that the fault type TYPEfault has to be 
applied to REQUIREMENT, which results in one or sev-
eral fault models. Fault specific parameters, such as a ref-
erence to resource sharing for Resource Shortage Faults, 
may be given in addition. 
Since the test generation algorithm produces tests in order 
to discriminate the OK behavior from the various fault 
models, the purpose of the test can be explained to the test 
engineer by referring to a specific requirement and to cer-
tain fault types, i.e. at a conceptual level he is familiar 
with. One could also try to display the hypothesized fault 
types in terms of templates. Because there is no guarantee 
that the FRL fault model corresponds to any of the tem-
plates offered for requirement acquisition, this would only 
work if such templates are generated automatically from 
FRL. 

7. Future Work 

The project described here is driven by the application 
requirements. Therefore, we have to avoid overloading the 
acquisition of the requirements and the domain theory. 
This is why we have to allow a rather coarse level for ex-
pressing FACTS, with the obvious drawback that at this 
propositional level many of the interrelations of various 
requirements, including inconsistency, refinement, redun-
dancy, remain implicit and cannot be exploited by the 
algorithm, which weakens its results. Such interrelations 
can be made explicit in the domain theory, causing higher 
efforts on this side. The alternative is to allow for a more 

structured representation. An obvious extension is to intro-
duce variables and assignment of values or ranges to them.  
Currently, we are performing an initial evaluation, which 
will provide us with feedback from the test engineers and 
with hints on an appropriate trade-off between limiting 
efforts on the requirement acquisition side and the quality 
and utility of the generated tests. At least, we will be able 
to demonstrate what can be gained by a more structured 
and systematic requirement acquisition. 
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