
Figure 1 – A common test bench for cars.

Obtaining Models for Test Generation

from Natural-language-like Functional Specifications

M. W. Esser
1
, P. Struss

1,2

1
Technische Universität München, Boltzmannstr. 3 D-8578 Garching, Germany

2
OCC’M Software, Gleissentalsstr. 22, D-82041 Deisenhofen, Germany

{esser, struss}@in.tum.de, struss@occm.de

Abstract

The paper presents first results of a project that aims at a
model-based tool for functional testing of control software
for passenger vehicles. The objective is that this tool can be
used in today’s engineering practice and, hence, the ap-
proach must not require costly changes in the current test
generation process and not assume data and skills that do
not exist in reality. Firstly, the input to test generation, i.e.
the specification of functional requirements, exists mainly
as natural language text, rather than in a formal language.
Secondly, its output, i.e. a set of proposed tests, has to be
justified and explained in terms that are comprehensible to
the test engineers in order to allow them to inspect, revise,
and complement it. We focus on design decisions that are
motivated by this objective. The proposed solution offers a
natural-language-template-based interface for acquiring
software requirements. The content of the filled-in templates
can be represented in propositional logic and temporal rela-
tions and form the model of the intended correct behavior.
Models of potential faulty behaviors are generated from this
OK model by a number of (types of) transformations. The
fault types are defined mainly to match the intuition behind
manually generated test cases and, hence, can deliver simi-
lar, but more systematic, test suites. This forms the basis for
the intuitive justification of the tests and its manual post-
processing.

1. Introduction

As long as formal specification of software functions and
software generation and verification based on formal speci-
fications are not established, testing of software is an es-
sential step in software development. And even if, some
day, the precondition would be achieved, there would be
no guarantee that the starting point, the specification, cap-
tures the intuitive user expectations appropriately, which
again establishes a need for testing. This holds even more
if the software has a high impact on safety of people and/or
environment such as the control software on vehicles.
Automotive companies spend high efforts on testing soft-
ware, often delivered by suppliers, on test benches with
“hardware in the loop” [Boot et al. 99] describes automated
testing techniques for HIL). Figure 1 shows an exemplary
test bench. Large parts of the physical behavior of the

vehicle are simulated, and the electronic control unit
(ECU) is tested in this context. Today, the test suites for
this process are generated by hand, based on the informa-
tion contained in the requirement documents. This results
in high development costs and does not provide a reliable
assurance of the scope of testing.
In a project with a major German car manufacturer, we aim
at addressing these issues by producing a tool that gener-
ates sets of tests automatically from the requirement speci-
fication. Since the software is to be tested in the context of
the (simulated or real) vehicle, a coherent approach to
testing software and physical parts in a uniform way is
attractive. We are addressing this requirement by extending
our model-based test generation algorithm [Struss 94] to
software testing. A feasibility study for this approach was
presented in [Esser-Struss 07].
The major challenge of the project is to build a tool that
supports the existing work process, rather than requiring a
major revision of the process, long education of the in-
volved staff, etc. This implies, in particular,
- on the input side: we cannot expect the requirement

engineers to learn and use a formal language for formu-
lating requirements. The current requirement docu-
ments state mainly functional requirements and are
mainly natural language texts.

75

In: G. Biswas et. al. (eds.), DX’07, 18th International Workshop on Principles of Diagnosis. May 29-31, 2007. Nashville (USA)

vcause

vobs\cause

Not discriminable

(NTI)

Definitely Discriminable

(DTI)

Possibly discriminable

(PTI)
R1

R2

vcausevcause

vobs\causevobs\cause

Not discriminable

(NTI)

Definitely Discriminable

(DTI)

Possibly discriminable

(PTI)
R1

R2

Figure 2 – Determining the inputs that do not, possibly
and definitely discriminate between models R1 and R2.

- on the output side: the automatically generated tests
need to be inspected, revised, and extended by the test
engineers and, therefore, presented, justified, and ex-
plained in intuitive terms.

In this paper, we focus on the attempt to address these
requirements. The proposed solution offers natural-
language-template-based interface for acquiring software
requirements (section 3). The content of the filled-in tem-
plates is automatically transformed into a representation in
propositional logic and temporal relations and forms the
model of the intended correct behavior (section 4). Models
of potential faulty behaviors are generated from this OK
model by a number of (types of) transformations (section
5). The fault types are defined mainly to match the intui-
tion behind manually generated test cases and, hence, can
deliver similar, but more systematic, test suites. This forms
the basis for the intuitive justification of tests and their
postprocessing (section 6).
In the following section, we give an overview of the ap-
proach and its elements.

2. The Approach

The perspective on testing is that confirmation of one be-
havior mode (OK) requires discriminating it from all pos-
sible faults. In the model-based test generation algorithm
presented in [Struss 94], models (of physical systems) are
represented as (finite) relations. Useful test inputs (the
vertical axis in figure 2) are computed as the complement
of those that may trigger the same observable response
under both behavior modes (the horizontal axis). Such a
test guarantees to refute at least one of the two beheviors.
The task of test generating for conformance testing is find-
ing a set of test cases such that for each pair (mok, mfail,i),
where mok is the model of the correct system and mfail,i is
one out of a given set {mfail,1 , …,mfail,n} of models of sys-
tem faults, a definitely discriminating test exists in the set.
Applying this approach to test generation of software re-
quires a process containing at least three steps (see figure
3):
1st Step: building a model of correct behaviour, mok, In our

case, the OK behavior is (solely) given by the (high-
level, functional) requirements,

2nd Step: deriving fault models {mfail,1 , …,mfail,n} from mok

according to some selected fault classes,
3

rd
 Step: computing the test cases for mok and {mfail,1 ,
…,mfail,n}.

The framework presented here can be seen as a refinement
of these three steps under our objective, namely supporting
the existing work process. Actually, it involves two differ-
ent types of experts (and, in fact, different departments):
requirement engineers and test engineers. The latter needs
the results of the former as an input to his work and this
exchange happens via documents, discussions, and phone
calls and ist time-consuming, error prone, and only weakly
supported by software. Our tool can be understood as pro-
viding support to both types of experts and a channel for
the exchange of well-defined information between them.

In order to develop the foundation for a solution, we par-
ticipated in both work processes, requirement acquisition
and test generation, related to a new version of the Auto-
matic Cruise Control System (ACC). This enabled us to
develop the current working hypotheses for an appropriate
representation of requirements and for identifying fault
models that corresponds to the potential misbehaviors that
the engineers hypothesize and their tests check for. This
requires two more steps, namely
0

th
 Step: obtaining a formal requirement specification from
experts who are accustomed to using natural language
for this purpose

4
 th

 Step: presenting the generated tests and explaining the
rationale behind them to the test engineers.

Figure 3 also indicates the specific requirements in the
process which are:
A. The acquisition of requirements from the requirement

engineer must be in a form that is close to their intui-
tions and the language they use, which is natural lan-
guage.

B. The model (for mok) must be a formal one and
C. must preserve the structure of the requirement specifi-

cation.
D. The model formalism used for the fault models must be

expressive enough to cover all relevant requirements
and fault types.

E. The purpose of the generated test cases must be com-
prehensible to the human expert.

Preserving of the structure means that the individual ele-
ments of the (manually created) requirement specification
can still be identified in the model mok. The reasons for
this, which are explained in detail later, are:
- to apply the same test criteria as in the current manual

practice
- to explain the reason for a test case in terms of the

requirement specification, which leads to intuitive justi-
fications.

These aims are addressed in this framework by introducing
two representations used in different steps in the process:
1. At the user interface: Template Based Natural Lan-

guage Specification (TBNLS), where each require-
ment is a filled template forming a natural language
sentence.

DX-07, Nashville, TN, USA May 29-31, 2007

76

Figure 3 – the steps of fault-based test generation, and the formalisms used in this framework.

2. Internally, this is transformed into a Formal Require-
ment Language (FRL) where requirements are tuples
(start-condition, consequence, end-condition). Condi-
tions and consequence are specified in terms of propo-
sitions, that characterize system states, time intervals,
and temporal constraints.

The human expert interacts only with TBNLS notation and
only specifies the correct behavior. From this, the FRL
specification is automatically generated and then used to
generate fault models (see figure 3).
In the following sections the formalisms are described.

3. Natural-language-like Specification

In current practice, functional requirements (except for a
small set of critical applications) are usually stated infor-
mally in natural language. A requirement acquisition tool
has to allow the expert to stick to this as far as possible.
Therefore, we decided to use a natural-language-like speci-
fication. However, since it must provide the basis for the
following formal representations and algorithms, it has to

• have precise semantics and
• cover at least the most important/common classes

of the requirements.
In order to achieve this, we studied current practice re-
quirement documents supplied by the industrial partner.
The left-hand column of figure 4 lists three typical exam-
ples from such a document. Our analysis showed that al-
most all requirements can be structured using three ele-
ments: start-condition (if), consequence (then) and end-
condition (until). If a situation matches the start-condition,
then also the consequence has to hold. Additionally, the
termination of the consequence is specified by an end-
condition. Thus, e.g. requirement R2 can be reformulated as
follows:
if the system is in mode m1, lamp L3 is off, and button

B4 is released,
then immediately lamp L3 is lit
until button B4 is down again or the system leaves m1.
The end-condition may be missing, and, hence, the dura-
tion of the consequence is unspecified. If the start condi-

tion is also omitted, the consequence has to hold univer-
sally.
The following description of the template-based natural-
language-like specification (TBNLS) comprises
- the set of templates for representing requirements, and
- a domain theory containing additional background

information necessary for situating the requirements in
a context and for generating tests that reflect and ex-
plaining this context.

Sentence Templates for Requirement Rules

A sentence template is a particular grammatical natural
language pattern, which can be filled with state expressions
and metrical time information. The right-hand column in
figure 4 shows the filled in templates for the three sample
requirements.
The template itself fixes the temporal relationships (e.g. P1

must occur before P2) between situations characterized by
state expressions and classifies the state expressions as
start-condition, consequence and end-conditions. The abil-
ity to specify exact temporal relationships is missing in
many other natural language representations, such as ACE
(Attempt to Controlled English, [Fuchs-Schwitter 96])
which is a subset of English restricted in vocabulary and
grammar.
A state expression P characterizes a class of situations and
is inductively defined from facts F∈FACTS:
 P := F | (P1 AND P2) | (P1 OR P2) | NOT P1

Facts are atomic propositions and do not have a structure
or explicit semantics a priori; a reader must know what
they mean. However, dependencies among facts may be
defined in the domain theory. E.g. in requirement R1 the
facts are ‘Button B4 is not down’, ‘Button B4 is down’ and
‘Lamp L3 is lit’. ‘5 seconds’ is metrical time information.
The choice to use unstructured propositions was made in
order to avoid putting too much burden on the requirement
engineer by forcing him to introduce certain predicates,
variables with associated domains etc. While it is straight-
forward to assign a value ‘30km/h’ to the quantity ‘veloc-
ity’, in other cases, it would be unnatural for requirements
like ‘Transition from mode m1 to m2 must be comfort-

DX-07, Nashville, TN, USA May 29-31, 2007

77

[] []

() ()

[] ()

2 4

1 21 3

2 3 1 2 1

6

3 3 55

[

|

|

t t

t t

t

t

A P P

t t t t T

B P t t

= ∧ ∧

∧ = −

= ∧

[] []

()

[] ()

[] ()

2 4

1 3

6

5

8

7

1 2

3 1 4

3 1 5

4 6 7

[

|

|

t t

t t

t

t

t

t

A P P

t t t

B P t t

C P t t

= ∧ ∧

< <

= ∧

= ∧

[]

[] ()

()

2

1

4

3

1

2 2 3

4 3

[

|

10

t

t

t

t

A P

B P t t

C t t s

=

= ∧

= = +

then until

first
R A B C

� �

= → →
� �
� �

Figure 4 – Examples of natural-language requirements and the respective templates, their notation in FRL, and graphical
representation (from left).

able’. Later, we plan to explore the gain of a more struc-
tured representation of the facts. A more complex repre-
sentation (which means more work!) may be more accept-
able if the resulting benefit can be demonstrated and quan-
tified.
In a template, ‘A occurs’ always means that A was false
before and changed to true now, and ‘A holds’ means, that
A is true independent of its value before or after.
The user can choose to activate a default rule, stating that a
fact persists, unless specified otherwise in the template
(which addresses the frame problem). However, this leads
to disadvantages compared to specifying the behavior for
entire time intervals explicitly: leaving the behavior un-
specified for certain intervals, which may be adequate
during design stage, is not possible.

Domain Theory

The functional requirements are considered as a descrip-
tion of the intended behavior of the respective subsystem.
However, it is only a partial description and is likely to be
insufficient for generating reasonable tests for several
reasons. Here, we are not referring to the fact that the re-
quirement engineer may have forgotten to specify some
relevant aspects of the desired system behavior. The
sources of incompleteness are more fundamental:
- The collection of requirements may not contain the most

basic ones, because they are obvious to anybody in-
volved in the process. (Actually, sometimes, they will
only be assumed to be obvious, and e.g. the test engi-

neer may not be aware of them, which creates a prob-
lem). For instance, the fundamental function of a
brake, namely to decelerate the vehicle will probably
not be subject to an explicit requirement.

- The collection of requirements concerns only one sub-
system, and, more specifically, its software and does
not specify the behavior of the context, i.e. the physi-
cal components of this subsystem and other subsys-
tems it is interacting with. For instance, the Automatic
Cruise Control (ACC) interacts with the braking sys-
tem, whose function will produce in turn an impact on
the ACC (by reducing the speed and potentially in-
creasing the distance to the preceding vehicle).

- Also, the environment of the vehicle (road conditions,
the driver’s actions, other vehicles etc.) will usually
not show up in the requirements, but may be relevant
to test generation. For instance, acceleration of the
preceding vehicle influences the distance to it, which
is a measured input to the ACC. Also, basic physical
constraints will be missing, such as the fact that the
vehicle cannot brake and accelerate at the same time.

If this background knowledge is not available to the test
generation algorithm, it may still be able to produce tests,
but they may be unintuitive and overly complicated, and
miss some “obvious” solutions. Complementing the model
obtained from the requirements by this kind of knowledge
will make automated test generation more powerful and
provide results with higher acceptance. We expect that a
very basic and qualitative model of vehicle functions and

DX-07, Nashville, TN, USA May 29-31, 2007

78

its context will suffice to achieve this and, therefore, be
highly reusable for different subsystems (and, in fact, for
different work processes).
There is another limitation that is due to the chosen granu-
larity of the current requirement representation:
- Since the entries in the templates are treated as elemen-

tary propositions, their ontological relations (e.g. exclu-
siveness or a taxonomy) are not made explicit in the set
of requirements. In our example, ‘Button is down’ is
the negation of ‘Button is up’.

To exclude situations which are impossible in reality, such
kind of dependencies have to be included in the domain
theory. Otherwise, test generation, may produce test cases
that cannot be executed.
The axioms of the domain theory should be expressed in
the same way as the requirements (e.g. for defining that the
‘Button is pushed’ holds, if and only if ‘Button is down’
holds now and ‘Button is up” was true before), but repre-
sented separately from them, because
- the requirement engineer is only interested in the re-

quirements and should not be forced to deal with the
domain theory (which is obvious background knowl-
edge to him)

- the domain theory plays a different role in the process,
in that its interdependencies are not subject to testing,.

At present, we use 15 different requirement sentence tem-
plates. They suffice to express the set of requirements in
the current project. Of course, additional templates may be
added if needed. Because it might be difficult to pick the
right template from a larger set and because there may be a
need to modify the template while formulating a require-
ment, in the future, we may consider supporting the con-
struction of templates from elementary fragments (logical
connectors, temporal constraints) similar to configuring
functions in Excel. In this paper, we refer only to the tem-
plates underlying R1, R2 and R3.

4. Formal Requirement Language

In order to build the model, the first step after acquiring the
requirements in template form is to transform each tem-
plate instance into a requirement in the formal language
(FRL). Figure 4 shows the example rules in FRL notation
(left-hand column) and their graphical illustrations.
The set of FRL requirement rules over a set of facts
FACTS is defined inductively.

Definition – FRL Requirement
Let εstate=P be the set of state expressions defined in section
3 and ~ be one of the relations =, <, >, ≤, ≥, and |. Then

εinterval = []
2

state 1

� t

t
 | []

2

state 1
[� t

t
 | []

2

state 1
�]

t

t

 | εinterval ∧ εinterval | εinterval ∨ εinterval

 | (εinterval) | εinterval ∧ εquant | ¬εinterval

εquant = ∃ εunquant | ¬∃ εunquant

 | εquant ∧ εquant | εquant ∨ εquant

εunquant = (εinterval ∧ εconstr) | ¬εunquant

εconstr = (ti ~ tj) | (ti ~ tj + x) | (ti ~ tj – x)

 | ε constr ∧ ε constr | ε constr ∨ ε constr

εrequ = []
then until

state constr
first

� tb

ta
A Cε

� �
→ ∧ →

� �� 	

 | []
then

state constr

 tb

ta
A ε

� �
→ ∧

 �� �

where A,C ∈ εunquant.
The informal semantics is:

- []
2

state 1

t

t
ε specifies that εstate holds all the time during the

(closed) interval [t1,t2], where εstate may but not need to
hold before and after that interval.

- []
2

state 1
[

t

t
ε specifies a left-max interval where εstate must

hold, i.e. additional to the above expression, εstate must
not hold in the interval right before t1. The analogue

holds for []
2

state 1
]

t

t
ε .

- t1 | t2 means t2 follows t1, i.e. there is an infinitely short
time between t1 and t2.

The formal semantics is given in predicate logic, where
F(t) means, that fact F holds at time t:

[] ()
2

state , 1 2 state1
: �t

t t t tt
tε ≤ ≤= ∀

[] [] [] ()
2 0 2

state ', 0 state state 0 11 ' 1
[: |

t t t

t tt t t
t tε ε ε= ∃ ¬ ∧ ∧

[] [] []()1 2 0 1, 3 2 0 1 2 3 0 3| : ; ; ;t t t tt t t t t t t t< >= ∀ ∪ =

where [a;b] is the closed interval between a and b. Figure 5
shows the semantics of a requirement in predicate logic. C
is a copy of C, where each variable name v in v(C), except
those occurring also in formula A, is renamed into v . The
same holds for B .

Preservation of Structural Information

Requirements are constraints on the intended behavior of
the system. While in verification one would simply check
whether or not the set of constraints are fulfilled, test gen-
eration and test justification (section 6) requires the preser-
vation of some structural information. From a purely logi-
cal perspective, one could transform an FRL requirement
into an implication and, thus, into a single constraint and a
set of requirements into a constraint network. While this
can be done to specify the semantics of
then

→ and
until

first
→ ,

FRL maintains
- the individual requirements as units and
- within a single requirement, the distinction between

start-condition, consequence and end-condition.
This is essential because the tests have to be generated for
each single requirement, and conditions and consequence
play a different role in test generation. While the former
(and their mutations) need to be established by other ac-
tions, the latter is what must be established by the system,
can be affected by faults, and, hence, needs to be checked.
Section 5 will show how this structure is exploited for
generating fault models.

DX-07, Nashville, TN, USA May 29-31, 2007

79

() ()

() ()

()() () ()()()
()() () ()()

[]

then until

1 2fv
first

then

fv

1 , fv v , ,

2 , ,

: ,

:

with

:

a b a b

b

a

A

A

ta tb C BC ta tb tb

t t b t t Bfv C

t

Bt

R A B C A BC BC

R A B A C

BC B C C c

BC B t C c

B P c

<

� �
= → → = ∀ � ∨

� �� �
� �

= → = ∀ �� �� �

⇔ ∃ ∧ ∃ ∧ ¬∃ ∧

⇔ ∃ ∧ = ∞ ∧ ∀ ¬∃ ∧

= ∧

Figure 5 – Semantic of a FRL requirement rule in predi-
cate logic.

Other possible representations, such as finite state ma-
chines representing the whole functionality of the system
or formulae of the Duration Calculus (DC, see [Chaochen-
Hansen 03]) do not contain information about start-, end-
condition or consequence of the original requirements.
Requirements in FRL do not only contain this structural
information, but also provide a 1:1 mapping between each
state expression in the template and in the formal require-
ment. This is relevant for the tool, because it forms the
basis for presenting comprehensible justifications for the
generated tests to the test engineer, which can be stated in
terms of the elements of the original requirements (formu-
lated in a template).

Expressiveness of FRL

The formal requirement language is quite expressive, and,
in fact, it is overly expressive from the application point of
view. The included continuous time model results in unde-
cidability. For instance, consider the simple rule: ‘5 sec-
onds after pressing a button, the lamp must be lit’. The
button could be pressed infinitely often during 5 seconds,
and each time the requirement would have to hold. Thus
during this period, an infinite amount of memory would be
necessary to keep track of the individual time points the
lamp must be lit. Of course, this is irrelevant under practi-
cal consideration, because the button may be pushed often,
but not infinitely often.
There are two ways to cope with this issue. One could
restrict the language explicitly to a discrete time model
with finite granularity. Alternatively, one can restrict the
use of the language. This is what is currently guaranteed by
the finite sets of templates (and requirements), the way
fault models are constructed, and the fact that test genera-
tion considers a finite set of steps only.

5. Fault Model Types

We also analyzed how test cases of an existing test suite
were generated and identified the motivation behind them.
It is not surprising that tests are explicitly or (often) implic-
itly based on hypothesizing “what may go wrong” and

designed to detect a certain type of misbehavior (deviation
from the specification). It turned out that many of these
fault types can be represented as defects in the requirement
specification and can be described in terms of start-
condition, end-condition and consequence that are “muta-
tions” of the ones occurring in the requirements.
In the following, we discuss some fault types that were
used most frequently in the analyzed documents. We pre-
sent examples and the fault types informally and in FRL.
Two of the most obvious fault types are, stated intuitively,

• The conditions are satisfied, but the consequence
does not occur.

• The condition is not satisfied, but the consequence
occurs, anyway. (At a second glance, this is not
necessarily a fault, unless there are other require-
ments contradicting this).

To illustrate the first case, consider the example require-
ment R: “if button B3 is down, lamp L1 is lit and the speed
is below 130km/h, lamp L2 must be on for 5 seconds”.
Then the first fault type states that in any situation match-
ing the start-condition (positive case), the lamp L2 is not
on for 5 seconds (but may be on for less than 5 seconds).

Simple Positive Fault
Contrary to the specification, in all conditions that sat-
isfy the start condition of a requirement, its conse-
quence does not occur, i.e. the negated consequence
occurs

For a requirement Ri one fault model mfail,i is created
which differs from the correct specification mok only
in Ri by replacing B with its negation:

fail, ok ,fail

until until

,fail .

i i i

i i

m m R R

R R B C B C

� 	
= ∧

 �
� 	�
 �

= → ¬ →
� � � �� �� � � �
 �

�

�

where []X Y Z
�

means that Y is replaced by Z within
X.

Here, and in the following, the respective requirements
are stated as

then until

first
i

R A B C

� �

= → →
� �
� �

For the next fault type assume that it is known (via other
requirements) that if even only one of the conjuncts in the
start-condition of R is not true (negative case), e.g. the
button is not down but L1 is off and speed is below
130km/h, then the lamp L2 is not on for 5 seconds. In con-
trast the fault states that L2 is lit in such negative cases.

Simple Negative Fault
Contrary to the specification, in all conditions that dif-
fer from the start-condition of a requirement by ex-
actly one negated conjunct, the requirements conse-
quence does occur, although other requirements R2, …
Rn implies a different consequence.

For each fact occurrence FOj in start-condition A of a re-
quirement Ri, a fault model mfail,i,j is created which differs
from the ok model by removing FOj from A:

DX-07, Nashville, TN, USA May 29-31, 2007

80

fail, , ok ,fail,

,fail, fail,

fail, true .

i j i i j

i j i j

j j

m m R R

R R A A

A A FO

� �
= ∧

� �

� �
= ∧

� �

� �
=

� �

�

�

�

The next fault type leads to a boundary value analysis. The
fault states that in any borderline situation, like the speed is
129,5km/h, the consequence does not occur.
We therefore define that a value assignment v=’(v1,…vn)
for all variables V=(V1,…Vn) is called a positive borderline
situation of an expression expr, iff the expression is true
under v and there exists a i≤n such that expr becomes false
when in- or decreasing (only) the value vi.

Boundary Value Positive Fault
Contrary to the specification, for each positive border-
line situation of the start-condition, the consequence
does not occur.

Analogously, a negative borderline can be defined, where
the expression is false but becomes true with an in-
/decrease, leading to the definition of a Boundary Value
Negative Test.
Representing this fault type is fairly clumsy using proposi-
tions only. It will be easier when we introduce value as-
signments to variables as state expressions..
Although the simple positive fault type appears very sim-
ple, there can be many state expressions that satisfy the
respective condition (conjunctions that subsume the condi-
tion), and only some of them are reasonable to consider,
because additional conjuncts interact with the other ones.
This interaction can be due to shared resources. E.g. as-
sume that both the lamp L1 and the window lifter consume
a significant amount of power from the battery. A faulty
behavior because of resource shortage may occur if both,
‘L1 is lit’ and ‘window lifter is on’ hold at the same time.

Resource Shortage Fault
The starting conditions of two requirements are satis-
fied such that both consequences must hold during the
same time, where both shares a common resource, one
of the consequences does not occur.

For each tuple (F1,F2)∈FACTS2 where both facts
share the same resource, share-resource(F1, F2), two
fault models mfail,1 and mfail2 are created. The first dif-
fers from mok in replacing each requirement Ri with
consequence

[]()1

tb

Bta
B F c= ∧

by Ri,fault with:

[]

() ()()
,fault

1 2 1 2

' ,

' .

i i

tb

Bta

R R B B

B F F F F c

= →

= ∧ ¬ ∨ ¬ ∧ ∧
� �� 	

Replacing each F1 in the formulas above by F2 and
vice versa leads to the second model mfail,2.

Note that all fault types above refer to the structure of the
requirements stated as templates.
There are more plausible fault types, and we list some of
them:

Unwanted Temporal Ordering Dependency
Contrary to the specification, if the events of the start
condition occur in a specific order, the consequence of
a requirement does not occur.

Example: The specification contains the requirement
„When buttons A and B are both down for 5 seconds, then
X must occur immediately” According to this requirement
the consequence must occur independently of the order of
pressing A and B.

Wrong Requirement Priority
Contrary to the specification, a requirement has a
lower priority than another requirement (if a require-
ment has a higher priority than another, it over-writes
it, i.e. in a condition matching both start conditions,
only the consequence of the requirement with the
higher priority if they are contradictory).

Example: assuming the following two requirements, where
the first is higher prioritized than the second. Requirement
1: “If the main switch is turned to position ‚off’, the system
must immediately turn off itself”. Requirement 2: “if the
pedal is released in mode active1, the system must immedi-
ately switch to mode active2”. Here a Wrong Requirement
Priority Fault exists, if the system switches to active2 in-
stead of deactivating itself, if the pedal and the switch are
pressed simultaneously in active1.

Requirement Violated in Temporary States
In a specific temporary state the consequence of a re-
quirement does not hold.

Example: assume in some situations mode m1 is active for
500ms only and then becomes inactive without further
interaction. The fault type states that the consequence of
some selected or all applicable requirements do not hold
during m1 although the start-conditions are fulfilled. The
underlying hypothesis is that such short states may be
easily overlooked during testing.

Incorrect Bracketing
Wrong brackets in a state expression

For instance, the text “…button A or button B and button C
is pressed…” in a requirement document could be inter-
preted as (A∨B)∧C is pressed or A∨(B∧C) is pressed. This
fault type assumes that the wrong interpretation was cho-
sen for implementation.
Note that for some fault types additional knowledge not
contained in the requirement specification is needed, e.g.
for an Unwanted Resource Shortage Fault, information
about dependencies between facts (or requirements) and
the resource are needed.
Note that a faulty requirement may contradict other re-
quirements, thus it has to override them in order to get a
faulty but consistent specification (e.g. by assigning each
requirement a priority).
In summary, we tried to illustrate in this section that

• there exist intuitive concepts of fault types that
motivate tests,

• these fault types are obtained as transformations
of the respective requirements (and that this re-

DX-07, Nashville, TN, USA May 29-31, 2007

81

quires the preservation of the structure of the re-
quirements)

• they can be stated in the same language as the re-
quirements, FRL.

6. Input and Output of Test Generation

Based on the described foundations, a test generation
specification TGS contains all information, besides the
specification modelok of the system-under-test, needed to
successfully perform fault-based test generation. A TGS is
represented as a tuple:
 TGS = (TESTBENCH, SETTESTIDEAS) ,
where
 TESTBENCH = (FACTSobs, FACTScausal)
describes the attributes of the test bench, which is the tech-
nical interface to the system-under-test. When switching to
another test bench, TESTBENCH must be adopted prop-
erly. It declares the set FACTSobs of facts observable and
the set FACTScausal of facts that can be manipulated by the
tester. Optionally the test bench’s maximal temporal reso-
lution of the observations, Δtobs, and of the stimuli, Δtobs,
may be stated. For instance, Δtobs =10ms stating that events
lasting less than ten milliseconds are not visible, becomes
handy if the stimuli is observed only by a human tester.
The set SETTESTIDEAS consists of test ideas
 TESTIDEA = (TYPEfault, REQUIREMENT).
A test idea specifies that the fault type TYPEfault has to be
applied to REQUIREMENT, which results in one or sev-
eral fault models. Fault specific parameters, such as a ref-
erence to resource sharing for Resource Shortage Faults,
may be given in addition.
Since the test generation algorithm produces tests in order
to discriminate the OK behavior from the various fault
models, the purpose of the test can be explained to the test
engineer by referring to a specific requirement and to cer-
tain fault types, i.e. at a conceptual level he is familiar
with. One could also try to display the hypothesized fault
types in terms of templates. Because there is no guarantee
that the FRL fault model corresponds to any of the tem-
plates offered for requirement acquisition, this would only
work if such templates are generated automatically from
FRL.

7. Future Work

The project described here is driven by the application
requirements. Therefore, we have to avoid overloading the
acquisition of the requirements and the domain theory.
This is why we have to allow a rather coarse level for ex-
pressing FACTS, with the obvious drawback that at this
propositional level many of the interrelations of various
requirements, including inconsistency, refinement, redun-
dancy, remain implicit and cannot be exploited by the
algorithm, which weakens its results. Such interrelations
can be made explicit in the domain theory, causing higher
efforts on this side. The alternative is to allow for a more

structured representation. An obvious extension is to intro-
duce variables and assignment of values or ranges to them.
Currently, we are performing an initial evaluation, which
will provide us with feedback from the test engineers and
with hints on an appropriate trade-off between limiting
efforts on the requirement acquisition side and the quality
and utility of the generated tests. At least, we will be able
to demonstrate what can be gained by a more structured
and systematic requirement acquisition.

Acknowledgements

Thanks to the Model-based Systems and Qualitative Mod-
eling Group at the Technical University of Munich, Oskar
Dressler, Martin Sachenbacher, and the reviewers for their
helpful comments. We also thank Audi AG, Ingolstadt,
and, in particular, Reinhard Schieber for support of this
work.

References

[Boot et al. 99] Boot, R., Richert, J., Schutte H. and Ruk-
gauer, A. 1999, Automated test of ECUs in a hardware-in-
the-loop simulation environment. Proceedings of the 1999
IEEE International Symposium on Computer Aided Con-
trol System Design.
[Chaochen-Hansen 03] Chaochen, Z., and Hansen, M. R.
2003, Duration Calculus. A Formal Approach to Real-
Time Systems. Springer.
[Esser-Struss 07] Esser, M. and Struss, P. 2007, Fault-
model-based Test Generation for Embedded Software,
IJCAI2007, Hyderabad, India.
[Fuchs-Schwitter 96] Fuchs, N. E., Schwitter, R. 1996,
Attemp to Controlled English (ACE), CLAW 96, First
International Workshop on Controlled Language Applica-
tions, University of Leuven, Belgium
[Struss 94] Struss, P. 1994, Testing Physical Systems. In
Proceedings of AAAI-94, Seattle, USA.

DX-07, Nashville, TN, USA May 29-31, 2007

82

	DX-07
	Foreword
	Workshop Organization
	Table of Contents
	Invited Talks
	Health Management Technology Integration
	An Integrated Architecture for Fault Diagnosis and FailurePrognosis with an Application to Aircraft Systems

	Industry Panel
	Description
	Christophe Dousson
	Stan Ofsthun
	Liu Qiao
	Serdar Uckun
	Johan de Kleer

	Papers
	Online Posterior Probability Calculation for Failure Diagnosisin Finite State Machines based on Unreliable Sensor Information
	A Diagnosis Driven Self-Reconfigurable Filter
	Fault Detection using Interval LPV Models with Uncertain TransportDelay: Application to Canals
	Distributed Chronicles for On-line Diagnosis ofWeb Services
	Diagnosing Intermittent Faults
	Troubleshooting temporal behavior in “combinational” circuits
	Coverage Techniques for Checking Temporal-Observation Subsumption
	Inversion-based residual generation for robust detection and isolation of faultsby means of estimation of the inverse dynamics in linear dynamical systems
	Obtaining Models for Test Generationfrom Natural-language-like Functional Specifications
	Generating Manifestations of Max-Fault Min-Cardinality Diagnoses
	Interchange Formats and Automated Benchmark Model Generators forModel-Based Diagnostic Inference
	Automated Debugging and Repair of Utility Constraints inRecommender Knowledge Bases
	Sensor placement for maximum fault isolability
	Modeling and Solving Diagnosis of Discrete-Event Systems via Satisfiability
	Passive Robust Fault Detection: Inverse vs Direct Image Tests using Zonotopes
	On Monotonic Monitoring of Discrete-Event Systems
	Models and Tradeoffs in Model-Based Debugging
	Fault Diagnosis of Civil Engineering Structures using the Bond GraphApproach
	Using An Oriented J-Measure to Prune Chronicle Models
	HyDE – A General Framework for Stochastic and Hybrid Model-basedDiagnosis
	Symbolic Factorization of Propagation Delays out of Diagnostic System Models
	Advanced Diagnostics and Prognostics Testbed

	Analyzing the influence of temporal constraints in possible conflicts calculation formodel-based diagnosis
	A Spectrum of Symbolic On-line Diagnosis Approaches
	Computation of Minimal Sensor Sets from Precompiled Discriminability Relations
	Ontologies for Data Mining and Knowledge Discoveryto Support Diagnostic Maturation

	Posters
	State Tracking in the Mode Space
	Chronicle modelling using automata and colored Petri nets
	Improving Diagnostic Accuracy by Blending Probabilities:Some Initial Experiments
	WS-DIAMOND - Web Services – DIAgnosability, MONitoring and Diagnosis
	Self-healablity = diagnosability + repairability
	A Discrete Event Approach to Diagnosis of Continuous Systems
	Dynamic domain abstraction through meta-diagnosis
	Operating part model for on-line diagnosis
	Fault Tolerant Estimation with Sensor Redundancy Management in DistributedDynamical Systems by Means of Nonlinear Federated Filtering
	Approximate Model-Based Diagnosis Using Greedy Stochastic Search
	Monitoring Plan Optimality during Execution:Theory and Implementation
	Real World Model-based Fault Management
	Gradient-based Diagnosis
	Towards a Modeling Approach of Dynamic Systems for a Multi ModelBased Diagnosis
	Designing Resource-Bounded Reasoners using Bayesian Networks: System Health Monitoring and Diagnosis
	Sensor Fault Diagnosis using Linear Interval Observers
	Diagnosis of Multi-Agent Plans under Partial Observability
	Choosing Abstractions for Hierarchical Diagnosis
	Diagnosability Analysis forWeb Services with Constraint-based Models
	Validation of a Multi-Agent Architecture for Planning and Execution
	Fault Diagnostic of Bearing via Physics-Based Modeling Techniques
	Dynamic Multiple Fault Diagnosis: Mathematical Formulationsand Solution Techniques
	Intermittent fault diagnosis: a diagnoser derived from the normal behavior
	Diagnosing Dependent Failures – an Extension of Consistency-based Diagnosis
	New results for Sensor Placement with Diagnosability Purpose
	Finding Explanations in Bayesian Networks

	Author Index

