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Abstract

We propose a new approach for developing and de-
ploying distributed systems, in which nodes predict dis-
tributed consequences of their actions, and use this in-
formation to detect and avoid errors. Each node con-
tinuously runs a state exploration algorithm on a re-
cent consistent snapshot of its neighborhood and pre-
dicts possible future violations of specified safety prop-
erties. We describe a new state exploration algorithm,
consequence prediction, which explores causally related
chains of events that lead to property violation.

This paper describes the design and implementation
of this approach, termed CrystalBall. We evaluate Crys-
talBall on RandTree, BulletPrime, Paxos, and Chord
distributed system implementations. We identified new
bugs in mature Mace implementations of three systems.
Furthermore, we show that if the bug is not corrected
during system development, CrystalBall is effective in
steering the execution away from inconsistent states at
runtime.

1 Introduction

Distributed systems form the foundation of our society’s
infrastructure. Complex distributed protocols and algo-
rithms are used in enterprise storage systems, distributed
databases, large-scale planetary systems, and sensor net-
works. Errors in these protocols translate to denial of
service to some clients, potential loss of data, and mone-
tary losses. The Internet itself is a large-scale distributed
system, and there are recent proposals [19] to improve
its routing reliability by further treating routing as a dis-
tributed consensus problem [26]. Design and implemen-
tation problems in these protocols have the potential to
deny vital network connectivity to a large fraction of
users.

Unfortunately, it is notoriously difficult to develop re-
liable high-performance distributed systems that run over
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Figure 1:Execution path coverage by a) classic model check-
ing, b) replay-based or live predicate checking, c) CrystalBall
in deep online debugging mode, and d) CrystalBall in execution
steering mode. Thick, curved lines are execution paths, dashed
curved line is the avoided execution path that leads to an incon-
sistency, while triangles represent the state space searched by
model checking.

asynchronous networks. Even if a distributed system is
based on a well-understood distributed algorithm, its im-
plementation can contain errors arising from complexi-
ties of realistic distributed environments or simply cod-
ing errors [27]. Many of these errors can only manifest
after the system has been running for a long time, has de-
veloped a complex topology, and has experienced a par-
ticular sequence of low-probability events such as node
resets. Consequently, it is difficult to detect such errors
using testing and model checking, and many of such er-
rors remain unfixed after the system is deployed.

We propose to leverage increases in computing power
and bandwidth to make it easier to find errors in dis-
tributed systems, and to increase the resilience of the
deployed systems with respect to any remaining errors.
In our approach, distributed system nodes predict con-
sequences of their actions while the system is running.
Each node runs a state exploration algorithm on a consis-
tent snapshot of its neighborhood and predicts which ac-
tions can lead to violations of user-specified consistency
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properties. As Figure 1 illustrates, the ability to detect
future inconsistencies allows us to address the problem
of reliability in distributed systems on two fronts: de-
bugging and resilience.

• Our technique enables deep online debugging be-
cause it explores more states than live runs alone or
model checking. For each state that a running sys-
tem experiences, our technique checks many addi-
tional states that the system did not go through, but
that it could reach in similar executions. This ap-
proach combines benefits of distributed debugging
and model checking.

• Our technique aids resilience because a node can
modify its behavior to avoid a predicted inconsis-
tency. We call this approachexecution steering.
Execution steering enables nodes to resolve non-
determinism in ways that aim to minimize future
inconsistencies.

To make this approach feasible, we need a fast
state exploration algorithm. We describe a new algo-
rithm, termedconsequence prediction, which is efficient
enough to detect future violations of safety properties in
a running system. Using this approach we identified bugs
in Mace implementations of a random overlay tree, and
the Chord distributed hash table. These implementations
were previously tested as well as model-checked by ex-
haustive state exploration starting from the initial system
state. Our approach therefore enables the developer to
uncover and correct bugs that were not detected using
previous techniques. Moreover, we show that, if a bug is
not detected during system development, our approach is
effective in steering the execution away from erroneous
states, without significantly degrading the performance
of the distributed system service.

1.1 Contributions

We summarize the contributions of this paper as follows:

• We introduce the concept of continuously executing
a state space exploration algorithm in parallel with a
deployed distributed system, and introduce an algo-
rithm that produces useful results even under tight
time constraints arising from runtime deployment;

• We describe a mechanism for feeding a consis-
tent snapshot of the neighborhood of a node in a
large-scale distributed system into a running model
checker; the mechanism enables reliable conse-
quence prediction within limited time and band-
width constraints;

• We present execution steering, a technique that en-
ables the system to steer execution away from pos-
sible inconsistencies;

• We describe CrystalBall, the implementation of
our approach on top of the Mace framework [21].
We evaluate CrystalBall on RandTree, Bullet′,
Paxos, and Chord distributed system implementa-
tions. CrystalBall detected several previously un-
known bugs that can cause system nodes to reach
inconsistent states. Moreover, if the developer is not
in a position to fix these bugs, CrystalBall’s execu-
tion steering predicts them in a deployed system and
steers execution away from them, all with an accept-
able impact on the overall system performance.

1.2 Example

We next describe an example of an inconsistency ex-
hibited by a distributed system, then show how Crystal-
Ball predicts and avoids it. The inconsistency appears
in the Mace [21] implementation of the RandTree over-
lay. RandTree implements a random, degree-constrained
overlay tree designed to be resilient to node failures and
network partitions. Trees built by an earlier version of
this protocol serve as a control tree for a number of large-
scale distributed services such as Bullet [23] and Ran-
Sub [24]. In general, trees are used in a variety of mul-
ticast scenarios (e.g., [3, 7]) and data collection/moni-
toring environments [17]. Inconsistencies in these envi-
ronments translate to denial of service to users, data loss,
inconsistent measurements, and suboptimal control de-
cisions. The RandTree implementation was previously
manually debugged both in local- and wide-area settings
over a period of three years, as well as debugged using
an existing model checking approach [22], but, to our
knowledge, this inconsistency has not been discovered
before (see Section 5 for some of the additional bugs that
CrystalBall discovered).
RandTree topology. Nodes in a RandTree overlay form
a directed tree of bounded degree. Each node maintains
a list of its children and the address of the root. A node
with the numerically smallest IP address acts as the root
of the tree. Each non-root node contains an address of
its parent. Children of the root maintain a sibling list.
Note that, for a fixed node, its parent, children, and sib-
lings are all distinct nodes. The seemingly simple task
of maintaining a consistent tree topology is complicated
by the requirement for groups of nodes to agree on their
roles (root, parent, child, sibling) across asynchronous
networks, in the face of node failures, and machine slow-
downs.
Joining the overlay. A nodenj joins the overlay by
issuing a Join request to one of the designated nodes.
If the node receiving the join request is not the root, it
forwards the request to the root. If the root already has
the maximal number of children, it asks one of its chil-
dren to incorporate the node into the overlay. Once the
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Safety property: children and siblings are disjoint lists

Figure 2: An inconsistency in a run of RandTree

request reaches a nodenp whose number of children is
less than maximum allowed, nodenp insertsnj as one of
its children, and notifiesnj about a successful join using
a JoinReply message (ifnp is the root, it also notifies its
other children about their new siblingnj using an Up-
dateSibling message).
Example system state.The first row of Figure 2 shows
a state of the system that we encountered by running
RandTree in the ModelNet cluster [43] starting from the
initial state. We examine the local states of nodesn1,
n9, andn13. For each noden we display its neighbor-
hood view as a small graph whose central node isn itself,
marked with a circle. If a node is root and in a “joined”
state, we mark it with a triangle in its own view.

The state in the first row of Figure 2 is formed byn13

joining as the only child ofn9 and thenn1 joining and
assuming the role of the new root withn9 as its only child
(n13 remains as the only child ofn9). Although the fi-
nal state shown in first row of Figure 2 is simple, it takes
13 steps of the distributed system (such as atomic han-
dler executions, including application events) to reach
this state from the initial state.
Scenario exhibiting inconsistency. Figure 2 describes
a sequence of actions that leads to a state that violates the
consistency of the tree. We use arrows to represent the
sending and the receiving of some of the relevant mes-
sages. A dashed line separates distinct distributed system
states (for simplicity we skip certain intermediate states
and omit some messages).

The sequence begins by a silent reset of noden13

(such reset can be caused by, for example, a power fail-
ure). After the reset,n13 attempts to join the overlay
again. The rootn1 accepts the join request and addsn13

as its child. Up to this point noden9 received no infor-

mation on actions that followed the reset ofn13, son9

maintainsn13 as its own child. Whenn1 acceptsn13 as
a child, it sends an UpdateSibling message ton9. At this
point,n9 simply insertsn13 into the set of its sibling. As
a result,n13 appears both in the list of children and in
the list of siblings ofn9, which is inconsistent with the
notion of a tree.
Challenges in finding inconsistencies. We would
clearly like to avoid inconsistencies such as the one ap-
pearing in Figure 2. Once we have realized the pres-
ence of such inconsistency, we can, for example, mod-
ify the handler for the UpdateSibling message to re-
move the new sibling from the children list. Previously,
researchers had successfully used explicit-state model
checking to identify inconsistencies in distributed sys-
tems [22] and reported a number of safety and liveness
bugs in Mace implementations. However, due to an ex-
ponential explosion of possible states, current techniques
capable of model checking distributed system implemen-
tations take a prohibitively long time to identify inconsis-
tencies, even for seemingly short sequences such as the
ones needed to generate states in Figure 2. For exam-
ple, when we applied the Mace Model Checker’s [22]
exhaustive search to the safety properties of RandTree
starting from the initial state, it failed to identify the in-
consistency in Figure 2 even after running for 17 hours
(on a 3.4-GHz Pentium-4 Xeon that we used for all our
experiments in Section 5). The reason for this long run-
ning time is the large number of states reachable from the
initial state up to the depth at which the bug occurs, all
of which are examined by an exhaustive search.

1.3 CrystalBall Overview

Instead of running the model checker from the initial
state, we propose to execute a model checker concur-
rently with the running distributed system, and contin-
uously feed current system states into the model checker.
When, in our example, the system reaches the state at the
beginning of Figure 2, the model checker will predict the
state at the end of Figure 2 as a possible future inconsis-
tency. In summary, instead of trying to predict all possi-
ble inconsistencies starting from the initial state (which
for complex protocols means never exploring states be-
yond the initialization phase), our model checker predicts
inconsistencies that can occur in a system that has been
running for a significant amount of time in a realistic en-
vironment.

As Figure 1 suggests, compared to the standard model
checking approach, this approach identifies inconsisten-
cies that can occur within much longer system execu-
tions. Compared to simply running the system for a long
time, our approach has two advantages.

1. Our approach systematically covers a large number
of executions that contain low-probability events,
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such as node resets that ultimately triggered the in-
consistency in Figure 2. It can take a very long time
for a running system to encounter such a scenario,
which makes testing for possible bugs difficult. Our
technique therefore improves system debugging by
providing a new technique that combines some of
the advantages of testing and static analysis.

2. Our approach identifies inconsistencies before they
actually occur. This aspect of our approach opens
an entirely new possibility: adapt the behavior of
the running system on the fly and avoid an incon-
sistency. We call this techniqueexecution steering.
Because it does not rely on a history of past incon-
sistencies, execution steering is applicable even to
inconsistencies that were previously never observed
in past executions.

Figure 3: An Example execution sequence that avoids
the inconsistency from Figure 2 thanks to execution
steering

Preventing inconsistency by execution steering. In
our example, a model checking algorithm running inn1

detects the violation at the end of Figure 2. Given this
knowledge, execution steering causes noden1 not to re-
spond to the join request ofn13 and to break the TCP
connection with it. Noden13 eventually succeeds join-
ing the random tree (perhaps after some other nodes have
joined first). The stale information aboutn13 in n9 is

removed oncen9 discovers that the stale communica-
tion channel withn13 is closed, which occurs the first
time whenn9 attempts to communicate withn13. Fig-
ure 3 presents one scenario illustrating this alternate ex-
ecution sequence. Effectively, execution steering has ex-
plored the non-determinism and robustness of the system
to choose an alternative execution path that does not con-
tain the inconsistency.
Detecting the inconsistency using consequence pre-
diction. We believe that inconsistency detection and
execution steering are compelling reasons to use an ap-
proach where a model checker is deployed online to find
future inconsistencies. But to make this approach fea-
sible, it is essential to have a model checking technique
capable of quickly discovering potential inconsistencies
at significant depths in a very short amount of time. The
previous model checking technique is not sufficient for
this purpose: when we tried deploying it online, by the
time a future inconsistency was identified, the system
had already passed the execution depth at which the in-
consistency occurs. We need an exploration technique
that is sufficiently fast and focused to be able to discover
a future inconsistency in the time that it takes node inter-
action to cause the inconsistency in a distributed system.
We present such an exploration technique, termedconse-
quence prediction.

Consequence prediction focuses on exploring causally
related chains of events. Our system identifies the sce-
nario in Figure 2 by running consequence prediction on
noden1. Consequence prediction considers, among oth-
ers, the Reset action on noden13. It then uses the fact
that the Reset action brings the node into a state where it
can issue a Join request. Even though there are many
transitions that a distributed system could take at this
point, consequence prediction focuses on the transitions
that were enabled by the recent state change. It will
therefore examine the consequences of the response of
n1 to the Join request and, using the knowledge of the
state of its neighborhood, discover a possible inconsis-
tency that could occur inn9. Consequence prediction
also explores other possible sequences of events, but, as
we explain in Section 3.2, it avoids certain sequences,
which makes it faster than applying the standard search
to the same search depth.
Obtaining neighborhood snapshots under limited re-
sources. Consequence prediction addresses the question
of performing a fast search from the given state of the
distributed system. An important question that remains
to be answered is how to obtain such a global state of the
distributed system. Our approach considers a subset of
the distributed system nodes visible within some neigh-
borhood. To obtain a consistent neighborhood snapshot,
our system uses logical clocks, with each node taking a
checkpoint before increasing its logical clock. To predict
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consequences of its actions, a node first issues requests
to its neighbors to obtain their checkpoints at its current
logical time, and then uses the collected neighborhood
snapshot as the starting point for the consequence pre-
diction algorithm.

2 Background

We next present a simple model of distributed systems
and describe a basic model checking algorithm based on
breadth-first search and state caching.

2.1 System Model

Figure 4 describes a simple model of a distributed sys-
tem. We use this model to describe system execution at
a high level of abstraction, describe an existing model
checking algorithm, and present our new algorithm, con-
sequence prediction. (The model does not attempt to de-
scribe our technique for obtaining consistent snapshots.)
System state. The state of the entire distributed system
is given by 1) local state of each node, and 2) in-flight
network messages. We assume a finite set of node iden-
tifiers N (corresponding to, for, example, IP addresses).
Each noden ∈ N has a local stateL(n) ∈ S. Local state
models all node-local information such as explicit state
variables of the distributed node implementation, the sta-
tus of timers, and the state that determines application
calls. Network state is given by in-flight messages,I.
We represent each in-flight message by a pair(N, M)
whereN is the destination node of the message andM

is the remaining message content (including sender node
information and message body).
Node behavior. Each node in our system runs the
same state-machine implementation. The state machine
is given by two kinds of handlers: a message handler
executes in response to a network message; an internal
handler executes in response to a node-local event such
as a timer and an application call.

We represent message handlers by a set of tuplesHM .
The condition((s1, m), (s2, c)) ∈ HM means that, if a
node is in states1 and it receives a messagem, then it
transitions into states2 and sends the setc of messages.
Each element(n′, m′) ∈ c is a message with target des-
tination noden′ and contentm′. Internal node action
handler is analogous to a message handler, but it does not
consume a network message. Instead,((s1, a), (s2, c)) ∈
HA represents handling of an internal node actiona ∈ A.
(In both handlers, ifc is the empty set, it means that the
handler did not generate any messages.)
System behavior. The behavior of the system speci-
fies one step of a transition from one global distributed
system state(L, I) to another global state(L′, I ′). We
denote this transition by(L, I) ;(L′, I ′) and describe
it in Figure 4 in terms of handlersHM andHA. The

handler that sends the message directly inserts the mes-
sage into the network stateI, whereas the handler receiv-
ing the message simply removes it fromI. To keep the
model simple, we assume that transport errors are par-
ticular messages, generated and processed by message
handlers.

basic notions:
N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M − set of messages with destination
A − local node actions (timers, application calls)

system state: (L, I) ∈ G, G = 2N×S × 2N×M

local node states: L ⊆ N × S (function fromN to S)
in-flight messages (network): I ⊆ N × M

behavior functions for each node:
message handler: HM ⊆ (S × M) × (S × C)
internal action handler: HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution:
((s1, m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n, m)}) ;

after: (L0 ⊎ {(n, s2)}, I0 ⊎ c)

internal node action (timer, application calls):
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I) ;

after: (L0 ⊎ {(n, s2}, I ⊎ c))

Figure 4: A Simple Model of a Distributed System

2.2 Model-Checking Distributed Systems

Figure 5 presents a standard search for finding safety vi-
olations in a transition system given by relation;. The
search starts from a given global state firstState, which,
in the standard approach, is the initial state of the sys-
tem. The search systematically explores reachable global
states at larger and larger depths and checks whether
the states satisfy the given property condition. In prac-
tice, the number of reachable states is very large and
the search needs to be terminated upon exceeding some
bound such as running time or search depth. The condi-
tion of exceeding some bound is denoted StopCriterion
in Figure 5.
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1 proc findErrors(firstState : G, property : (G→ boolean)) {
2 explored = emptySet(); errors = emptySet();
3 frontier = emptyQueue();
4 frontier.addLast(firstState);
5 while (!StopCriterion){
6 state = frontier.popFirst();
7 if (!property(state))
8 errors.add(state);
9 explored.add(hash(state));

10 foreach (nextStatewhere (state; nextState))
11 if (!explored.contains(hash(nextState)))
12 frontier.addLast(nextState);
13 }
14 }

Figure 5: Finding errors by breadth-first search
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Figure 6: Example illustrating the consistent snapshot col-
lection algorithm. Black ovals represent regular checkpoints.
Messagesm1 and m2 force checkpoints (white ovals) to be
taken before messages are processed at nodes 2 and 1, respec-
tively, and so does the checkpoint request from node 3 when it
arrives at node 0.

2.3 Consistent Global Snapshots

Examining global state of a distributed system is useful
in a variety of scenarios, such as checkpointing/recovery,
debugging, and, in our case, running a model checking
algorithm in parallel with the system. Asnapshotcon-
sists ofcheckpointsof nodes’ states. For the snapshot
to be useful, it needs to be consistent. There has been a
large body of work in this area, starting with the seminal
paper by Chandy and Lamport [5]. We next describe one
of the recent algorithms for obtaining consistent snap-
shots [29]. The general idea is to collect a set of check-
points which do not violate the happens-before relation-
ship [25] established by messages sent by the distributed
service.

In this algorithm, the runtime of each nodeni

keeps track of the checkpoint numbercni (the role of

C r y s t a l B a l lC o n t r o l l e r C o n s e q u e n c ep r e d i c t i o nc h e c k p o i n t s s n a p s h o t s l o c a l c h e c k p o i n tv i o l a t i o n sk
S a f e t y P r o p e r t i e s

R u n t i m e S e r v i c e( s t a t em a c h i n e )e v e n t f i l t e r m e s s a g e s ,t i m e r sm e s s a g e sC r y s t a l B a l l n o d eN et wor n e i g h b o r i n f o
Figure 7: High-level overview of CrystalBall

checkpoint number is similar to the Lamport’s logical
clock [25]). Wheneverni sends a messageM , it stores
cni in it (denote this valueM.cn). When nodenj

receives a message, it comparescnj with M.cn. If
M.cn > cnj , then nj takes a checkpointC, assigns
C.cn = M.cn, and setscnj = M.cn. This is the key
step of the algorithm that avoids violating the happens-
before relationship. A nodeni can take snapshots on its
own, and this is done whenever thecni is locally incre-
mented, which happens periodically.

To collect the required checkpoints, a nodeni sends a
checkpoint request message containing a checkpoint re-
quest numbercri. Upon receiving the request, a node
nj responds with the appropriate checkpoint. There are
two cases: 1) ifcri > cnj (the request number is greater
than any numbernj has seen), thennj takes a check-
point, stamps it withC.cn = cri, setscnj = cri, and
sends that checkpoint; 2) ifcri ≤ cnj , the request is for
a checkpoint taken in the past, andnj responds with the
earliest checkpointC for whichC.cn ≥ cri.

3 CrystalBall Design

Figure 7 shows the high-level overview of a CrystalBall-
enabled node. We concentrate on distributed systems im-
plemented as state machines, as this is a widely-used ap-
proach [21, 25, 26, 37, 39].

The state machine interfaces with the outside world
via the runtime module. The runtime receives the mes-
sages coming from the network, demultiplexes them, and
invokes the appropriate state machine handlers. The
runtime also accepts application level messages from
the state machines and manages the appropriate network
connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services
that are running.

The CrystalBall controller contains a checkpoint man-
ager that periodically collects consistent snapshots of a
node’s neighborhood. The controller feeds them to the
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model checker, along with a checkpoint of the local state.
The model checker runs the consequence prediction al-
gorithm which checks user- or developer-defined proper-
ties and reports any violation in the form of a sequence
of events that leads to an erroneous state.

CrystalBall can operate in two modes. In the deep on-
line debugging mode the controller only outputs the in-
formation about the property violation. In the execution
steering mode the controller examines the report from
the model checker, prepares anevent filterthat can avoid
the erroneous condition, checks the filter’s impact, and
installs it into the runtime if it is deemed to be safe.

3.1 Consistent Neighborhood Snapshots

To check system properties, the model checker requires
a snapshot of the system-wide state. Ideally, every node
would have a consistent, up-to-date checkpoint of ev-
ery other participant’s state. Doing so would give ev-
ery node high confidence in the reports produced by the
model checker. However, given that the nodes could be
spread over a high-latency wide-area network, this goal
is unattainable. In addition, the sheer amount of band-
width required to disseminate checkpoints might be ex-
cessive.

Given these fundamental limitations, we use a solu-
tion that aims for scalability: we apply model check-
ing to asubsetof all states in a distributed system. We
leverage the fact that in scalable systems a node typi-
cally communicates with a small subset of other partici-
pants (“neighbors”) and perform model checking only on
this neighborhood. For example, a distributed hash table
node keeps track ofO(log n) other nodes. Similarly, in
mesh-based content distribution systems nodes commu-
nicate with a constant number of peers, or this number
does not explicitly grow with the size of the system. In
a random overlay tree, a node is typically aware of the
root, its parent, its children, and its siblings. Therefore,
we arrange for a node to distribute its state checkpoints
to its neighbors, and we refer to them assnapshot neigh-
borhood.

The checkpoint managermaintains checkpoints and
snapshots. Other CrystalBall components can request an
on-demand snapshot to be gathered by invoking an ap-
propriate call on the checkpoint manager.
Discovering and Managing Snapshot Neighborhoods.
To propagate checkpoints, the checkpoint manager needs
to know the set of a node’s neighbors. This set is depen-
dent upon a particular distributed service. We use two
techniques to provide this list. In the first scheme, we
ask the developer to implement a method that will re-
turn the list of neighbors. The checkpoint manager then
periodically queries the service and updates its snapshot
neighborhood.

Since changing the service code might not always be

possible, our second technique uses a heuristic to deter-
mine the snapshot neighborhood. Specifically, we peri-
odically query the runtime to obtain the list of open con-
nections (for TCP), and recent message recipients (for
UDP). We then cluster connection endpoints according
to the communication times, and selects a sufficiently
large cluster of recent connections. After filtering dupli-
cate addresses, we initialize the snapshot neighborhood
to the resulting list.
Enforcing Snapshot Consistency.To avoid false posi-
tives, we ensure that the neighborhood snapshot corre-
sponds to a consistent view of a distributed system at
some point of logical time. Our starting point is a tech-
nique similar to the one described in Section 2.3. How-
ever, instead of gathering a global snapshot, a node pe-
riodically sends a checkpoint request to the members of
its snapshot neighborhood.

Node failures are commonplace in distributed systems,
and our algorithm has to deal with them. The check-
point manager proclaims a node to be dead if it experi-
ences a communication error (e.g., a broken TCP con-
nection) with it while collecting a snapshot. An addi-
tional cause for an apparent node failure is a change of
a node’s snapshot neighborhood in the normal course of
operation (e.g., when a node changes parents in the ran-
dom tree). In this case, the node triggers a new snapshot
gather operation.
Managing Checkpoint Storage. The checkpoint man-
ager keeps track of checkpoints via their checkpoint
numbers. Over the course of its operation, a node
can collect a large number of checkpoints, and a long-
running system might demand an excessive amount of
memory and storage for this task. It is therefore impor-
tant to prune old checkpoints in a way that nevertheless
leaves the ability to gather consistent snapshots.

Our approach to managing checkpoint storage is to en-
force a per-node storage quota for checkpoints. Older
checkpoints are removed first to make room. Remov-
ing older checkpoints might cause a checkpoint request
to fail when the request is asking for a checkpoint that
is outside of the remaining range of checkpoints at the
node. In this case, the node responds negatively to the
checkpoint requester and inserts its current checkpoint
number in the response (R.cn = cni). Then, upon
receiving the responses from all nodes in the snapshot
neighborhood, the requestor chooses the greatest among
theR.cn received, and initiates another snapshot round.
Provided that the rate at which the snapshots are removed
is not greater than the rate at which the nodes are com-
municating, this second snapshot collection will likely
succeed.
Managing Bandwidth Consumption. For a large class
of services, the relevant per-node state is relatively small,
e.g., a few KB. It is nevertheless important to limit band-

7



1 proc findConseq(currentState : G, property : (G→ boolean)) {
2 explored = emptySet(); errors = emptySet();
3 localExplored = emptySet();
4 frontier = emptyQueue();
5 frontier.addLast(currentState);
6 while (!STOPCRITERION){
7 state = frontier.popFirst();
8 if (!property(state))
9 errors.add(state);// predicted inconsistency found

10 explored.add(hash(state));
11 foreach ((n,s)∈ state.L){ // node n in local state s
12 // process all network handlers
13 foreach (((s,m),(s’,c))∈ HM where (n,m)∈ state.I)
14 // node n handles message m according to st. machine
15 addNextState(state,n,s,s’,{m},c);
16 // process local actions only for fresh local states
17 if (!localExplored.contains(hash(n,s)))
18 foreach (((s,a),(s’,c))∈ HA)
19 addNextState(state,n,s,s’,{},c);
20 localExplored.add(hash(n,s));
21 }
22 }
23 }
24 proc addNextState(state,n,s,s’,c0,c){
25 nextState.L = (state.L\ {(n,s)}) ∪ {(n,s’)};
26 nextState.I = (state.I\ c0)∪ c;
27 if (!explored.contains(hash(nextState)))
28 frontier.addLast(nextState);
29 }

Figure 8: Consequence Prediction Algorithm

width consumed by state checkpoints for a number of
reasons: 1) sending large amounts of data might congest
the node’s outbound link, and 2) consuming bandwidth
for checkpoints might adversely affect the performance
and the reaction time of the system.

To reduce the amount of checkpoint data we transmit,
CrystalBall can use a number of techniques. First, it can
employ “diffs” that enable a node to transmit only parts
of state that are different from the last sent checkpoint.
Second, the checkpoints can be compressed on-the-fly.
Finally, CrystalBall can enforce a bandwidth limit by: 1)
making the checkpoint data be a fraction of all data sent
by a node, or 2) enforcing an absolute bandwidth limit
(e.g., 10 kbps). If the checkpoint manager is above the
bandwidth limit, it responds with a negative response to
a checkpoint request and the requester temporarily re-
moves the node from the current snapshot. A node that
wishes to reduce its inbound bandwidth consumption can
reduce the rate at which it requests checkpoints from
other nodes.

3.2 Consequence Prediction Algorithm

The key to enabling fast prediction of future inconsisten-
cies in CrystalBall is our consequence prediction algo-
rithm, presented in Figure 8. In its overall structure, the
algorithm is similar to the standard breadth-first search

in Figure 5. (We present the algorithm at a more con-
crete level, where the relation; is expressed in terms of
action handlersHA andHM introduced in Figure 4.) In
fact, if we omitted the test in Line 16,

if (!localExplored.contains(hash(n,s)))
the algorithm would reduce precisely to Figure 5. The
test in Line 17 removes from the search the transitions
generated by local action handlers of noden if node n

has been previously explored with the same states. As a
result, local actions of noden in states will never be con-
sidered more than once, regardless of what other compo-
nents of global state are explored.
Avoiding Interleavings. Although simple, the idea of
removing from the search actions of nodes with previ-
ously seen states has a profound impact on the search
depth that the model checker can feasibly reach with a
limited time budget. This change was therefore key to
enabling the use of the model checker at runtime.
Exploring Consequence Chains.Knowing that conse-
quence prediction avoids considering certain states, the
question remains whether the remaining states are suffi-
cient to make the search useful. Ultimately, the answer
to this question comes from our experimental evaluation
(Section 5). In addition, there are several intuitive rea-
sons to expect consequence prediction to give good re-
sults. Note first that consequence prediction explores all
possible transitions from the initial state (because at that
point localExplored is empty).

Furthermore, consequence prediction considers all
chains of actions where one action causes a state change
that triggers the next action. The reason is simply that
the algorithm explores all outgoing transitions at a node
whose state has changed into a previously unseen state.

3.3 Execution Steering

CrystalBall’s execution steering mode enables the sys-
tem to avoid entering an erroneous state by steering its
execution path away from predicted inconsistencies. If a
protocol was designed with execution steering in mind,
the runtime system could report a predicted inconsis-
tency as a special programming language exception, and
allow the service to react to the problem using a service-
specific policy. However, to measure the impact on exist-
ing implementations, this paper focuses on generic run-
time mechanisms that do not require the developer to in-
sert exception-handling code.
Choice of Corrective Actions. Recall that a node in
our framework operates as a state machine and processes
messages, timer events, and application calls via han-
dlers. Upon noticing that running a certain handler can
lead to an erroneous state, CrystalBall installs anevent
filter, which temporarily blocks the invocation of the
state machine handler for messages from the relevant
sender. The rationale is that a distributed system often
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contains a large amount of non-determinism that allows
it to proceed even if certain transitions are disabled. For
example, if the offending message is a Join request in
a random tree, ignoring the message can prevent violat-
ing a local state property. The joining nodes can later
retry the procedure with an alternative potential parent
and successfully join the tree. Similarly, if handling a
message causes an equivalent of a race condition man-
ifested as an inconsistency, delaying message handling
allows the system to proceed to the point where handling
the message becomes safe again.

Distributed systems that use TCP typically include
failure handling code that deals with broken TCP con-
nections. Therefore, in case of network messages sent
over TCP, an alternative to simple blocking is to addition-
ally reset the connection with the sender of the message.
The reason for resetting the connection is to signal to
the sender of the offending message that something went
wrong. In many cases, cleaning out the relevant state at
the target node can prevent other bugs from manifesting
themselves.

In general, execution steering can intervene at several
points in the execution path. Our current policy is to steer
the execution as early as possible. For example, if the
erroneous execution path involves a node issuing a Join
request after resetting, the system’s first interaction with
that node occurs at the node which receives its join re-
quest. If this node discoveres the erroneous path, it can
install the event filter.
Ensuring Safety of Event Filter Actions. Ideally, ex-
ecution steering would always prevent inconsistencies
from occurring, without introducing new inconsistencies
due to a change in behavior. In general, however, guar-
anteeing the absence of inconsistencies is as difficult as
guaranteeing that the entire program is error-free. Crys-
talBall therefore makes execution steering safe in prac-
tice through the following two design decisions.

First, CrystalBall chooses as steering actions those
behaviors that could normally occur in a realistic dis-
tributed system. For example, breaking the TCP connec-
tion is an event that could anyway occur in a distributed
system, so the protocols are designed to tolerate it.

Second, before allowing the event filter to perform
an execution steering action, CrystalBall runs the con-
sequence prediction algorithm to check the effect of the
event filter action on the distributed system. If the con-
sequence prediction algorithm does not suggest that the
filter actions are safe, CrystalBall does not attempt exe-
cution steering and leaves the system to proceed as usual.
Rechecking Previously Discovered Violations. An
event filter reflects possible future inconsistencies reach-
able from the current state, and leaving an event filter in
place indefinitely could deny service to some distributed
system participants. CrystalBall therefore removes the

filters from the runtime after every model checking run.
However, it is useful to quickly check whether the previ-
ously identified error path can still lead to an erroneous
condition in a new model checking run. This is espe-
cially important given the asynchronous nature of the
model checker relative to the system messages, which
can prevent the model checker from running long enough
to rediscover the problem. To prevent this from happen-
ing, the first step executed by the model checker is to
replay the previously discovered error paths. If the prob-
lem reappears, CrystalBall immediately reinstalls the ap-
propriate filter.
Immediate Safety Check. CrystalBall also supports
immediate safety check, a mechanism that avoids incon-
sistencies that would be caused by executing the current
handler. Such imminent inconsistencies can happen even
in the presence of execution steering because 1) conse-
quence prediction explores states given by only a subset
of all distributed system nodes, and 2) the model checker
runs asynchronously and may not always detect incon-
sistencies in time. The immediate safety check specula-
tively runs the handler, checks the consistency properties
in the resulting state, and prevents actual handler execu-
tion if the resulting state is inconsistent.

4 Implementation Highlights

Our CrystalBall prototype is built on top of Mace [21].
Mace allows distributed systems to be specified suc-
cinctly, and it outputs high-performance C++ code. Our
implementation includes a checkpoint manager, which
enables each service to collect and manage checkpoints
to generate consistent neighborhood snapshots based on
a notion of logical time. It also includes implementa-
tion of consequence prediction algorithm, with the abil-
ity to replay paths previously found to lead to inconsis-
tencies. Finally, it contains implementation of the execu-
tion steering mechanism.
Checkpoint Manager. To collect and manage snap-
shots, we modified the Mace compiler and the runtime.
We added asnapshot on directive to the service de-
scription to inform the Mace compiler and the runtime
that the service requires checkpointing. The presence of
this directive causes the compiler to generate the neces-
sary code. For example, it automatically inserts a check-
point number in every service message and adds the code
to invoke the checkpoint manager when that is required
by the snapshot algorithm.

The checkpoint manager itself is implemented as a
Mace service, and it compresses the checkpoints using
the LZW algorithm. To further reduce bandwidth con-
sumption, a node checks if the previously sent check-
point is identical to the new one (on per-peer basis), and
avoids transmitting duplicate data.
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Consequence Prediction. Our starting point for the
consequence prediction algorithm was the publicly avail-
able MaceMC implementation. This code was not de-
signed to work with live state. For example, the node ad-
dresses in the code are assumed to be of the form 0,1,2,3,
etc. To handle this issue, we added a mapping from
live IP addresses to model checker addresses. Since the
model checker is executing real code in the event and the
message handlers, we did not encounter any additional
addressing-related issues.

Another change we made allowed the model checker
to scale to hundreds of nodes and deal with partial sys-
tem state. We introduced a dummy node that represents
all system nodes without checkpoints in the current snap-
shot. All messages sent to such nodes are redirected to
the dummy node. The model checker does not consider
the events of this node during state exploration.

To minimize the impact on distributed service perfor-
mance, we decouple the model checker from event pro-
cessing path by running it as a separate process. On
a multi-core machine this CPU-intensive process will
likely be scheduled on a separate core.
Mitigating the impact of limited-size snapshots. Our
technique for speculatively executing state machine han-
dlers involves executing the handler in a copy of the state
machine’s virtual memory (via fork()), and holding the
transmission of messages until the successful comple-
tion of the consistency check. Upon encountering an in-
consistency in the copy, the runtime can simply throw
it away and not execute the handler in the primary state
machine. If this approach turns out to be unsatisfactory
from the performance standpoint due to additional han-
dler execution and process creation, we can explore other
well-known techniques that use checkpoint/rollback [41]
or operating system-level speculation [32].
Replaying Past Erroneous Paths.To ascertain that an
inconsistency can still occur from the current snapshot,
we replay past erroneous paths. Strictly replaying a se-
quence of events and messages that form a path on a new
a neighborhood snapshot might be incorrect. For exam-
ple, some messages could have only been generated by
the old state checkpoint and are inconsistent with new
state. Our replay technique therefore replays only timer
and application events, and relies on the distributed ser-
vice code to generate any messages. We then follow the
causality of the newly generated messages throughout
the system. We deterministically replay pseudo-random
number generation.
Event Filtering for Execution steering. Execution
steering is driven by the report from the model checker,
which produces a sequence of events and messages.
Upon checking the existence and the potential impact of
a corrective action, the CrystalBall controller installs an
event filter into the runtime. In case of network mes-

sages, this filter contains a message type, message source
and the destination. For other events, e.g., a local timer
event or application call, the filter just contains the iden-
tity of the handler that handles the event. Unlike the net-
work messages that the filter drops when it triggers, the
timer events are rescheduled.
Checking Safety of Event Filters. To check for safety
of event filters, we modified our baseline consequence
prediction algorithm. Specifically, upon encountering an
inconsistency, we allow consequence prediction to pur-
sue actions that an event filter could perform.

5 Evaluation
Our experimental evaluation addresses the following
questions:1) Is CrystalBall effective in finding bugs in
live runs? 2) Can any of the bugs found by CrystalBall
also be identified by the MaceMC model checker alone?
3) Is execution steering capable of avoiding inconsisten-
cies in deployed distributed systems?4) Are the over-
heads introduced by CrystalBall within acceptable lev-
els?

5.1 Experimental Setup

We conducted our live experiments using ModelNet [43].
ModelNet allows us to run live code in a cluster of ma-
chines, while application packets are subjected to packet
delay, loss, and congestion typical of the Internet. Our
cluster consists of 17 older machines with dual 3.4 GHz
Pentium-4 Xeons with hyper-threading and 8 machines
with dual 2.33 Ghz dual-core Xeon 5140s. Older ma-
chines have 2 GB of RAM, while the newer ones have 4
GB. These machines run GNU/Linux 2.6.17. One 3.4
GHz Pentium-4 machine running FreeBSD 4.9 served
as the ModelNet packet forwarder for these experiments.
All machines are interconnected with a full-rate 1-Gbps
Ethernet switch.

We consider two deployment scenarios. For our large-
scale experiments with deep online debugging, we mul-
tiplex 100 logical end hosts running the distributed ser-
vice across the 20 Linux machines, with 2 participants
running the model checker on 2 different machines. We
run with 6 participants for small-scale debugging exper-
iments, one per machine.

We use a 5,000-node INET [6] topology that we fur-
ther annotate with bandwidth capacities for each link.
The INET topology preserves the power law distribution
of node degrees in the Internet. We keep the latencies
generated by the topology generator; the average net-
work RTT is 130ms. We randomly assign participants
to act as clients connected to one-degree stub nodes in
the topology. We set transit-transit links to be 100 Mbps,
while we set access links to 5 Mbps/1 Mbps inbound-
/outbound bandwidth. To emulate the effects of cross
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traffic, we instruct ModelNet to drop packets at random
with a probability chosen uniformly at random between
[0.001,0.005] separately for each link.

5.2 Deep Online Debugging Experience

We have used CrystalBall to find inconsistencies (vio-
lations of safety properties) in two mature implemented
protocols in Mace, namely an overlay tree (RandTree)
and a distributed hash table (Chord [42]). These im-
plementation were not only manually debugged both
in local- and wide-area settings, but were also model
checked using MaceMC [22]. We have also used our
tool to find inconsistencies in Bullet′, a file distribu-
tion system that was originally implemented in MACE-
DON [37], and then ported to Mace. We found 13 new
subtle bugs in these three systems that caused violation
of safety properties. Except one, the violations were
beyond the scope of exhaustive search by existing soft-
ware model checker, typically because the errors mani-
fested themselves at depths far beyond what can be ex-
haustively searched.

System Bugs found LOC Mace/C++
RandTree 7 309 / 2000

Chord 3 254 / 2200
Bullet′ 3 2870 / 19628

Table 1: Summary of inconsistencies found for each system
using CrystalBall. LOC stands for lines of code and reflects
both the MACE code size and the generated C++ code size.
The low LOC counts for Mace service implementations are a
result of Mace’s ability to express these services succintly.

Table 1 summarizes the inconsistencies that Crystal-
Ball found in RandTree, Chord and Bullet′. Typical
elapsed times (wall clock time) until finding an incon-
sistency in our runs have been from less than an hour up
to a day. This time allowed the system being debugged to
go through complex realistic scenarios. CrystalBall iden-
tified inconsistencies by running consequence prediction
from the current state of the system for up to several hun-
dred seconds. To demonstrate their depth and complex-
ity, we detail four out of 13 inconsistencies we found in
the three services we examined.

5.2.1 Example RandTree Bugs Found

We next discuss bugs we identified in the RandTree over-
lay protocol presented in Section 1.2. We name bugs ac-
cording to the consistency properties that they violate.
Children and Siblings Disjoint. The first safety prop-
erty we considered is that the children and sibling lists
should be disjoint. CrystalBall identified the scenario
from Figure 2 in Section 1.2 that violates this property.
The problem can be corrected by removing the stale in-
formation about children in the handler for the Update-

L o c a l V i e w ( 6 1 ) L o c a l V i e w ( 6 9 ) L o c a l V i e w ( 9 )6 16 9 96 55 6 96 1 6 16 9 5 39 9 r e s t a r t s6 1 9X

96 1 6 99 6 5
9 6 16 16 9 5 39 6 16 9 5 39 9 6 1

6 55 6 96 1
Figure 9: An inconsistency in a run of RandTree. Root (9)
appears as a child).

Sibling message. CrystalBall also identified variations of
this bug that requires changes in other handlers.
Root is Not a Child or Sibling. CrystalBall found vi-
olation of property that root node should not appear as
a child, identifying a node9 that considers itself a root
but at the same time another node69 considers it to be a
child.

Scenario exhibiting inconsistency.During live execu-
tion, node61 is initially the root of the tree and parent
of nodes5, 65, and69. At this point, consequence pre-
diction detects the following scenario. Node9 resets, but
its TCP RST packet to its parent (69) is lost. 9 sends a
Join request to61. Based on9’s identifier,61 considers
9 more eligible and selects it as the new root and sends it
a Join . After receiving a JoinReply from9, 61 informs
its children about the new root (9) by sending NewRoot
packets to them. However,69 still thinks 9 is its child,
which causes the inconsistency.

Possible correction.Check the children list whenever
installing information about the new root node.
Root Has No Siblings. CrystalBall found violation of
property that root node should contain no sibling point-
ers, identifying a nodeA that considers itself a root but
at the same time has an address of another nodeB in its
sibling list.

Scenario exhibiting inconsistency.During live execu-
tion, A is initially the root of the tree and parent ofB

andC. NodeR sends a Join request toA. Based onR’s
identifier,A considersR more eligible and selects it as
the new root.A informs its children about the new root
by sending NewRoot packets to them. At this point, con-
sequence prediction detects the following scenario.A
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experiences a node reset and resets the TCP connections
with its childrenB andC. Upon receiving the error sig-
nal, B removesA from its parent pointer and promotes
itself to be the root. However, it keeps its stale sibling
list, which causes the inconsistency.

Possible correction.Clean the sibling list whenever
a node relinquishes the root position in favor of another
node.
Recovery Timer Should Always Run. An important
safety property for RandTree is that the recovery timer
should always be scheduled. This timer periodically
causes the nodes to send Probe messages to the peer list
members with which it does not have direct connection.
It is vital for the tree’s consistency to keep nodes up-to-
date about the global structure of the tree. The property
was written by the authors of [22] but the authors did not
report any violations of it. We believe that our approach
discovered it in part because our experiments considered
more complex join scenarios.

Scenario exhibiting inconsistency.CrystalBall found a
violation of the property in a state where node A joins it-
self, and changes its state to “joined” but does not sched-
ule any timers. Although this does not cause problems
immediately, the inconsistency happens when another
nodeB with smaller identifier tries to join, at which point
A gives up the root position, selectsB as the root, and
addsB it to its peer list. At this pointA has a non-empty
peer list but no running timer.

Possible correction.Keep the timer scheduler even
when a node has an empty peer list.

5.2.2 Example Chord Bug Found

We next describe a violation of a consistency property
in Chord [42], a distributed hash table that provides key-
based routing functionality. Chord and other related dis-
tributed hash tables form a backbone of a large number of
proposed and deployed distributed systems [17, 35, 38].
Chord topology. Each Chord node is assigned a Chord
id (effectively, a key). Nodes arrange themselves in an
overlay ring where each node keeps pointers to its prede-
cessor and successor. Even in the face of asynchronous
message delivery and node failures, Chord has to main-
tain a ring in which the nodes are ordered according to
their ids, and each node has a set of “fingers” that enables
it to reach exponentially larger distances on the ring.
Joining the system. To join the Chord ring, a nodeA
first identifies its potential predecessor by querying with
its id. This request is routed to the appropriate nodeP ,
which in turn replies toA. Upon receiving the reply,
A inserts itself betweenP andP ’s successor, and sends
the appropriate messages to its predecessor and succes-
sor nodes to update their pointers. A “stabilize” timer
periodically updates these pointers.
Property: If Successor is Self, So Is Predecessor.If

L o c a l V i e w ( A )A B C A B CB c r a s h e s A C
A C
A C CA C C r e b o o t s , r e j o i n s w i t h A

L o c a l V i e w ( C )
A CA C A CA c r a s h e s C U pd at eP red(C) ( messaget oself)

C C
where pred(A)=X

Figure 10:An inconsistency in a run of Chord. NodeC has
its predecessor pointing to itself while its successor listincludes
other nodes.

a predecessor of a nodeA equalsA, then its successor
must also beA (because thenA is the only node in the
ring). This is a safety property of Chord that had been
extensively checked using MaceMC, presumably using
both exhaustive search and random walks.

Scenario exhibiting inconsistency:CrystalBall found
a state where nodeA hasA as a predecessor but has an-
other nodeB as its successor. This violation happens
at depths that are beyond those reachable by exhaustive
search from the initial state. During live execution, sev-
eral nodes join the ring and all have a consistent view of
the ring. Three nodesA, B, andC are placed consec-
utively on the ring, i.e.,A is predecessor ofB andB is
predecessor ofC. ThenB experiences a node reset and
other nodes which have established TCP connection with
B receive a TCP RST. Upon receiving this error, nodeA

removesB from its internal data structures. As a conse-
quence, NodeA considersC as its immediate successor.

Starting from this state, consequence prediction de-
tects the following scenario that leads to violation.C

experiences a node reset, losing all its state.C then tries
to rejoin the ring and sends a FindPred message toA.
Because nodesA andC did not have an established TCP
connection,A does not observe the reset ofC. NodeA

replies toC by a FindPredReply message that showsA’s
successor to beC. Upon receiving this message, nodeC

i) sets its predecessor toA; ii) stores the successor list in-
cluded in the message as its successor list; and iii) sends
an UpdatePred message toA’s successor which, in this
case, isC itself. After sending this message,C receives
a transport error fromA and removesA from all of its
internal structures including the predecessor pointer. In
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other words,C ’s predecessor would be unset. Upon re-
ceiving the (loopback) message to itself,C observes that
the predecessor is unset and then sets it to the sender of
the UpdatePred message which isC. Consequently,C
has its predecessor pointing to itself while its successor
list includes other nodes.

Consequence of the inconsistency. Services imple-
mented on top of distributed hash tables rely on its ability
to route to any system participant. An incorrect succes-
sor can therefore disrupt the connectivity of the entire
system by disconnecting the Chord ring.

Possible corrections.One possibility is for nodes to
avoid sending UpdatePred messages to themselves (this
appears to be a deliberate coding style in Mace Chord
source code). If we wish to preserve such coding style,
we can alternatively place a check after updating a node’s
predecessor: if the successor list includes nodes in addi-
tion to itself, avoid assigning the predecessor pointer to
itself.

Node Ordering Constraint. According to Chord speci-
fication, a node’s predecessor pointer contains the Chord
identifier of the immediate predecessor of that node.
Therefore, if a nodeA has a predecessorP and one of
its successor isS, then the id of S shouldnot be between
the id of P and the id of A.

Scenario exhibiting inconsistency.CrystalBall found a
safety violation where nodeAi−1 adds a new successor
Ai−2 to its successor list while its predecessor pointer is
set toAi and id ofAi−2 is between the id ofAi−1 and
Ai. The scenario discovered is as follows. The id ofAi is
less than the id ofAj wherei < j. During live execution,
nodeAi joins the ring. NodesAi−1 andAi−2 both try
to join Ai by sending FindPred messages to it. NodeAi

sends two FindPredReply back toAi−1 andAi−2 with
exactly the same information. Upon receipt of this mes-
sage, nodesAi−1 andAi−2 set their predecessor and suc-
cessor toAi and send UpdatePred message back toAi.
Finally, NodeAi sets its predecessor toAi−1 and suc-
cessor toAi−2.

In this state, consequence prediction discovers the fol-
lowing subsequent actions. Stabilizer timer ofAi−1 fires
and this node queriesAi by sending GetPred message.
NodeAi replies back toAi−1 with a GetPredReply mes-
sage that showsAi’s predecessor to beAi−1 and its suc-
cessor list to containAi−2. Upon receiving this message,
Ai−1 addsAi−2 to its successor list while its predecessor
pointer still points toAi.

Possible correction. The bug occurs because node
Ai−1 adds information to its successor list but does not
update its predecessor list. The bug could be fixed by up-
dating the predecessor after updating the successor list.

5.2.3 Example Bullet′ Bug Found

Next, we describe our experience of applying Crystal-
Ball to the Bullet′ [23] file distribution system. The
Bullet′source sends the blocks of the file to a subset of
nodes in the system; other nodes discover and retrieve
these blocks by explicitly requesting them. Every node
keeps a file map that describes blocks that it currently
has. A node participates in the discovery protocol driven
by RandTree, and peers with other nodes that have the
most disjoint data to offer to it. These peering relation-
ships form the overlay mesh.

Bullet′ is more complex than RandTree, Chord (and
tree-based overlay multicast protocols) because of 1) the
need for senders to keep their receivers up-to-date with
file map information, 2) the block request logic at the re-
ceiver, and 3) the finely-tuned mechanisms for achieving
high throughput under dynamic conditions. The starting
point for our exploration was property 1):
Sender’s file map and receivers view of it should be
identical. Every sender keeps a “shadow” file map for
each receiver telling it which are the blocks it has not told
the receiver about. Similarly, a receiver keeps a file map
that describes the blocks available at the sender. Senders
use the shadow file map to compute “diffs” on-demand
for receivers containing information about blocks that are
“new” relative to the last diff.

Senders and receivers communicate over non-
blocking TCP sockets that are under control of MaceTcp-
Transport. This transport queues data on top of the TCP
socket buffer, and refuses new data when its buffer is full.

Scenario exhibiting inconsistency:In a live run last-
ing less than three minutes, CrystalBall quickly identi-
fied a mismatch between a sender’s file map and the re-
ceiver’s view of it. The problem occurs when the diff
cannot be accepted by the underlying transport. The
code then clears the receiver’s shadow file map, which
means that the sender will never try again to inform the
receiver about the blocks containing that diff. Interest-
ingly enough, this bug existed in the original MACE-
DON implementation, but there was an attempt to fix
it by the UCSD researchers working on Mace. The at-
tempted fix consisted of retrying later on to send a diff
to the receiver. Unfortunately, since the programmer left
the code for clearing the shadow file map after a failed
send, all subsequent diff computations will miss the af-
fected blocks.
Consequence of the inconsistency.Having some re-
ceivers not learn about certain blocks can cause incom-
plete downloads because of the missing blocks (nodes
cannot request blocks that they do not know about).
Even when a node can learn about a block from multiple
senders, this bug can also cause performance problems
because the request logic uses a rarest-random policy to
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decide which block to request next. Incorrect file maps
can skew the request decision toward blocks that are
more popular and would normally need to be retrieved
later during the download.

Possible corrections.Once the inconsistency is identi-
fied, the fix for the bug is easy and involves not clearing
the sender’s file map for the given receiver when a mes-
sage cannot be queued in the underlying transport. The
next successful enqueuing of the diff will then correctly
include the block info.

5.3 Comparison with MaceMC

To establish the baseline for model checking perfor-
mance and effectiveness, we installed our safety prop-
erties in the original version of MaceMC [22]. We then
ran it for the three distributed services for which we iden-
tified safety violations. After 17 hours, exhaustive search
did not identify any of the violations caught by Crystal-
Ball. Some of the specific depths reached by the model
checker are as follows 1) RandTree with 5 nodes: 12 lev-
els, 2) RandTree with 100 nodes: 1 level, 3) Chord with
5 nodes: 14 levels, and Chord with 100 nodes: 2 levels.
Figure 11 illustrates the performance of MaceMC when
is used for exhaustive search. As depicted in figure, the
exponential growth of elapsed time in terms of search
depth hardly lets it search deeper than 12-13 steps. In
another experiment, we additionally employed random
walk feature of MaceMC. Using this setup, MaceMC
identified some of the bugs found by CrystalBall, but it
still failed to identify 2 Randtree, 2 Chord, and 3 Bullet′

bugs found by CrystalBall. In Bullet′, MaceMC found
no bugs despite the fact that the search lasted 32 hours.
Moreover, even for the bugs found, the long list of events
that lead to a violation (on the order of hundreds) made
it difficult for the programmer to identify the error (we
spent five hours tracing one of the violations involving
30 steps). Such a long event list is unsuitable for execu-
tion steering, because it describes a low probability way
of reaching the final erroneous state. In contrast, Crystal-
Ball identified violations that are close to live executions
and therefore more likely to occur in the immediate fu-
ture.

Given the MaceMC’s search strategy, it is not surpris-
ing that it had difficulty advancing in the 100-node case
and subsequently did not identify any violations. The
case with 5 nodes, however, is within tractability limits
of MaceMC and yet no violations occurred. This result
validates our approach and confirms the importance of
online model checking from a current, consistent neigh-
borhood snapshot for bug finding.

5.4 Execution Steering Experience

We next evaluate the capability of CrystalBall as a run-
time mechanism for steering execution away from previ-
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Figure 11: MaceMC performance: the elapsed time for ex-
haustively searching in RandTree state space.

ously unknown bugs.

5.4.1 RandTree Execution Steering

To estimate the impact of execution steering on de-
ployed systems, we instructed the CrystalBall controller
to check for violations of RandTree safety properties (in-
cluding the one described in Section 5.2.1). We ran a
live churn scenario in which one participant (process in a
cluster) per minute leaves and enters the system on aver-
age, with 25 tree nodes mapped onto 25 physical cluster
machines. Every node was configured to run the model
checker. The experiment ran for 1.4 hours and resulted
in the following data points, which suggest that in prac-
tice the execution steering mechanism is not disruptive
for the behavior of the system.

When CrystalBall is not active, the system goes
through a total of 121 states that contain inconsisten-
cies. When only the immediate safety check but not the
consequence prediction is active, the immediate safety
check engages 325 times, a number that is higher be-
cause blocking a problematic action causes further prob-
lematic actions to appear and be blocked successfully.
Finally, we consider the run in which both execution
steering and the immediate safety check (as a fallback)
are active. Execution steering detects a future inconsis-
tency 480 times, with 65 times concluding that chang-
ing the behavior is unhelpful and 415 times modifying
the behavior of the system. The immediate safety check
fallback engages 160 times. Through a combined action
of execution steering and immediate safety check, Crys-
talBall avoided all inconsistencies, so there were no un-
caught violations (false negatives) in this experiment.

To understand the impact of CrystalBall actions on the
overall system behavior, we measured the time needed
for nodes to join the tree. This allowed us to empirically
address the concern that TCP reset and message block-
ing actions can in principle cause violations of liveness
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Figure 12:Scenario that exposes a previously reported Paxos
violation of a safety property (two different values are chosen
in the same round).

properties (in this case extending the time nodes need to
join the tree). Our measurements indicated an average
node join times between 0.8 and 0.9 seconds across dif-
ferent experiments, with variance exceeding any differ-
ence between the runs with and without CrystalBall. In
summary, CrystalBall changed system actions 415 times
(2.77% of the total of 14956 actions executed), avoided
all specified inconsistencies, and did not degrade system
performance.

5.4.2 Paxos Execution Steering

Paxos [26] is a well known fault-tolerant protocol for
achieving consensus in distributed systems. Recently,
it has been successfully integrated in a number of de-
ployed [4, 28] and proposed [19] distributed systems. In
this section, we show how execution steering can be ap-
plied to Paxos to steer away from realistic bugs that have
occurred in existing implementations [4, 28].1

The implementation we used was a baseline Mace
Paxos implementation that includes a minimal set of fea-
tures. In general, a physical node can implement one

1 The Paxos protocol includes five steps:
1. A leader tries to take the leadership position by sending Prepare

messages to acceptors, and it includes a unique round numberin the
message.

2. Upon receiving a Prepare message, each acceptor consultsthe
last promised round number. If the message’s round number isgreater
than that number, the acceptor responds with a Promise message that
contains the last accepted value if there is any.

3. Once the leader receives a Promise message from the majority
of acceptors, it broadcasts an Accept request to all acceptors. This
message contains the value of the Promise message with the highest
round number, or is any value if the responses reported no proposals.

4. Upon the receipt of the Accept request, each acceptor accepts it
by broadcasting a Learn message containing the Accepted value to the
learners, unless it had made a promise to another leader in the mean-
while.

5. By receiving Learn messages from the majority of the nodes, a
learner considers the reported value as chosen.

or more of the roles described above; each node plays
all the roles in our experiments. The safety property we
installed is the original Paxos safety property: at most
one value can be chosen, across all nodes. The first bug
we injected [28] is related to an implementation error in
step 3, and we refer to it asbug1. Once the leader re-
ceives the Promise message from the majority of nodes,
it creates the Accept request by using the submitted value
from the last Promise message instead of the Promise
message with highest round number. Because the rate at
which this error occurs was low, we had to schedule some
events to lead the live run towards the violation. The
setup we use comprises 3 nodes and two rounds, with-
out any artificial packet delays. As illustrated in Figure
12, in the first round the communication between node
C and the other nodes is broken. Also, a Learn packet
is dropped from node 0 to 1. At the end of this round,
A chooses the value proposed by itself (0). In the sec-
ond round, the communication between nodeA and other
nodes is broken. At the end of this round, the value pro-
posed by nodeC is accepted by nodeB.

The second bug we injected (inspired by [4]) involves
keeping a promise made by an Acceptor, even after
crashes and reboots. As pointed in [4], it is often diffi-
cult to implement this aspect correctly, especially under
various hardware failures. Hence, we inject an error in
the way a promise is kept by not writing it to disk (we
refer to it asbug2). To expose this bug we use a scenario
similar to the one used forbug1, with the addition of a
reset of nodeB.

To stress test CrystalBall’s ability to avoid inconsisten-
cies at runtime, we repeat the live scenarios in the Mod-
elNet cluster 200 times (100 times for each bug) while
varying the time between rounds uniformly at random
between 0 and 60 seconds. As we can see in Figure 13,
CrystalBall’s execution steering is successful in avoiding
the inconsistency at runtime 87% and 85% of the time
for bug1andbug2, respectively. In these cases, Crystal-
Ball starts model checking after nodeC reconnects and
receives checkpoints from other participants. After run-
ning the model checker for 6 seconds,C successfully
predicts that the scenario in the second round would re-
sult in violation of the safety property, and it then in-
stalls the event filter. The avoidance by execution steer-
ing happens whenC rejects the Prepare message sent by
B. Immediate safety check engages 11% of the time for
both bugs (in cases when model checking did not have
enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the
Learn message fromC at nodeB. CrystalBall could not
prevent the violation for only 2% and 5% of the runs, re-
spectively. The cause for these false negatives was the
incompleteness of the set of checkpoints.
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Figure 14:The memory consumed by consequence prediction
(RandTree, depths 7 to 8) fits in an L2 CPU cache.

5.5 Performance Impact of CrystalBall

Memory, CPU, and bandwidth consumption. Be-
cause consequence prediction runs in a separate process
that is most likely mapped to a different CPU core on
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores
their hashes) the memory is unlikely to become a bottle-
neck between the model-checking CPU core and the rest
of the system.

One concern with state exploration such as model-
checking is the memory consumption. Figure 14 shows
the consequence prediction memory footprint as a func-
tion of search depth for our RandTree experiments. As
expected, the consumed memory increases exponentially
with search depth. However, since the effective Crystal-
Ball’s search depth in is less than 7 or 8, the consumed
memory by the search tree is less than 1MB and can thus
easily fit in the L2 cache of the state of the art processors.
Having the entire search tree in-cache reduces the access
rate to memory and improves performance.

To precisely measure the consumed memory per each
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Figure 15:Consumed memory per each traversed state. The
limit of this number is 150 bytes.
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Figure 16:CrystalBall slows down Bullet′ by less than 5% for
a 20 MB file download while it is controlling the underlying
RandTree.

visited state by consequence prediction algorithm, we di-
vided the total memory used by search tree by the num-
ber of visited states. As illustrated in the Figure 15, the
per-state memory gets stable at about 150 bytes as we
take more states into consideration, because of the re-
duced fixed cost in large number of states.

In the deep online debugging mode, the model checker
was running for 950 seconds on average in the 100-node
case, and 253 seconds in the 6-node case. When running
in the execution steering mode (25 nodes), the model
checker ran for an average of about 10 seconds. The
checkpointing interval was 10 seconds.

The average size of a RandTree node checkpoint is
176 bytes, while a Chord checkpoint requires 1028 bytes.
Average per-node bandwidth consumed by checkpoints
for RandTree and Chord (100-nodes) was 803 bps and
8224 bps, respectively. These figures show that over-
heads introduced by CrystalBall are low. Hence, we did
not need to enforce any bandwidth limits in these cases.
Overall impact. Next, we demonstrate that having
CrystalBall monitor RandTree does not adversely affect
the performance of a service implemented on top of it.
For this task, we use Bullet′ [23], a content distribu-
tion system that builds a high-bandwidth overlay mesh
by distributing potential peer information over a control
tree built by RandTree. In this experiment, we let 24

16



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

F
ra

ct
io

n 
of

 n
od

es

download time(s)

BulletPrime (baseline) 
BulletPrime (CrystalBall) 

Figure 17:CrystalBall slows down Bullet′ by less than 10%
for a 20 MB file download.

nodes download a 20 MB file from a source node, with
one Bullet′ instance per machine. Figure 16 shows that
Bullet′ per-node download times are less than 5% slower
due to CrystalBall.
Overall impact. Finally, we demonstrate that having
CrystalBall monitor a bandwidth-intensive application
featuring a non-negligible amount of state such as Bullet′

does not significantly impact the application’s perfor-
mance. In this experiment, we instructed 49 Bullet′

instances to download a 20 MB file. Bullet′ is not a
CPU intensive application, although computing the next
block to request from a sender has to be done quickly.
It is therefore interesting to note that in 34 cases dur-
ing this experiment the Bullet′ code was competing with
the model checker for the older Xeon CPU with hyper-
threading. Figure 17 shows that in this case using Crys-
talBall reduced performance by less than 5%. Com-
pressed Bullet′ checkpoints were about 3 kB in size, and
the bandwidth that was used for checkpoints was about
30 Kbps per node (3% of a node’s outbound bandwidth
of 1 Mbps). The reduction in performance is therefore
primarily due to checkpoints.

6 Related Work

Debugging distributed systems is a notoriously difficult
and tedious process. Developers typically start by us-
ing an ad-hoc logging technique, coupled with strenuous
rounds of writing custom scripts to identify problems.
Several categories of approaches have gone further than
the naive method, and we explain them in more detail in
the remainder of this section.
Collecting and analyzing logs. Several approaches
(Magpie [2], X-trace [13], Pip [34]) have successfully
used extensive logging and off-line analysis to iden-
tify performance problems and correctness issues in dis-
tributed systems. Relative to these approaches, Crystal-
Ball works on deployed systems, and performs an online
analysis of the system state.

Deterministic replay with predicate checking. Fri-
day [14] goes one step further than logging to en-
able a gdb-like replay of distributed systems, including
watch points and checking for global predicates. WiDS-
checker [28] is a similar system that relies on a combi-
nation of logging/checkpointing to replay recorded runs
and check for user predicate violations. WiDS-checker
can also work as a simulator. In contrast to replay-
and simulation-based systems, CrystalBall explores ad-
ditional states and can steer execution away from erro-
neous states.
Online predicate checking. Singhet al. [40] have ad-
vocated debugging by online checking of distributed sys-
tem state. Their approach involves launching queries
across the distributed system that is described and
deployed using the OverLog/P2 [40] declarative lan-
guage/runtime combination. D3S [27] enables develop-
ers to specify global predicates which are then automati-
cally checked in a deployed distributed system. By using
binary instrumentation, D3S can work with legacy sys-
tems. Specializedcheckersperform predicate-checking
topology on snapshots of the nodes’ states. To make
the snapshot collection scalable, the checker’ssnapshot
neighborhoodcan be manually configured by the devel-
oper. This work has shown that it is feasible to collect
snapshots at runtime and check them against a set of
user-specified properties. CrystalBall advances the state-
of-the-art in online debugging in two main directions:
1) it employs an efficient algorithm for model check-
ing from a live state to search for bugs “deeper” and
“wider”, and it 2) enables execution steering to automat-
ically prevent previously unidentified bugs from mani-
festing themselves in a deployed system.
Model checking. Model checking techniques for finite
state systems [16, 20] have proved successful in anal-
ysis of concurrent finite state systems, but require the
developer to manually abstract the system into a finite-
state model which is accepted as the input to the system.
Early efforts on explicit-state model checking of C and
C++ implementations [31, 30, 44] have primarily con-
centrated on a single-node view of the system.

MaceMC [22] represents the state-of-the-art in model
checking distributed system implementations. MaceMC
runs state machines for multiple nodes within the same
process, and can determine safety and liveness viola-
tions spanning multiple nodes. MaceMC’s exhaustive
state exploration algorithm limits in practice the search
depth and the number of nodes that can be checked. In
contrast, CrystalBall’s consequence prediction allows it
to achieve significantly shorter running times for similar
depths, thus enabling it to be deployed at runtime. In [22]
the authors acknowledge the usefulness of prefix-based
search, where the execution starts from a given supplied
state. Our work addresses the question of obtaining pre-
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fixes for prefix-based search: we propose to directly feed
into the model checker states as they are encountered
in live system execution. Using CrystalBall we found
bugs in code that was previously debugged in MaceMC
and that we were not able to reproduce using MaceMC’s
search. Unlike CrystalBall, MaceMC attempts to iden-
tify (likely) violations of liveness properties. On the
other hand, MaceMC does not support execution steer-
ing that enables CrystalBall to automatically prevent the
system from entering an erroneous state.

Cartesian abstraction [1] is a technique for overap-
proximating state space that treats different state com-
ponents independently. The independence idea is also
present in our consequence prediction, but, unlike over-
approximating analyses, bugs identified by consequence
search are guaranteed to be real with respect to the model
explored. The idea of disabling certain transitions in
state-space exploration appears in partial-order reduction
(POR) [15],[12]. Our initial investigation suggests that a
POR algorithm takes considerably longer than the con-
sequence prediction algorithm. The advantage of POR
is its completeness, but completeness is of second-order
importance in our case because no complete search can
terminate in a reasonable amount of time for state spaces
of distributed system implementations.
Runtime Mechanisms. In the context of operating sys-
tems, researchers have proposed mechanisms that safely
re-execute code in a changed environment to avoid er-
rors [33]. Such mechanisms become difficult to deploy
in the context of distributed systems. Distributed transac-
tions are a possible alternative to execution steering, but
involve several rounds of communication and are inap-
plicable in environments such as wide-area networks. A
more lightweight solution involves forming a FUSE [11]
failure group among all nodes involved in a join process.
Making such approaches feasible would require collect-
ing snapshots of the system state, as in CrystalBall. Our
execution steering approach reduces the amount of work
for the developer because it does not require code mod-
ifications. Moreover, our experimental results show an
acceptable computation and communication overhead.

In Vigilante [9] and Bouncer [8], end hosts cooper-
ate to detect and inform each other about worms that ex-
ploit even previously unknown security holes. These
systems deploy detectors that use a combination of sym-
bolic execution and path slicing to detect infection at-
tempts. Upon detecting an intrusion, the detector gen-
erates a Self-Certifying Alert (SCA) and broadcasts it
quickly over an overlay in an attempt to win the prop-
agation race against the worm that spreads via random
probing. There are no false positives, since each host
verifies every SCA in sandbox (virtual machine), after
receiving it. After verification, hosts protect themselves
by generating filters that block bad inputs.

Researchers have explored modifying actions of con-
current programs to reduce data races [18] by inserting
locks in an approach that does not employ running static
analysis at runtime. Approaches that modify state of a
program at runtime include [10, 36]; these approaches
enforce program invariants or memory consistency with-
out computing consequences of changes to the state.

7 Conclusions

We presented a new approach for improving the relia-
bility of distributed systems, where nodes predict and
avoid inconsistencies before they occur, even if they have
not manifested in any previous run. We believe that
our approach is the first to give running distributed sys-
tem nodes access to such information about their future.
To make our approach feasible, we designed and im-
plemented consequence prediction, an algorithm for se-
lectively exploring future states of the system, and de-
veloped a technique for obtaining consistent information
about the neighborhood of distributed system nodes. Our
experiments suggest that the resulting system, Crystal-
Ball, is effective in finding bugs that are difficult to de-
tect by other means, and can steer execution away from
inconsistencies at runtime.
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