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Abstract i

We propose a new approach for developing and de-

ploying distributed systems, in which nodes predict dis-

tributed consequences of their actions, and use this in-

formation to detect and avoid errors. Each node con-

tinuously runs a state exploration algorithm on a re- 7

cent consistent snapshot of its neighborhood and pre- !

dicts possible future violations of specified safety prop- \

erties. We describe a new state exploration algorithm, ,’
b c d

consequence prediction, which explores causally related

chains of events that lead to property violation. . . . .
Thi d ib he desi d impl . Figure 1:Execution path coverage by a) classic model check-
Is paper describes the design and Imp ementatloi g, b) replay-based or live predicate checking, c) Criza#l

of this approach, termed CrystalBall. We evaluate Crysyn deep online debugging mode, and d) CrystalBall in executi
talBall on RandTree, BulletPrime, Paxos, and Chordsteering mode. Thick, curved lines are execution pathsiaths

distributed system implementations. We identified newcurved line is the avoided execution path that leads to aminc
bugs in mature Mace implementations of three systemssistency, while triangles represent the state space smhinh
Furthermore, we show that if the bug is not correctedmodel checking.

during system development, CrystalBall is effective in

steering the execution away from inconsistent states at ) o .
runtime. asynchronous networks. Even if a distributed system is

based on a well-understood distributed algorithm, its im-
plementation can contain errors arising from complexi-
1 Introduction ties of realistic distributed environments or simply cod-
ing errors[[27]. Many of these errors can only manifest
Distributed systems form the foundation of our society’safter the system has been running for a long time, has de-
infrastructure. Complex distributed protocols and algo-veloped a complex topology, and has experienced a par-
rithms are used in enterprise storage systems, distributetitular sequence of low-probability events such as node
databases, large-scale planetary systems, and sensor netsets. Consequently, it is difficult to detect such errors
works. Errors in these protocols translate to denial ofusing testing and model checking, and many of such er-
service to some clients, potential loss of data, and monerors remain unfixed after the system is deployed.
tary losses. The Internet itself is a large-scale disteétbut ~ \We propose to leverage increases in computing power
system, and there are recent proposal$ [19] to improvend bandwidth to make it easier to find errors in dis-
its routing reliability by further treating routing as a dis tributed systems, and to increase the resilience of the
tributed consensus problem [26]. Design and implemendeployed systems with respect to any remaining errors.
tation problems in these protocols have the potential tdn our approach, distributed system nodes predict con-
deny vital network connectivity to a large fraction of sequences of their actions while the system is running.
users. Each node runs a state exploration algorithm on a consis-
Unfortunately, it is notoriously difficult to develop re- tent snapshot of its neighborhood and predicts which ac-
liable high-performance distributed systems that run ovetions can lead to violations of user-specified consistency

a



properties. As Figurel1 illustrates, the ability to detect e We describe CrystalBall, the implementation of
future inconsistencies allows us to address the problem  our approach on top of the Mace framewadrk][21].
of reliability in distributed systems on two fronts: de- We evaluate CrystalBall on RandTree, Bullet
bugging and resilience. Paxos, and Chord distributed system implementa-

« Our technique enables deep online debugging be- tions. CrystalBall detected several previously un-
cause it explores more states than live runs alone or ~Known bugs that can cause system nodes to reach

model checking. For each state that a running sys- @nconsis_t('ant statgs. Moreover, if the developer is not
tem experiences, our technique checks many addi- N @ Position to fix these bugs, CrystalBall's execu-
tional states that the system did not go through, but 10N steering predicts them in a deployed system and
that it could reach in similar executions. This ap- steers execution away from them, all with an accept-
proach combines benefits of distributed debugging ~ 2P€ impact on the overall system performance.
and model checking.

e Our technique aids resilience because a node ca#h.2 Example

modify its behavior to avoid a predicted inconsis- We next describe an example of an inconsistency ex
tency. We call this approackxecution steerin e . )
Y bp g hibited by a distributed system, then show how Crystal-

Execution steering enables nodes to resolve nonBaII redicts and avoids it. The InCONSISEENcY ADDEArs
determinism in ways that aim to minimize future . pred avods it. - 1hel : y app
inconsistencies. in the Mace[[21] implementation of the RandTree over-

lay. RandTree implements a random, degree-constrained

To make this approach feasible, we need a faspverlay tree designed to be resilient to node failures and
state exploration algorithm. We describe a new algone€twork partitions. Trees built by an earlier version of
rithm, termedconsequence predictiowhich is efficient this protocol serve as a control tree for a number of large-
enough to detect future violations of safety properties inscale distributed services such as Bullet/ [23] and Ran-
arunning system. Using this approach we identified bug$ub [24]. In general, trees are used in a variety of mul-
in Mace implementations of a random overlay tree, andicast scenarios (e.g./1[3 7]) and data collection/moni-
the Chord distributed hash table. These implementationtring environments [17]. Inconsistencies in these envi-
were previously tested as well as model-checked by extonments translate to denial of service to users, data loss,
haustive state exploration starting from the initial syste inconsistent measurements, and suboptimal control de-
state. Our approach therefore enables the developer @sions. The RandTree implementation was previously
uncover and correct bugs that were not detected usinglanually debugged both in local- and wide-area settings
previous techniques. Moreover, we show that, if a bug iover a period of three years, as well as debugged using
not detected during system development, our approach @0 existing model checking approa¢h[22], but, to our
effective in steering the execution away from erroneougnowledge, this inconsistency has not been discovered
states, without significantly degrading the performancedefore (see Sectidr 5 for some of the additional bugs that

of the distributed system service. CrystalBall discovered).
o RandTree topology. Nodes in a RandTree overlay form
1.1 Contributions a directed tree of bounded degree. Each node maintains

. _ . alist of its children and the address of the root. A node
We summarize the contributions of this paper as follows; . :
with the numerically smallest IP address acts as the root

e We introduce the concept of continuously executing®f the tree. Each non-root node contains an address of
a state space exploration algorithm in parallel with altS parent. Children of the root maintain a sibling list.
deployed distributed system, and introduce an algo/Note that, for a fixed node, its parent, children, and sib-
rithm that produces useful results even under tighl“ngs are all distinct nodes. The seemingly simple task

time constraints arising from runtime deployment; ©f maintaining a consistent tree topology is complicated

. . . . by the requirement for groups of nodes to agree on their
¢ We describe a mechanism for feeding a consiSyqeg (root, parent, child, sibling) across asynchronous

tent snapshot of the neighborhood of a node in &,ayorks. in the face of node failures, and machine slow-
large-scale distributed system into a running modely,ns.

checker; the mechanism enables reliable consey
guence prediction within limited time and band-
width constraints;

oining the overlay. A noden; joins the overlay by
issuing a Join request to one of the designated nodes.
If the node receiving the join request is not the root, it
e We present execution steering, a technique that ernforwards the request to the root. If the root already has
ables the system to steer execution away from posthe maximal number of children, it asks one of its chil-
sible inconsistencies; dren to incorporate the node into the overlay. Once the



Local view(1) Local view(9) Local view(13) mation on actions that followed the resetrof;, song
maintainsns as its own child. Whem, accepts:i3 as

a child, it sends an UpdateSibling messagedoAt this
point, ng simply inserts:;3 into the set of its sibling. As

a result,ni3 appears both in the list of children and in
the list of siblings ofug, which is inconsistent with the
notion of a tree.

Challenges in finding inconsistencies. We would
clearly like to avoid inconsistencies such as the one ap-
pearing in Figuré 2. Once we have realized the pres-
ence of such inconsistency, we can, for example, mod-
ify the handler for the UpdateSibling message to re-
move the new sibling from the children list. Previously,
researchers had successfully used explicit-state model
checking to identify inconsistencies in distributed sys-
tems [22] and reported a number of safety and liveness
Safety property: children and siblings are disjoint lists  pugs in Mace implementations. However, due to an ex-
ponential explosion of possible states, current techsique
capable of model checking distributed system implemen-
tations take a prohibitively long time to identify inconsis
tencies, even for seemingly short sequences such as the
ones needed to generate states in Fifglire 2. For exam-
ple, when we applied the Mace Model Checkelr’s| [22]
exhaustive search to the safety properties of RandTree

Figure 2: An inconsistency in a run of RandTree

request reaches a nodg whose number of children is
less than maximum allowed, nodg insertsn; as one of
its children, and notifies; about a successful join using
a JoinReply message (if, is the root, it also notifies its X o N : _ -
other children about their new sibling; using an Up- starting from the initial state, it failed to identify the-in
dateSibling message). consistency in Figurel2 even after running for 17 hours
Example system state.The first row of FiguréR shows (0N @ 3.4-GHz Pentium-4 Xeon that we used for all our
a state of the system that we encountered by runnin&?(per,'me'_"tS in Sectidd 5). The reason for this long run-
RandTree in the ModelNet clustér [43] starting from the NG time is the large number of states reachable from the
initial state. We examine the local states of nodes |n|t|al_state up to the depth at which t_he bug occurs, all
ne, andn, 3. For each node we display its neighbor- of which are examined by an exhaustive search.

hood view as a small graph whose central nodeiiself, 1.3 CrystalBall Overview

marked with a circle. If a node is root and in a “joined” . o

The state in the first row of FiguFé 2 is formed hy; state, we propose to execute a model checker concur-
joining as the only child of.y and thenn; joining and rently with the running distributed system, and contin-
assuming the role of the new root with as its only child uously feed current system states into the model checker.
(n13 remains as the only child of,). Although the fi- When, in our example, the system reaches the state at the
nal state shown in first row of Figur@ 2 is simple, it takes Peginning of Figurél2, the model checker will predict the
13 steps of the distributed system (such as atomic haritate at the end of Figure 2 as a possible future inconsis-
dler executions, including application events) to reach€ncy. In summary, instead of trying to predict all possi-
this state from the initial state. ble inconsistencies starting from the initial state (which
Scenario exhibiting inconsistency. Figure[2 describes for complex protocols means never exploring states be-
a sequence of actions that leads to a state that violates ti@nd the initialization phase), our model checker predicts
consistency of the tree. We use arrows to represent thiconsistencies that can occur in a system that has been
sending and the receiving of some of the relevant mes[t_mning for a significant amount of time in a realistic en-
sages. A dashed line separates distinct distributed systedonment.
states (for simplicity we skip certain intermediate states AS Figure_l suggests, compared to the standard model
and omit some messages). checking approach, this approach identifies inconsisten-

The sequence begins by a silent reset of noge cies that can occur within much longer system execu-
(such reset can be caused by, for example, a power faiﬁons- Compared to simply running the system for a long
ure). After the resetp;; attempts to join the overlay time, our approach has two advantages.
again. The root; accepts the join request and addsg 1. Our approach systematically covers a large number
as its child. Up to this point nodey received no infor- of executions that contain low-probability events,
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? FILTER INSTALLED
1‘3

. Our approach identifies inconsistencies before the

such as node resets that ultimately triggered the inremoved onceug discovers that the stale communica-
consistency in Figullel 2. It can take a very long timetion channel withn3 is closed, which occurs the first
for a running system to encounter such a scenariotime whenng attempts to communicate with, ;. Fig-
which makes testing for possible bugs difficult. Our ure[3 presents one scenario illustrating this alternate ex-
technique therefore improves system debugging byecution sequence. Effectively, execution steering has ex-
providing a new technique that combines some ofplored the non-determinism and robustness of the system
the advantages of testing and static analysis. to choose an alternative execution path that does not con-
tain the inconsistency.

etecting the inconsistency using consequence pre-
diction. We believe that inconsistency detection and
execution steering are compelling reasons to use an ap-
proach where a model checker is deployed online to find
future inconsistencies. But to make this approach fea-

sistencies, execution steering is applicable even t ible, it is essential to have a model checking technique

inconsistencies that were previously never observe&apable of quickly discovering potential inconsistencies
in past executions at significant depths in a very short amount of time. The

previous model checking technique is not sufficient for

this purpose: when we tried deploying it online, by the

View () Local View (1) Local View (9) Localview 13y tiMe @ future inconsistency was identified, the system
INCONSISTENGY PREDICTED ! had already passed the execution depth at which the in-
N consistency occurs. We need an exploration technique
G  thatis sufficiently fast and focused to be able to discover

a future inconsistency in the time that it takes node inter-

actually occur. This aspect of our approach open
an entirely new possibility: adapt the behavior of
the running system on the fly and avoid an incon-
sistency. We call this techniquexecution steering

Because it does not rely on a history of past incon-

é action to cause the inconsistency in a distributed system.
O % REQUEST FILTERED T @  We present such an exploration technique, terotetse-
k1 ********** quence prediction
® Consequence prediction focuses on exploring causally
P ? B Ga related chains of events. Our system identifies the sce-

nario in Figurd 2 by running consequence prediction on

\W ! noden;. Consequence prediction considers, among oth-

1

1
o
AN g
o
1 13 9

q@ [ewReet ers, the Reset action on nodgs. It then uses the fact

13 that the Reset action brings the node into a state where it
can issue a Join request. Even though there are many
transitions that a distributed system could take at this
é) point, consequence prediction focuses on the transitions

connection dead —
FILTER REMOVED cleanup child

Join (reb

éi)
/ 77777777777777777777 @7 that were enabled by the recent state change. It will
{ o

therefore examine the consequences of the response of
ny to the Join request and, using the knowledge of the
state of its neighborhood, discover a possible inconsis-
tency that could occur img. Consequence prediction
also explores other possible sequences of events, but, as
we explain in Sectioh 3]2, it avoids certain sequences,

Join
forwarded)

13 9
UpdateSiblin

Figure 3: An Example execution sequence that avoidsvhich makes it faster than applying the standard search

the

inconsistency from Figurel 2 thanks to executionto the same search depth.

steering Obtaining neighborhood snapshots under limited re-

sources. Consequence prediction addresses the question

Preventing inconsistency by execution steering. In of performing a fast search from the given state of the

our

example, a model checking algorithm runninguin  distributed system. An important question that remains

detects the violation at the end of Figlile 2. Given thisto be answered is how to obtain such a global state of the
knowledge, execution steering causes nogdaot to re-  distributed system. Our approach considers a subset of

Spo
con

nd to the join request of;3 and to break the TCP the distributed system nodes visible within some neigh-
nection with it. Nodeu;3 eventually succeeds join- borhood. To obtain a consistent neighborhood shapshot,

ing the random tree (perhaps after some other nodes haweir system uses logical clocks, with each node taking a
joined first). The stale information abouts in ng is  checkpoint before increasing its logical clock. To predict



consequences of its actions, a node first issues requediandler that sends the message directly inserts the mes-
to its neighbors to obtain their checkpoints at its currentsage into the network stafewhereas the handler receiv-
logical time, and then uses the collected neighborhoodng the message simply removes it fradm To keep the
shapshot as the starting point for the consequence prenodel simple, we assume that transport errors are par-
diction algorithm. ticular messages, generated and processed by message

2 Background handlers.

We next present a simple model of distributed systems
and describe a basic model checking algorithm based onbasic notions:

breadth-first search and state caching. N — node identifiers
S — node states
2.1 System Model M — message contents

N x M — (destination process, message)-pair
Figure[4 describes a simple model of a distributed sys- C' = 2V*M _ set of messages with destination
tem. We use this model to describe system execution atA — local node actions (timers, application calls)
a high level of_ abstraction, describe an existi_ng model system state (I,1) € G, G — ONXS o gNxM
checking algorlf[hr_n, and present our new algorithm, con- local node states. C N x S (function from N to S)
sequence predlc_t|on. (The mIO(.jeI does_not attempt to de- in-flight messages (networkl C N x M
scribe our technique for obtaining consistent snapshots.)
System state. The state of the entire distributed system behavior functions for each node:
is given by 1) local state of each node, and 2) in-flight Message handler Hy; C (S x M) x (S x C)
network messages. We assume a finite set of node iden- internal action handler, C (S x A) x (S x C)
tifiers V' (corresponding to, for, example, IP addresses). transition function for distributed system :
Each node: € N has alocal staté(n) € S. Local state
models all node-local information such as explicit state
variables of the distributed node implementation, the sta-
tus of timers, and the state that determines application
calls. Network state is given by in-flight messagés,
We represent each in-flight message by a (pair M)
whereN is the destination node of the message and
is the remaining message content (including sender node
information and message body).
Node behavior. Each node in our system runs the
same state-machine implementation. The state machine
is given by two kinds of handlers: a message handler
executes in response to a network message; an internal
handler executes in response to a node-local event such
as a timer and an application call.

We represent message handlers by a set of tuples
The condition((s1,m), (s2,¢)) € Hy means that, if a
node is in state; and it receives a message then it
transitions into state, and sends the setof messages.
Each elementn’, m’) € cis a message with target des- Figurel® presents a standard search for finding safety vi-
tination noden’ and contentn’. Internal node action olations in a transition system given by relatien The
handler is analogous to a message handler, but it does neearch starts from a given global state firstState, which,
consume a network message. Instéésgl,, a), (s2,c)) €  in the standard approach, is the initial state of the sys-
H 4 represents handling of an internal node actich A.  tem. The search systematically explores reachable global
(In both handlers, it: is the empty set, it means that the states at larger and larger depths and checks whether
handler did not generate any messages.) the states satisfy the given property condition. In prac-
System behavior. The behavior of the system speci- tice, the number of reachable states is very large and
fies one step of a transition from one global distributedthe search needs to be terminated upon exceeding some
system staté¢ L, I') to another global statel’, I’). We  bound such as running time or search depth. The condi-
denote this transition byL, I)~»(L’,I") and describe tion of exceeding some bound is denoted StopCriterion
it in Figure[4 in terms of handler&l,; and H4. The in Figure5.

node message handler execution
((s1,m), (s2,¢)) € Hy

before: (Lo W {(n,s1)}, Io W {(n,m)})~
after: (Lo W {(n,s2)}, IoWe)

internal node action (timer, application calls)
((s1,a),(s2,¢)) € Ha

before: (Lo W {(n,s1)},I)~

after: (Lo W {(n,s2}, I Wc))

Figure 4: A Simple Model of a Distributed System

2.2 Model-Checking Distributed Systems



Safety Properties

1proc findErrors(firstState : G, property : (& boolean) {

explored = emptySet(); errors = emptySet(); snapshots

frontier = emptyQueue(); checkdomed] CrystalBall Consequence
: - ' Roints -

frontier.addLast(firstState); Controller [¢——— prediction

2
3
4
s while (!StopCriterion){

6 state = frontier.popFirst();
7

8

9

local checkpoint

if (Iproperty(state)) neighbor info
errors.add(state); event filter

explored.add(hash(state)); Service

10 foreach (nextStatavhere (state~» nextState)) meskages| Runtime | oo o€ | (state

11 if (lexplored.contains(hash(nextState))) machine)

12 frontier.addLast(nextState);

o} CrystalBall node

14 }
Figure 5: Finding errors by breadth-first search Figure 7: High-level overview of CrystalBall

Regular checkpoint Forc;_ed checkpoint

P « X checkpoint number is similar to the Lamport’s logical
0@ 9 l clock [25]). Wheneven; sends a messag¥, it stores
0 ! cn; in it (denote this valueM.cn). When noden;
receives a message, it compares; with M.cn. If
M.cn > cny, thenn; takes a checkpoin’, assigns

M@ ® ® g C.cn = M.cn, and setgn; = M.cn. This is the key
0 ! 2 m o step of the algorithm that avoids violating the happens-
2 chy “1 before relationship. A node; can take snapshots on its
N . own, and this is done whenever the; is locally incre-
2 0.—?—9 ; mented, which happens periodically.
To collect the required checkpoints, a hogdesends a
my %A\‘ checkpoint request message containing a checkpoint re-
N, @ PY N quest numbeb('i. Upon receiying the reqL_lest, a node
0 1 Req (1) Time ™ fesponds with the appropriate checkpoint. There are

two cases: 1) itr; > cn; (the request number is greater
Figure 6: Example illustrating the consistent snapshot col- than any number,; has seen), then; takes a check-

lection algorithm. Black ovals represent regular chechfsoi point, stamps it Witr_C'_cn = cry, Setsen; = cr;, and
Messagesn; andm. force checkpoints (white ovals) to be sends that checkpoint; 2)df; < cn;, the request is for

taken before messages are processed at nodes 2 and 1, resp%(p_heckpoint takgn in the past, angresponds with the
tively, and so does the checkpoint request from node 3 when iparliest checkpoint’ for which C'.cn > cr.
arrives at node 0.

3 CrystalBall Design

2.3 Consistent Global Snapshots Figurel 7 shows the high-level overview of a CrystalBall-

Examining global state of a distributed system is usefulenabled node. We concentrate on distributed systems im-
in a variety of scenarios, such as checkpointing/recoveryplemented as state machines, as this is a widely-used ap-
debugging, and, in our case, running a model checkingproach([21} 25, 26, 37. 39].
algorithm in parallel with the system. snapshoton- The state machine interfaces with the outside world
sists ofcheckpointsof nodes’ states. For the snapshot via the runtime module. The runtime receives the mes-
to be useful, it needs to be consistent. There has beensages coming from the network, demultiplexes them, and
large body of work in this area, starting with the seminalinvokes the appropriate state machine handlers. The
paper by Chandy and Lampadrt [5]. We next describe onguntime also accepts application level messages from
of the recent algorithms for obtaining consistent snapthe state machines and manages the appropriate network
shots[[29]. The general idea is to collect a set of checkeonnections to deliver them to the target machines. This
points which do not violate the happens-before relationmodule also maintains the timers on behalf of all services
ship [25] established by messages sent by the distributettat are running.
service. The CrystalBall controller contains a checkpoint man-
In this algorithm, the runtime of each node; ager that periodically collects consistent snapshots of a
keeps track of the checkpoint numbet; (the role of node’s neighborhood. The controller feeds them to the



model checker, along with a checkpoint of the local statepossible, our second technique uses a heuristic to deter-
The model checker runs the consequence prediction amine the snapshot neighborhood. Specifically, we peri-
gorithm which checks user- or developer-defined propereodically query the runtime to obtain the list of open con-
ties and reports any violation in the form of a sequencenections (for TCP), and recent message recipients (for
of events that leads to an erroneous state. UDP). We then cluster connection endpoints according
CrystalBall can operate in two modes. In the deep onto the communication times, and selects a sufficiently
line debugging mode the controller only outputs the in-large cluster of recent connections. After filtering dupli-
formation about the property violation. In the execution cate addresses, we initialize the snapshot neighborhood
steering mode the controller examines the report fronto the resulting list.
the model checker, preparesewent filterthat can avoid  Enforcing Snapshot Consistency.To avoid false posi-
the erroneous condition, checks the filter's impact, andives, we ensure that the neighborhood snapshot corre-
installs it into the runtime if it is deemed to be safe. sponds to a consistent view of a distributed system at

. . some point of logical time. Our starting point is a tech-
3.1 Consistent Neighborhood Snapshots nique similar to the one described in Secfion 2.3. How-

To check system properties, the model checker require8Ver, instead of gathering a global snapshot, a node pe-
a snapshot of the system-wide state. Ideally, every nodéodically sends a checkpoint request to the members of
would have a consistent, up-to-date checkpoint of evits snapshot neighborhood.
ery other participant’s state. Doing so would give ev- Node failures are commonplace in distributed systems,
ery node high confidence in the reports produced by th@&nd our algorithm has to deal with them. The check-
model checker. However, given that the nodes could b@oint manager proclaims a node to be dead if it experi-
spread over a high-latency wide-area network, this goances a communication error (e.g., a broken TCP con-
is unattainable. In addition, the sheer amount of bandhection) with it while collecting a snapshot. An addi-
width required to disseminate checkpoints might be extional cause for an apparent node failure is a change of
cessive. a node’s snapshot neighborhood in the normal course of
Given these fundamental limitations, we use a solu-Operation (e.g., when a node changes parents in the ran-
tion that aims for scalability: we apply model check- dom tree). In this case, the node triggers a new snapshot
ing to asubsetf all states in a distributed system. We gather operation.
leverage the fact that in scalable systems a node typiManaging Checkpoint Storage. The checkpoint man-
cally communicates with a small subset of other partici-ager keeps track of checkpoints via their checkpoint
pants (“neighbors”) and perform model checking only onnumbers.  Over the course of its operation, a node
this neighborhood. For example, a distributed hash tablean collect a large number of checkpoints, and a long-
node keeps track ab(logn) other nodes. Similarly, in  running system might demand an excessive amount of
mesh-based content distribution systems nodes commumemory and storage for this task. It is therefore impor-
nicate with a constant number of peers, or this numbetant to prune old checkpoints in a way that nevertheless
does not explicitly grow with the size of the system. In leaves the ability to gather consistent snapshots.
a random overlay tree, a node is typically aware of the Our approach to managing checkpoint storage is to en-
root, its parent, its children, and its siblings. Therefore force a per-node storage quota for checkpoints. Older
we arrange for a node to distribute its state checkpointeheckpoints are removed first to make room. Remov-
to its neighbors, and we refer to themsmpshot neigh- ing older checkpoints might cause a checkpoint request
borhood to fail when the request is asking for a checkpoint that
The checkpoint managemaintains checkpoints and is outside of the remaining range of checkpoints at the
snapshots. Other CrystalBall components can request amde. In this case, the node responds negatively to the
on-demand snapshot to be gathered by invoking an apsheckpoint requester and inserts its current checkpoint
propriate call on the checkpoint manager. number in the responsek(cn = c¢n;). Then, upon
Discovering and Managing Snapshot Neighborhoods. receiving the responses from all nodes in the snapshot
To propagate checkpoints, the checkpoint manager needwighborhood, the requestor chooses the greatest among
to know the set of a node’s neighbors. This set is depenthe R.cn received, and initiates another snapshot round.
dent upon a particular distributed service. We use twdProvided that the rate at which the snapshots are removed
techniques to provide this list. In the first scheme, weis not greater than the rate at which the nodes are com-
ask the developer to implement a method that will re-municating, this second snapshot collection will likely
turn the list of neighbors. The checkpoint manager thersucceed.
periodically queries the service and updates its snapshdflanaging Bandwidth Consumption. For a large class
neighborhood. of services, the relevant per-node state is relatively smal
Since changing the service code might not always bee.g., a few KB. It is nevertheless important to limit band-



1proc findConseq(currentState : G, property : {&boolean) {

in Figure[%. (We present the algorithm at a more con-

. explored = emptySet(); errors = emptySet(); crete level, where the relation is expressed in terms of

s localExplored = emptySet(); action handlerd] 4, and H,, introduced in Figurgl4.) In

4 frontier = emptyQueue(); _ fact, if we omitted the test in Line 16,

. &%ﬂgi’;gﬁg‘;@g‘f#ggﬁg@f{e)’ if (localExplored.contains(hash(ns)))

. state = frontier.popFirst(); the algorithm would reduce precisely to Figlide 5. The

8 if (!property(state)) test in Line 17 removes from the search the transitions

0 errors.add(state)/ predicted inconsistency found generated by local action handlers of nod& noden

1 explored.add(hash(state)); . has been previously explored with the same stafss a

u  foreach((ns)e state.L){ //node n in local state s result, local actions of nodein states will never be con-

12 // process all network handlers -

b foreach (((s,m),(s',c))e Has where (n,m) € state.l) sidered more than once, regardless of what other compo-

1 // node n handles message m according to st. machiféents of global state are explored.

15 addNextState(state,n,s{sh},c); Avoiding Interleavings. Although simple, the idea of

16 _//pI'OCESS local actions_only for fresh local states removing from the search actions of nodes with previ_

v if (localExplored.contains(hash(n.s))) ously seen states has a profound impact on the search

18 foreach (((s,a),(s',c))c Ha) depth that the model checker can feasibl h with

19 addNextState(state,n,s{s,c); . p . . Ibly reach with a

2 localExplored.add(hash(n,s)); limited time budget. This change was therefore key to

a ) enabling the use of the model checker at runtime.

2} Exploring Consequence Chains.Knowing that conse-

2} , quence prediction avoids considering certain states, the

i:prﬂg;%?:tg?(Eszta(lts?s;ﬁe{'?ﬁsg}’)08{({:%n )} question remains whether the remaining states are suffi-

2 nextState.l = (state) cO)U c; o cient to make the search useful. Ultimately, the answer

27 if (lexplored.contains(hash(nextState))) to this question comes from our experimental evaluation

28 frontier.addLast(nextState); (Section®). In addition, there are several intuitive rea-

20} sons to expect consequence prediction to give good re-
Figure 8: Consequence Prediction Algorithm sults. Note first that consequence prediction explores all

possible transitions from the initial state (because dt tha

_ ) Point localExplored is empty).
width consumed by state checkpoints for a number of fyrthermore, consequence prediction considers all
reasons: 1) sending large amounts of data might congeghains of actions where one action causes a state change
the node’s outbound link, and 2) consuming bandwidthat triggers the next action. The reason is simply that
for checkpoints might adversely affect the performanceyye algorithm explores all outgoing transitions at a node
and the reaction time of the system. whose state has changed into a previously unseen state.

To reduce the amount of checkpoint data we transmit,
CrystalBall can use a number of techniques. First, it ca3.3 EXecution Steering
employ “diffs” that enable a node to transmit only parts
of state that are different from the last sent checkpoint
Second, the checkpoints can be compressed on-the-fl
Finally, CrystalBall can enforce a bandwidth limit by: 1)

making the checkpoint data be a fraction of all data sen . . . )
he runtime system could report a predicted inconsis-

by a node, or 2) enforcing an absolute bandwidth limit . : .
tency as a special programming language exception, and

(e.g., 10 kbps). If the checkpoint manager is above thEf’:lllow the service to react to the problem using a service-

bandwidth limit, it responds with a negative response to e . . .
specific policy. However, to measure the impact on exist-

a checkpoint request and the requester temporarily re- ", . . .
|pg implementations, this paper focuses on generic run-

moves the node from the current snapshot. A node that : : .
. . . : ime mechanisms that do not require the developer to in-
wishes to reduce its inbound bandwidth consumption can

L . sert exception-handling code.
reduce the rate at which it requests checkpoints frorTbhoice OECorrective ,gctions Recall that a node in
other nodes. i

our framework operates as a state machine and processes

3.2 Consequence Prediction Algorithm messages, timer events, and application calls via han-
dlers. Upon noticing that running a certain handler can

The key to enabling fast prediction of future inconsisten-lead to an erroneous state, CrystalBall installssaant

cies in CrystalBall is our consequence prediction algo-filter, which temporarily blocks the invocation of the

rithm, presented in Figutd 8. In its overall structure, thestate machine handler for messages from the relevant

algorithm is similar to the standard breadth-first searchsender. The rationale is that a distributed system often

CrystalBall's execution steering mode enables the sys-

tem to avoid entering an erroneous state by steering its
Xecution path away from predicted inconsistencies. If a
rotocol was designed with execution steering in mind,



contains a large amount of non-determinism that allowdilters from the runtime after every model checking run.
it to proceed even if certain transitions are disabled. FoHowever, it is useful to quickly check whether the previ-
example, if the offending message is a Join request imusly identified error path can still lead to an erroneous
a random tree, ignoring the message can prevent violatondition in a new model checking run. This is espe-
ing a local state property. The joining nodes can latercially important given the asynchronous nature of the
retry the procedure with an alternative potential parentmodel checker relative to the system messages, which
and successfully join the tree. Similarly, if handling a can prevent the model checker from running long enough
message causes an equivalent of a race condition main rediscover the problem. To prevent this from happen-
ifested as an inconsistency, delaying message handlinigg, the first step executed by the model checker is to
allows the system to proceed to the point where handlingeplay the previously discovered error paths. If the prob-
the message becomes safe again. lem reappears, CrystalBall immediately reinstalls the ap-
Distributed systems that use TCP typically include propriate filter.
failure handling code that deals with broken TCP con-Immediate Safety Check. CrystalBall also supports
nections. Therefore, in case of network messages seifmmediate safety check mechanism that avoids incon-
over TCP, an alternative to simple blocking is to addition- sistencies that would be caused by executing the current
ally reset the connection with the sender of the messagdiandler. Such imminent inconsistencies can happen even
The reason for resetting the connection is to signal tdn the presence of execution steering because 1) conse-
the sender of the offending message that something weigiuence prediction explores states given by only a subset
wrong. In many cases, cleaning out the relevant state aif all distributed system nodes, and 2) the model checker
the target node can prevent other bugs from manifestinguns asynchronously and may not always detect incon-
themselves. sistencies in time. The immediate safety check specula-
In general, execution steering can intervene at severdively runs the handler, checks the consistency properties
points in the execution path. Our current policy is to steerin the resulting state, and prevents actual handler execu-
the execution as early as possible. For example, if théion if the resulting state is inconsistent.
erroneous execution path involves a node issuing a Join
request after resetting, the system’s first interacti(_)lf!lwit 4 Implementation Highlights
that node occurs at the node which receives its join re-

quest. If this node discoveres the erroneous path, it cagy CrystalBall prototype is built on top of Mace [21].
install the event filter. Mace allows distributed systems to be specified suc-
Ensuring Safety of Event Filter Actions. Ideally, ex-  cinctly, and it outputs high-performance C++ code. Our
ecution steering would always prevent inconsistenciesmplementation includes a checkpoint manager, which
from occurring, without introducing new inconsistencies enables each service to collect and manage checkpoints
due to a change in behavior. In general, however, guarp generate consistent neighborhood snapshots based on
anteeing the absence of inconsistencies is as difficult ag notion of logical time. It also includes implementa-
guaranteeing that the entire program is error-free. Crystion of consequence prediction algorithm, with the abil-
talBall therefore makes execution steering safe in pracity to replay paths previously found to lead to inconsis-
tice through the following two design decisions. tencies. Finally, it contains implementation of the execu-
First, CrystalBall chooses as steering actions thosgion steering mechanism.
behaviors that could normally occur in a realistic dis- Checkpoint Manager. To collect and manage snhap-
tributed system. For example, breaking the TCP connecshots, we modified the Mace compiler and the runtime.
tion is an event that could anyway occur in a distributedwe added anapshot on directive to the service de-
system, so the protocols are designed to tolerate it. ~ scription to inform the Mace compiler and the runtime
Second, before allowing the event filter to perform that the service requires checkpointing. The presence of
an execution steering action, CrystalBall runs the conthis directive causes the compiler to generate the neces-
sequence prediction algorithm to check the effect of thesary code. For example, it automatically inserts a check-
event filter action on the distributed system. If the con-point number in every service message and adds the code
sequence prediction algorithm does not suggest that th® invoke the checkpoint manager when that is required
filter actions are safe, CrystalBall does not attempt exeby the snapshot algorithm.
cution steering and leaves the system to proceed as usual.The checkpoint manager itself is implemented as a
Rechecking Previously Discovered Violations. An Mace service, and it compresses the checkpoints using
event filter reflects possible future inconsistencies reachthe LZW algorithm. To further reduce bandwidth con-
able from the current state, and leaving an event filter irsumption, a node checks if the previously sent check-
place indefinitely could deny service to some distributedpoint is identical to the new one (on per-peer basis), and
system participants. CrystalBall therefore removes theavoids transmitting duplicate data.



Consequence Prediction. Our starting point for the sages, this filter contains a message type, message source
consequence prediction algorithm was the publicly avail-and the destination. For other events, e.g., a local timer
able MaceMC implementation. This code was not de-event or application call, the filter just contains the iden-
signed to work with live state. For example, the node ad4ity of the handler that handles the event. Unlike the net-
dresses in the code are assumed to be of the form 0,1,2,&ork messages that the filter drops when it triggers, the
etc. To handle this issue, we added a mapping frontimer events are rescheduled.
live IP addresses to model checker addresses. Since tl@hecking Safety of Event Filters. To check for safety
model checker is executing real code in the event and thef event filters, we modified our baseline consequence
message handlers, we did not encounter any additiongrediction algorithm. Specifically, upon encountering an
addressing-related issues. inconsistency, we allow consequence prediction to pur-
Another change we made allowed the model checkesue actions that an event filter could perform.
to scale to hundreds of nodes and deal with partial sys- )
tem state. We introduced a dummy node that represen® EVvaluation
all system nodes without checkpoints in the current snap©Our experimental evaluation addresses the following
shot. All messages sent to such nodes are redirected fuestions:1) Is CrystalBall effective in finding bugs in
the dummy node. The model checker does not considdive runs? 2) Can any of the bugs found by CrystalBall
the events of this node during state exploration. also be identified by the MaceMC model checker alone?
To minimize the impact on distributed service perfor- 3) Is execution steering capable of avoiding inconsisten-
mance, we decouple the model checker from event procies in deployed distributed systemg? Are the over-
cessing path by running it as a separate process. Ofeads introduced by CrystalBall within acceptable lev-
a multi-core machine this CPU-intensive process will €lS?
likely be scheduled on a separate core.
Mitiga}ting the impact qf Iimited-si;e shapshots. Qur 5.1 Experimental Setup
technique for speculatively executing state machine han-
dlers involves executing the handler in a copy of the statéVe conducted our live experiments using ModelNet [43].
machine’s virtual memory (via fork()), and holding the ModelNet allows us to run live code in a cluster of ma-
transmission of messages until the successful complezhines, while application packets are subjected to packet
tion of the consistency check. Upon encountering an indelay, loss, and congestion typical of the Internet. Our
consistency in the copy, the runtime can simply throwcluster consists of 17 older machines with dual 3.4 GHz
it away and not execute the handler in the primary statéPentium-4 Xeons with hyper-threading and 8 machines
machine. If this approach turns out to be unsatisfactorywith dual 2.33 Ghz dual-core Xeon 5140s. Older ma-
from the performance standpoint due to additional hanchines have 2 GB of RAM, while the newer ones have 4
dler execution and process creation, we can explore othesB. These machines run GNU/Linux 2.6.17. One 3.4
well-known techniques that use checkpoint/rollback [41]GHz Pentium-4 machine running FreeBSD 4.9 served
or operating system-level speculation|[32]. as the ModelNet packet forwarder for these experiments.
Replaying Past Erroneous Paths.To ascertain that an  All machines are interconnected with a full-rate 1-Gbps
inconsistency can still occur from the current snapshotEthernet switch.
we replay past erroneous paths. Strictly replaying a se- We consider two deployment scenarios. For our large-
guence of events and messages that form a path on a neawale experiments with deep online debugging, we mul-
a neighborhood snapshot might be incorrect. For examtiplex 100 logical end hosts running the distributed ser-
ple, some messages could have only been generated bice across the 20 Linux machines, with 2 participants
the old state checkpoint and are inconsistent with newunning the model checker on 2 different machines. We
state. Our replay technique therefore replays only timerun with 6 participants for small-scale debugging exper-
and application events, and relies on the distributed seliments, one per machine.
vice code to generate any messages. We then follow the We use a 5,000-node INETI[6] topology that we fur-
causality of the newly generated messages throughouher annotate with bandwidth capacities for each link.
the system. We deterministically replay pseudo-randonThe INET topology preserves the power law distribution
number generation. of node degrees in the Internet. We keep the latencies
Event Filtering for Execution steering. Execution generated by the topology generator; the average net-
steering is driven by the report from the model checkerwork RTT is 130ms. We randomly assign participants
which produces a sequence of events and messageés. act as clients connected to one-degree stub nodes in
Upon checking the existence and the potential impact othe topology. We set transit-transit links to be 100 Mbps,
a corrective action, the CrystalBall controller instalis a while we set access links to 5 Mbps/1 Mbps inbound-
event filter into the runtime. In case of network mes-/outbound bandwidth. To emulate the effects of cross
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traffic, we instruct ModelNet to drop packets at randon
with a probability chosen uniformly at random betweer
[0.001,0.005] separately for each link.

5.2 Deep Online Debugging Experience

We have used CrystalBall to find inconsistencies (vio
lations of safety properties) in two mature implementec
protocols in Mace, namely an overlay tree (RandTree

Local V|ew(61 Local View(69) Local V|ew(9)

. & 4
- é)

TCP RST 1S tost

Join

9 restarts
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and a distributed hash table (Chotd[42]). These im
plementation were not only manually debugged botl
in local- and wide-area settings, but were also mode
checked using MaceMCI [22]. We have also used oL
tool to find inconsistencies in Bulleta file distribu-
tion system that was originally implemented in MACE-
DON [37], and then ported to Mace. We found 13 new
subtle bugs in these three systems that caused violati
of safety properties. Except one, the violations wer:
beyond the scope of exhaustive search by existing soft-

ware model checker, typically because the errors maniFigure 9: An inconsistency in a run of RandTree. Rog) (
fested themselves at depths far beyond what can be e@PPears as a child).

haustively searched.

A@A 0'”Rep|y(9<51)
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NewRoot (9)
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69
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System | Bugs found | LOC Mace/C++ Sibling message. CrystalBall also identified variations of
RandTree 7 309 /2000 this bug that requires changes in other handlers.
Chord 3 254 /2200 Root is Not a Child or Sibling. CrystalBall found vi-
Bullet 3 2870/19628 olation of property that root node should not appear as

Table 1: Summary of inconsistencies found for each systema child, identifying a nod® that considers itself a root
using CrystalBall. LOC stands for lines of code and reflectsbUt at the same time another nageconsiders it to be a

both the MACE code size and the generated C++ code sizechild
The low LOC counts for Mace service implementations are a Scenario exhibiting inconsistencuring live execu-
result of Mace’s ability to express these services suggcintl tion, node61 is initially the root of the tree and parent
of nodess, 65, and69. At this point, consequence pre-
Table[1 summarizes the inconsistencies that Crystaldiction detects the following scenario. Nogleesets, but
Ball found in RandTree, Chord and Bullet Typical its TCP RST packet to its parert9) is lost. 9 sends a
elapsed times (wall clock time) until finding an incon- Join request t61. Based ord’s identifier, 61 considers
sistency in our runs have been from less than an hour up more eligible and selects it as the new root and sends it
to a day. This time allowed the system being debugged ta Join . After receiving a JoinReply frof) 61 informs
go through complex realistic scenarios. CrystalBall iden-its children about the new roo®) by sending NewRoot
tified inconsistencies by running consequence predictiompackets to them. Howeves9 still thinks 9 is its child,
from the current state of the system for up to several hunwhich causes the inconsistency.
dred seconds. To demonstrate their depth and complex- Possible correctionCheck the children list whenever
ity, we detail four out of 13 inconsistencies we found in installing information about the new root node.
the three services we examined. Root Has No Siblings. CrystalBall found violation of
property that root node should contain no sibling point-
ers, identifying a nodel that considers itself a root but
We next discuss bugs we identified in the RandTree overat the same time has an address of another bditeits
lay protocol presented in Sectibn1l.2. We name bugs acsibling list.
cording to the consistency properties that they violate. Scenario exhibiting inconsistencluring live execu-
Children and Siblings Disjoint. The first safety prop- tion, A is initially the root of the tree and parent &f
erty we considered is that the children and sibling listsandC'. Node R sends a Join request tb Based onR’s
should be disjoint. CrystalBall identified the scenarioidentifier, A considersR more eligible and selects it as
from Figure[2 in Sectioh 1]2 that violates this property. the new root.A informs its children about the new root
The problem can be corrected by removing the stale inby sending NewRoot packets to them. At this point, con-
formation about children in the handler for the Update-sequence prediction detects the following scenarib.

5.2.1 Example RandTree Bugs Found
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experiences a node reset and resets the TCP connectii -0 Viewl®) Local View(C)

with its childrenB andC'. Upon receiving the error sig- A (©)
: . m h m

nal, B removesA from its parent pointer and promotes @ ®) © P crashes ®

itself to be the root. However, it keeps its stale sibling

list, which causes the inconsistency. Crobosts, rejoins with A~

Possible correction.Clean the sibling list whenever 0 | ©
a node relinquishes the root position in favor of anothe FindPre B
node. —
Recovery Timer Should Always Run. An important ly(X,C) where pred(A)=X
safety property for RandTree is that the recovery time =
should always be scheduled. This timer periodically TCP RSy (O
causes the nodes to send Probe messages to the peel A“W T
members with which it does not have direct connectior % E g
It is vital for the tree’s consistency to keep nodes up-to 2 ¥
date about the global structure of the tree. The proper M °=
was written by the authors af [22] but the authors did no Q

report any violations of it. We believe that our approach

discovered it in part because our experiments considereﬁigure 10:An inconsistency in a run of Chord. Nodé has

more complex join scenarios. its predecessor pointing to itself while its successoirisitides
Scenario exhibiting inconsistendyrystalBall found a  other nodes.

violation of the property in a state where node A joins it-

self, and changes its state to “joined” but does not sched-

ule any timers. Although this does not cause problemst predecessor of a nodeé equalsA, then its successor

immediately, the inconsistency happens when anothemust also bed (because thenl is the only node in the

nodeB with smaller identifier tries to join, at which point ring). This is a safety property of Chord that had been

A gives up the root position, selecis as the root, and extensively checked using MaceMC, presumably using

addsB it to its peer list. At this pointd has a non-empty  both exhaustive search and random walks.

peer list but no running timer. Scenario exhibiting inconsistencgrystalBall found
Possible correction.Keep the timer scheduler even a state where nodé hasA as a predecessor but has an-
when a node has an empty peer list. other nodeB as its successor. This violation happens

at depths that are beyond those reachable by exhaustive
search from the initial state. During live execution, sev-
We next describe a violation of a consistency propertyeral nodes join the ring and all have a consistent view of
in Chord [42], a distributed hash table that provides key-the ring. Three noded, B, andC are placed consec-
based routing functionality. Chord and other related dis-utively on the ring, i.e. A is predecessor b and B is
tributed hash tables form a backbone of a large number afredecessor of’. Then B experiences a node reset and
proposed and deployed distributed systéms[[17, 35, 38]other nodes which have established TCP connection with
Chord topology. Each Chord node is assigned a Chord B receive a TCP RST. Upon receiving this error, notle

id (effectively, a key). Nodes arrange themselves in amremovesB from its internal data structures. As a conse-
overlay ring where each node keeps pointers to its predequence, Nodel considers’' as its immediate successor.
cessor and successor. Even in the face of asynchronous Starting from this state, consequence prediction de-
message delivery and node failures, Chord has to mairtects the following scenario that leads to violatio6

tain a ring in which the nodes are ordered according taexperiences a node reset, losing all its stateéhen tries
their ids, and each node has a set of “fingers” that enable® rejoin the ring and sends a FindPred messagé.to

it to reach exponentially larger distances on the ring.  Because noded andC did not have an established TCP
Joining the system. To join the Chord ring, a nodd  connection,A does not observe the reset@f Node A

first identifies its potential predecessor by querying withreplies toC by a FindPredReply message that sholis

its id. This request is routed to the appropriate née successor to b€'. Upon receiving this message, nade
which in turn replies toA. Upon receiving the reply, i) sets its predecessor # ii) stores the successor list in-
A inserts itself betwee® and P’s successor, and sends cluded in the message as its successor list; and iii) sends
the appropriate messages to its predecessor and succesr UpdatePred messageAts successor which, in this
sor nodes to update their pointers. A “stabilize” timer case, i itself. After sending this messag€,receives
periodically updates these pointers. a transport error fromd and removesA from all of its
Property: If Successor is Self, So Is Predecessorif internal structures including the predecessor pointer. In

5.2.2 Example Chord Bug Found
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other words(C’s predecessor would be unset. Upon re-5.2.3 Example Bullet Bug Found

ceiving the (loopback) message to itsélfobserves that

the predecessor is unset and then sets it to the sender Bext, we describe our experience of applying Crystal-
the Updatepred message Whicl"ﬂs Consequenﬂyc Ba” to the Bu”et Im] f||e diStI’ibUtiOI’l SyStem. The

has its predecessor pointing to itself while its successoBullet'source sends the blocks of the file to a subset of
list includes other nodes. nodes in the system; other nodes discover and retrieve

these blocks by explicitly requesting them. Every node
Consequence of the inconsistency. Services imple-  keeps a file map that describes blocks that it currently
mented on top of distributed hash tables rely on its abilityhas. A node participates in the discovery protocol driven
to route to any system participant. An incorrect succeshy RandTree, and peers with other nodes that have the
sor can therefore disrupt the connectivity of the entiremost disjoint data to offer to it. These peering relation-
system by disconnecting the Chord ring. ships form the overlay mesh.

Possible correctionsOne possibility is for nodes to Bullet' is more complex than RandTree, Chord (and

avoid sending UpdatePred messages to themselves (tht{ge-based overlay multicast protocols) because of 1) the

appears to be a deliberate coding style in Mace Chor eed for senders to keep their receivers up-to-date with

source code). If we wish to preserve such coding style,'le. map '”J‘g”;g“‘;_’" 2|) tthe bLOCk rehqugst Io%c at tr?e re-
we can alternatively place a check after updating a node’ eiver, and 3) the finely-tuned mechanisms for achieving

predecessor: if the successor list includes nodes in add _|gh throughput undgr dynamic condmo'ns. The starting
tion to itself, avoid assigning the predecessor pointer t(f)Olnt for OL_" exploration Was_ prope_rty 1) )
itself. Sender’s file map and receivers view of it should be
identical. Every sender keeps a “shadow” file map for

Node Ordering Constraint. According to Chord speci- each receiver telling it which are the blocks it has not told
fication, a node’s predecessor pointer contains the Chorthe receiver about. Similarly, a receiver keeps a file map
identifier of the immediate predecessor of that nodethat describes the blocks available at the sender. Senders
Therefore, if a noded has a predecessét and one of use the shadow file map to compute “diffs” on-demand
its successor i§, then the id of S shouldot be between for receivers containing information about blocks that are
the id of P and the id of A. “new” relative to the last diff.

Scenario exhibiting inconsistenagrystalBall found a Ser_1ders and receivers communicate over non-

S blocking TCP sockets that are under control of MaceTcp-

safety violation where nodd;, adds a new successor Transport. This transport queues data on top of the TCP

A, _5 toits successor list while its predecessor pointer is : .
. . ) socket buffer, and refuses new data when its buffer is full.
set toA; and id of 4;_» is between the id ofd;_; and

A;. The scenario discovered is as follows. The idlfs . Scenario exhibiting_inconsistencm a live run l"."St' .
less than the id aft, wherei < j. During live execution, ing less than three minutes, CrystalBall quickly identi-

node 4; joins the ring. Nodesl; ; and A;  both try fied a mismatch between a sender’s file map and the re-

to join A, by sending FindPred messages to it. Node ceiver’s view of it. The problem occurs when the diff
sends tvxL/o FindPredReply back o, and A;_» with cannot be accepted by the underlying transport. The

exactly the same information. Upon receipt of this mes-COde then clears the recevers shadow f|le map, which
means that the sender will never try again to inform the

sage, noded; ; andA;_, settheir predecessor and suc- . . .
cessor tod; and send UpdatePred message back o receiver about the blocks containing that diff. Interest-
! ! ingly enough, this bug existed in the original MACE-

Eg;aslgr’tngél sets its predecessor ;. and suc DON implementation, but there was an attempt to fix
’ it by the UCSD researchers working on Mace. The at-
In this state, consequence prediction discovers the foltempted fix consisted of retrying later on to send a diff
lowing subsequent actions. Stabilizer timerf , fires  to the receiver. Unfortunately, since the programmer left
and this node queried; by sending GetPred message. the code for clearing the shadow file map after a failed
NodeA; replies back to4,_; with a GetPredReply mes- send, all subsequent diff computations will miss the af-
sage that showd;’s predecessor to hé;_; and its suc-  fected blocks.
cessor list to contaid; _,. Upon receiving this message, Consequence of the inconsistency.Having some re-
A,_1 addsA;_ toits successor list while its predecessor ceivers not learn about certain blocks can cause incom-
pointer still points toA;. plete downloads because of the missing blocks (nodes
) . cannot request blocks that they do not know about).
Possible correction. The bug occurs because node gyen \when a node can learn about a block from multiple

A1 adds information o its successor list but does nolgenqers; this bug can also cause performance problems
update its predecessor list. The b“g could be fixed by UPpecause the request logic uses a rarest-random policy to
dating the predecessor after updating the successor list.
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decide which block to request next. Incorrect file maps
can skew the request decision toward blocks that are
more popular and would normally need to be retrieved
later during the download.

Possible correctiongOnce the inconsistency is identi-
fied, the fix for the bug is easy and involves not clearing
the sender’s file map for the given receiver when a mes-
sage cannot be queued in the underlying transport. The
next successful enqueuing of the diff will then correctly
include the block info.

5.3 Comparison with MaceMC 0 2 4 6 & 1012
Depth (levels)

Elapséd time for RandTree with 5 nodes 4+——

Time (h)

o = N W M OO O N 00 ©
e e

To establish the baseline for model checking perfor-
mance and effectiveness, we installed our safety propEigure 11:MaceMC performance: the elapsed time for ex-
erties in the original version of MaceMC [22]. We then haustively searching in RandTree state space.

ran it for the three distributed services for which we iden-

tified safety violations. After 17 hours, exhaustive searcl*bus|y unknown bugs.

did not identify any of the violations caught by Crystal-
Ball. Some of the specific depths reached by the model|

checker are as follows 1) RandTree with 5 nodes: 12 ley>-4-1 RandTree Execution Steering

els, 2) RandTree with 100 nodes: 1 level, 3) Chord WithTo estimate the impact of execution steering on de-
5 nodes: 14 levels, and Chord with 100 nodes: 2 levelsployed systems, we instructed the CrystalBall controller
Figure[11 illustrates the performance of MaceMC whento check for violations of RandTree safety properties (in-
is used for exhaustive search. As depicted in figure, thejuding the one described in Sectibn 512.1). We ran a
exponential growth of elapsed time in terms of searchjve churn scenario in which one participant (process in a
depth hardly lets it search deeper than 12-13 steps. lI8|uster) per minute leaves and enters the system on aver-
another experiment, we additionally employed randomgge, with 25 tree nodes mapped onto 25 physical cluster
walk feature of MaceMC. Using this setup, MaceMC machines. Every node was configured to run the model
identified some of the bugs found by CrystalBall, but it checker. The experiment ran for 1.4 hours and resulted
still failed to Identlfy 2 Randtree, 2 Chord, and 3 Bullet in the f0||owing data points' which Suggest that in prac-
bugs found by CrystalBall. In BulletMaceMC found tice the execution steering mechanism is not disruptive
no bugs despite the fact that the search lasted 32 hourfgr the behavior of the system.
Moreover, even for the bugs found, the long list of events  \Wwhen CrystalBall is not active, the system goes
that lead to a violation (on the order of hundreds) madehrough a total of 121 states that contain inconsisten-
it difficult for the programmer to identify the error (we cjes. When only the immediate safety check but not the
spent five hours tracing one of the violations involving consequence prediction is active, the immediate safety
30 steps). Such along event list is unsuitable for execucheck engages 325 times, a number that is higher be-
tion steering, because it describes a low probability waycause blocking a problematic action causes further prob-
of reaching the final erroneous state. In contrast, Crystallematic actions to appear and be blocked successfully.
Ball identified violations that are close to live executions Finally, we consider the run in which both execution
and therefore more likely to occur in the immediate fu- steering and the immediate safety check (as a fallback)
ture. are active. Execution steering detects a future inconsis-
Given the MaceMC's search strategy, it is not surpris-tency 480 times, with 65 times concluding that chang-
ing that it had difficulty advancing in the 100-node casejng the behavior is unhelpful and 415 times modifying
and subsequently did not identify any violations. Thethe behavior of the system. The immediate safety check
case with 5 nodes, however, is within tractability limits fallback engages 160 times. Through a combined action
of MaceMC and yet no violations occurred. This result of execution Steering and immediate Safety check, Crys-
validates our approach and confirms the importance ofa|Ball avoided all inconsistencies, so there were no un-
online model checking from a current, consistent neigh-caught violations (false negatives) in this experiment.
borhood snapshot for bug finding. To understand the impact of CrystalBall actions on the
5.4 Execution Steering Experience overall syste.m. behavior, we measured the time.r?eeded
for nodes to join the tree. This allowed us to empirically
We next evaluate the capability of CrystalBall as a run-address the concern that TCP reset and message block-
time mechanism for steering execution away from previ-ing actions can in principle cause violations of liveness
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A Propg, B C ; .
Propose (Ay0) ( se (4,,0) Cis disconmdeted or more of the roles des_cnbed above; each node plays
oromise (o all the roles in our experiments. The safety property we
X . . L.
A installed is the original Paxos safety property: at most

Ci .
Accept (AO,O)C - et (a,,0) one value can be chosen, across all nodes. The first bug
rn Nt . H H H H
Learn (A,,0) (4, Cis reachdble we injected|[28] is related to an implementation error in

Learn Bo® Propose (5 step 3, and we refer to it dugl Once the leader re-
0is chosen Propose (B4l " 52 ceives the Promise message from the majority of nodes,
Promise (Au@: promise 17¢’ it creates the Accept request by using the submitted value
A . . .
A disconmected Accept (81 )< <cept (g, 1) from the Ia_st Promlse message instead of the Promise
Learn (B 1(& message with highest round number. Because the rate at
0’ . .
_ which this error occurs was low, we had to schedule some
1 is chosen . . .
(instead of 0) s events to lead the live run towards the violation. The

setup we use comprises 3 nodes and two rounds, with-
Figure 12:Scenario that exposes a previously reported Paxo®ut any artificial packet delays. As illustrated in Figure
yiolation of a safety property (two different values arestio 12, in the first round the communication between node
in the same round). C and the other nodes is broken. Also, a Learn packet
is dropped from node 0 to 1. At the end of this round,
properties (in this case extending the time nodes need té chooses the value pr.opo'sed by itself (0). In the sec-
. - ond round, the communication between ngdand other
join the tree). Our measurements indicated an average . :
S “nodes is broken. At the end of this round, the value pro-
node join times between 0.8 and 0.9 seconds across dif :
. . . : .. posed by nodé€’ is accepted by nodB.
ferent experiments, with variance exceeding any differ-
ence between the runs with and without CrystalBall. In - . .
summary, CrystalBall changed system actions 415 time The second bug we injected (inspired By [4]) involves

0 ; . eeping a promise made by an Acceptor, even after
(2.77% of the total of 14956 actions executed), aVO'deJZrashes and reboots. As pointed[i [4], it is often diffi-

all specified inconsistencies, and did not degrade system ; ) .
cult to implement this aspect correctly, especially under

performance. . : S .
various hardware failures. Hence, we inject an error in

the way a promise is kept by not writing it to disk (we

refer to it asoug?d. To expose this bug we use a scenario

Paxos [[26] is a well known fault-tolerant protocol for similar to the one used fdsugl, with the addition of a
achieving consensus in distributed systems. Recently€set of node3.
it has been successfully integrated in a number of de- N o _
ployed [4]28] and proposed [19] distributed systems. In To stress test CrystalBall’s ability to avoid inconsisten-
this section, we show how execution steering can be apties at runtime, we repeat the live scenarios in the Mod-
plied to Paxos to steer away from realistic bugs that hav&!Net cluster 200 times (100 times for each bug) while
occurred in existing implementations ﬂg]_ varying the time between rounds uniformly at random
The implementation we used was a baseline Mac®€etween 0 and 60 seconds. As we can see in Figdre 13,

Paxos implementation that includes a minimal set of feaCrystalBall's execution steering is successful in avaidin
_ : . . ) 0 0 .

for buglandbug?2 respectively. In these cases, Crystal-

! The Paxos protocol includes five steps: _ Ball starts model checking after nodéreconnects and

1. A leader tries to take the leadership position by sendmpde  yacaijyes checkpoints from other participants. After run-
messages to acceptors, and it includes a unique round number .
message. ning the model checker for 6 seconds, successfully

2. Upon receiving a Prepare message, each acceptor cotimilts predicts that the scenario in the second round would re-
last promised round number. If the message’s round numhzeater  sult in violation of the safety property, and it then in-

than that number, the acceptor responds with a Promise gessal  g5)|5 the event filter. The avoidance by execution steer-
contains the last accepted value if there is any.

3. Once the leader receives a Promise message from the tyajori INY happens whe@' rejects the Prepare message S_ent by
of acceptors, it broadcasts an Accept request to all aceepthis ~ B. Immediate safety check engages 11% of the time for

message contains the value of the Promise message withgheshi  photh bugs (in cases when model checking did not have

round number, or is any value if the responses reported raopads. - . -
4. Upon the receipt of the Accept request, each acceptoptnite enough time to uncover the inconsistency), and prevents

by broadcasting a Learn message containing the Accepted tathe  the inconsistency from occurring later, by dropping the
learners, unless it had made a promise to another leadee im¢lan-  Learn message froft’ at nodeB. CrystalBall could not

Wh;'e-B — from the majority of the nod prevent the violation for only 2% and 5% of the runs, re-

. by receiving Learn messages itrom the majority o e nodes . .

learner considers the reported value as chosen. _spect|vely. The cause for these falsg negatives was the
incompleteness of the set of checkpoints.

5.4.2 Paxos Execution Steering
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Figure 16:CrystalBall slows down Bulléby less than 5% for
a 20 MB file download while it is controlling the underlying
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Figure 14:The memory consumed by consequence predictionvisited state by consequence prediction algorithm, we di-

(RandTree, depths 7 to 8) fits in an L2 CPU cache. vided the total memory used by search tree by the num-
ber of visited states. As illustrated in the Fighré 15, the
5.5 Performance Impact of CrystalBall per-state memory gets stable at about 150 bytes as we

take more states into consideration, because of the re-

Memory, CPU, and bandwidth consumption. Be-  duced fixed cost in large number of states.
cause consequence prediction runs in a separate procesdn the deep online debugging mode, the model checker
that is most likely mapped to a different CPU core onwas running for 950 seconds on average in the 100-node
modern processors, we expect little impact on the serease, and 253 seconds in the 6-node case. When running
vice performance. In addition, since the model checkein the execution steering mode (25 nodes), the model
does not cache previously visited states (it only storeghecker ran for an average of about 10 seconds. The
their hashes) the memory is unlikely to become a bottlecheckpointing interval was 10 seconds.
neck between the model-checking CPU core and the rest The average size of a RandTree node checkpoint is
of the system. 176 bytes, while a Chord checkpoint requires 1028 bytes.

One concern with state exploration such as modelAverage per-node bandwidth consumed by checkpoints
checking is the memory consumption. Fighreé 14 showsor RandTree and Chord (100-nodes) was 803 bps and
the consequence prediction memory footprint as a func8224 bps, respectively. These figures show that over-
tion of search depth for our RandTree experiments. Aseads introduced by CrystalBall are low. Hence, we did
expected, the consumed memory increases exponentialhpot need to enforce any bandwidth limits in these cases.
with search depth. However, since the effective Crystal-Overall impact. Next, we demonstrate that having
Ball's search depth in is less than 7 or 8, the consumedrystalBall monitor RandTree does not adversely affect
memory by the search tree is less than 1MB and can thughe performance of a service implemented on top of it.
easily fit in the L2 cache of the state of the art processorskor this task, we use Bullef23], a content distribu-
Having the entire search tree in-cache reduces the accetisn system that builds a high-bandwidth overlay mesh
rate to memory and improves performance. by distributing potential peer information over a control

To precisely measure the consumed memory per eactiee built by RandTree. In this experiment, we let 24
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ST - : Deterministic replay with predicate checking. Fri-
ulletPrime (baseline) H .
BulletPrime (CrystalBall) e ; day [14] goes one step further than logging to en-
i ] able a gdb-like replay of distributed systems, including
watch points and checking for global predicates. WiDS-
checker[[28] is a similar system that relies on a combi-
nation of logging/checkpointing to replay recorded runs
and check for user predicate violations. WiDS-checker
can also work as a simulator. In contrast to replay-
and simulation-based systems, CrystalBall explores ad-
o 50 100 150 200 250 ditional states and can steer execution away from erro-
download time(s) neous states.

) Online predicate checking. Singhet al. [40] have ad-
Figure 17:CrystalBall slows down Bullétby less than 10% \,qcated debugging by online checking of distributed sys-
for a 20 MB file download. tem state. Their approach involves launching queries

across the distributed system that is described and
nodes download a 20 MB file from a source node, withdeployed using the OverLog/P2 [40] declarative lan-
one Bullet instance per machine. Figurel16 shows thatguage/runtime combination. D3S [27] enables develop-
Bullet' per-node download times are less than 5% sloweers to specify global predicates which are then automati-
due to CrystalBall. cally checked in a deployed distributed system. By using
Overall impact.  Finally, we demonstrate that having binary instrumentation, D3S can work with legacy sys-
CrystalBall monitor a bandwidth-intensive application tems. Specializedheckergperform predicate-checking
featuring a non-negligible amount of state such as Bullettopology on snapshots of the nodes’ states. To make
does not significantly impact the application’s perfor- the snapshot collection scalable, the checkemapshot
mance. In this experiment, we instructed 49 Bullet neighborhoodtan be manually configured by the devel-
instances to download a 20 MB file. Bullés not a  oper. This work has shown that it is feasible to collect
CPU intensive application, although computing the nextsnapshots at runtime and check them against a set of
block to request from a sender has to be done quicklyuser-specified properties. CrystalBall advances the-state
It is therefore interesting to note that in 34 cases durof-the-art in online debugging in two main directions:
ing this experiment the Bulletode was competing with 1) it employs an efficient algorithm for model check-
the model checker for the older Xeon CPU with hypel’-ing from a live state to search for bugs “deeper” and
threading. Figuré 17 shows that in this case using Crys“wider”, and it 2) enables execution steering to automat-
talBall reduced performance by less than 5%. Comscally prevent previously unidentified bugs from mani-
pressed Bullétcheckpoints were about 3 kB in size, and festing themselves in a deployed system.
the bandwidth that was used for checkpoints was abouijodel checking. Model checking techniques for finite

30 Kbps per node (3% of a node’s outbound bandwidthstate systems 16, 20] have proved successful in anal-
of 1 Mbps). The reduction in performance is thereforeysis of concurrent finite state systems, but require the

0.8 r

0.6 -

0.4 -

Fraction of nodes

0.2

primarily due to checkpoints. developer to manually abstract the system into a finite-
state model which is accepted as the input to the system.
6 Related Work Early efforts on explicit-state model checking of C and

C++ implementationd [31, 30, 44] have primarily con-

Debugging distributed systems is a notoriously difficult centrated on a single-node view of the system.

and tedious process. Developers typically start by us- MaceMC [22] represents the state-of-the-art in model
ing an ad-hoc logging technique, coupled with strenuoushecking distributed system implementations. MaceMC
rounds of writing custom scripts to identify problems. runs state machines for multiple nodes within the same
Several categories of approaches have gone further thgrocess, and can determine safety and liveness viola-
the naive method, and we explain them in more detail intions spanning multiple nodes. MaceMC'’s exhaustive
the remainder of this section. state exploration algorithm limits in practice the search
Collecting and analyzing logs. Several approaches depth and the number of nodes that can be checked. In
(Magpie [2], X-trace[[18], Pip[[34]) have successfully contrast, CrystalBall's consequence prediction allows it
used extensive logging and off-line analysis to iden-to achieve significantly shorter running times for similar
tify performance problems and correctness issues in disdepths, thus enabling it to be deployed at runtime.. Ih [22]
tributed systems. Relative to these approaches, Crystathe authors acknowledge the usefulness of prefix-based
Ball works on deployed systems, and performs an onlinesearch, where the execution starts from a given supplied
analysis of the system state. state. Our work addresses the question of obtaining pre-
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fixes for prefix-based search: we propose to directly feed Researchers have explored modifying actions of con-
into the model checker states as they are encounteremirrent programs to reduce data races [18] by inserting
in live system execution. Using CrystalBall we found locks in an approach that does not employ running static
bugs in code that was previously debugged in MaceMCanalysis at runtime. Approaches that modify state of a
and that we were not able to reproduce using MaceMC'program at runtime include [10, B6]; these approaches
search. Unlike CrystalBall, MaceMC attempts to iden-enforce program invariants or memory consistency with-
tify (likely) violations of liveness properties. On the out computing consequences of changes to the state.
other hand, MaceMC does not support execution steer- .

ing that enables CrystalBall to automatically prevent the/ ~ Conclusions

system from entering an erroneous state. W q h for i ing th i
Canesian absvactof 1] s & techmqu fo overap e PESEIEd & e aomoach for mbrovng e el
proximating state space that treats different state com- Y C . ' SY ' P!
. . . : avoid inconsistencies before they occur, even if they have
ponents independently. The independence idea is also . . . .
. . . not manifested in any previous run. We believe that
present in our consequence prediction, but, unlike over- ) ) . ; N
S . o our approach is the first to give running distributed sys-
approximating analyses, bugs identified by consequence

search are guaranteed to be real with respect to the modtslaeim nodes access to such information about their future.

explored. The idea of disabling certain transitions in 0 make our approach feas@le_, we desugngd and im-
. X . . plemented consequence prediction, an algorithm for se-
state-space exploration appears in partial-order reglucti

o S lectively exploring future states of the system, and de-
POR) [15],[12]. | h : - : : .
(POR) [15],[12]. Our initial investigation suggests t atavelopedatechmque for obtaining consistent information

POR algorithm takes considerably longer than the con- : _
sequence prediction algorithm. The advantage of POF@bOUt the neighborhood of distributed system nodes. Our

o : __.experiments suggest that the resulting system, Crystal-
IS its comple_teness, but completeness is of second Ord‘ﬂall, is effective in finding bugs that are difficult to de-

n .
. . . ?ect by other means, and can steer execution away from
terminate in a reasonable amount of time for state spaces

of distributed system implementations. Inconsistencies at runtime.

Runtime Mechanisms. In the context of operating sys-

tems, researchers have proposed mechanisms that safgﬂ?ferences
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