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Abstract. Motivated by the problem of deciding verification conditions
for the verification of functional programs, we present new decision pro-
cedures for automated reasoning about functional lists. We first show
how to decide in NP the satisfiability problem for logical constraints
containing equality, constructor, selectors, as well as the transitive sub-
list relation. We then extend this class of constraints with operators to
compute the set of all sublists, and the set of objects stored in a list.
Finally, we support constraints on sizes of sets, which gives us the ability
to compute list length as well as the number of distinct list elements.
We show that the extended theory is reducible to the theory of sets
with linear cardinality constraints, and therefore still in NP. This reduc-
tion enables us to combine our theory with other decidable theories that
impose constraints on sets of objects, which further increases the poten-
tial of our decidability result in verification of functional and imperative
software.

1 Introduction

Specifications using high-level data types, such as sets and algebraic data types
have proved effective for describing the behavior of functional and imperative
programs [12, 26]. Functional lists are particularly convenient and widespread
in both programs and specifications. Efficient decision procedures for reasoning
about lists can therefore greatly help automate software verification tasks.

Theories that allow only constructing and decomposing lists correspond to
term algebras and have efficient decision procedures for quantifier-free frag-
ments [1, 15]. However, these theories do not support list concatenation or sub-
lists. Adding list concatenation makes the logic difficult because it subsumes the
existential problem for word equations [7, 11, 17], which has been well-studied
and is known to be difficult.

This motivates us to use as a starting point the logic of lists with a sub-
list (suffix) relation, which can express some (even if not all) of the properties
expressible using list concatenation. We give an axiomatization of this theory
where quantifiers can be instantiated in a complete and efficient way, following
the methodology of local theory extensions [18]. Although local theory extensions
have been applied to term algebras with certain recursive functions [19], they
have not been applied to term algebras in the presence of the sublist operation.

http://cs.nyu.edu/wies
http://swt.informatik.uni-freiburg.de/staff/muniz
http://lara.epfl.ch/~kuncak


2 Thomas Wies, Marco Muñiz, Viktor Kuncak

The general subterm relation in term algebras was shown to be in NP using dif-
ferent techniques [21], without discussion of practical implementation procedures
and without support for set operators. Several expressive logics of linked imper-
ative data structures have been proposed [3, 9, 10, 23]. In these logics, variables
range over graph nodes, as opposed to lists viewed as terms. In other words, the
theories that we consider have an additional extensionality axiom, which ensures
that no two list objects in the universe have identical tail and head. This axiom
has non-trivial consequences on the set of satisfiable formulas and requires a new
decision procedure. Our logic admits reasoning about set-algebraic constraints,
as well as cardinalities of sublist and content sets. Note that the cardinality of
the set of sublists of a list xs can be used to express the length xs. Our result is
particularly interesting given that the theory of concatenation with word length
function is not known to be decidable [4]. Decidable logics that allow reasoning
about length of lists have been considered before [20]. However, our set-algebraic
constraints are strictly more expressive and capture forms of quantification that
are useful for the specification of complex properties.

Contributions. We summarize the contributions of our paper as follows:

– We give a set of local axioms for the theory of lists with sublist relation that
admits an efficient implementation in the spirit of [9, 23] and can leverage
general implementation methods for local theory extensions [5, 6].

– We show how to extend this theory with an operator to compute the longest
common suffix of two lists. We also give local axioms that give the decision
procedure for the extended logic.

– We show how to further extend the theory by defining sets of elements that
correspond to all sublists of a list, and then stating set algebra and size
operations on such sets. Using a characterization of the models of this theory,
we establish that the theory admits a reduction to the logic BAPA of sets
with cardinality constraints [8]. We obtain a decidable logic that supports
reasoning about the contents of lists as well as about the number of elements
in a list.

Impact on verification tools. We have found common functions in libraries
of functional programming languages and interactive theorem provers that can
be verified to meet a detailed specification using our logic. We discuss several
examples in the paper. Moreover, the reduction to BAPA makes it possible to
combine this logic with a number of other BAPA-reducible logics [16, 20, 24, 25].
Therefore, we believe that our logic will be a useful component of verification
tools in the near future.

An extended version of this paper with proofs and additional material is
available as a technical report [22].

2 Examples

We describe our contributions through several examples. In the first two exam-
ples we show how we use our decision procedure to verify functional correctness
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def drop[T](n: Int, xs: List[T]): List[T] = {
if (n ≤ 0) xs
else xs match {

case nil ⇒ nil
case cons(x, ys) ⇒ drop(n−1, ys)

}
} ensuring (zs ⇒ (n < 0 → zs = xs) ∧ (n ≥ 0 ∧ length(xs) < n → zs = nil) ∧

(n ≥ 0 ∧ length(xs) ≥ n → zs � xs ∧ length(zs) = length(xs) − n))

Fig. 1. Function drop that drops the first n elements of a list xs

n > 0 ∧ xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys ∧
(n − 1 ≥ 0 ∧ length(ys) ≥ n − 1 → length(zs) = length(ys) − (n − 1)) →

n ≥ 0 ∧ length(xs) ≥ n → length(zs) = length(xs) − n

Fig. 2. One of the verification conditions for the function drop

of a function written in a functional programming notation similar to the Scala
programming language [14]. In our third example we demonstrate the usefulness
of our logic to increase the degree of automation in interactive theorem proving.
Throughout this section we use the term sublist for a suffix of a list.

Example 1: dropping elements from a list. Our first example, listed in
Figure 1, is the function drop of the List class in the Scala standard library (such
functions also occur in standard libraries for other functional languages, such as
Haskell). The function takes as input an integer number n and a parametrized
functional list xs. The function returns a functional list zs which is the sublist
obtained from xs after dropping the initial n elements.

The ensuring statement specifies the postcondition of the function (a pre-
condition is not required). The postcondition is expressed in our logic FLS2 of
functional lists with sublist sets shown in Figure 8. We consider the third con-
junct of the postcondition in detail: it states that if the input n is a positive
number and smaller than the length of xs then (1) the returned list zs is a sublist
of the input list xs, denoted by zs � xs, and (2) the length of zs is equal to the
length of xs discounting the n dropped elements.

Deciding verification conditions. To verify the correctness of the drop func-
tion, we generate verification conditions and use our decision procedure to decide
their validity. Figure 2 shows one of the generated verification conditions, ex-
pressed in our logic of Functional Lists with Sublist Sets (FLS2). This verification
condition considers the path through the second case of the match expression.

The verification condition can be proved valid using the FLS2 decision proce-
dure presented in Section 7. The theory FLS2 is a combination of the theory FLS

and the theory of sets with linear cardinality constraints (BAPA). Our decision
procedure follows the methodology of [24] that enables the combination of such
set-sharing theories via reduction to BAPA. Figure 3 illustrates how this decision
procedure proves subgoal G2. We first negate the subgoal and then eliminate the
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FLS fragment:
Xs = σ(xs) ∧ Ys = σ(ys) ∧ Zs = σ(zs) ∧
xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys
Projection onto shared sets Xs, Ys, Zs :
Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧ zs length = card(Zs) − 1 ∧
n > 0 ∧ (n − 1 ≥ 0 ∧ ys length ≥ n − 1 → zs length = ys length − (n − 1)) ∧
n ≥ 0 ∧ xs length ≥ n ∧ zs length 6= xs length − n
Projection onto shared sets Xs, Ys, Zs : card(Xs) 6= card(Ys) + 1

Fig. 3. Separated conjuncts for the negated subgoal G2 of the VC in Figure 2
with the projections onto shared sets

length function. For every list xs we encode its length length(xs) using sublist sets
as follows. We introduce a set variable Xs and define it as the set of all sublists of
xs: {l. l � xs}, which we denote by σ(xs). We then introduce an integer variable
xs length that denotes the length of xs by defining xs length = card(Xs) − 1,
where card(Xs) denotes the cardinality of set Xs. Note that we have to subtract
1, since nil is also a sublist of xs. We then purify the resulting formula and sep-
arate it into two conjuncts for the individual fragments. These two conjuncts
are shown in Figure 3. The two separated conjuncts share the set variables Xs ,
Ys , and Zs. After the separation the underlying decision procedure of each frag-
ment computes a projection of the corresponding conjunct onto the shared set
variables. These projections are the strongest BAPA consequences that are ex-
pressible over the shared sets in the individual fragments. After the projections
have been computed, we check satisfiability of their conjunction using the BAPA

decision procedure. In our example the conjunction of the two projections is
unsatisfiable, which proves that G2 is valid. In Section 7 we describe how to
construct these projections onto set variables for the FLS2 theory.

Example 2: greatest common suffix. Figure 4 shows our second example, a
Scala function gcs, which takes as input two functional lists xs, ys and their corre-
sponding lengths lxs, lys. This precondition is specified by the require statement.
The function returns a pair (zs,lzs) such that zs is the greatest common suffix of
the two input lists and lzs its length. This is captured by the postcondition. Our
logic provides the operator xs ⊓ ys that denotes the greatest common suffix of
two lists xs and ys. Thus, we can directly express the desired property.

Figure 5 shows one of the verification conditions that are generated for the
function gcs. This verification condition captures the case when the lists xs, ys

are not empty, their lengths are equal, their head elements x, y are equal, and
lz1s is equal to length(xs)-1. The verification condition can again be split into two
subgoals. We focus on subgoal G1. Figure 6 shows the separated conjuncts for
this subgoal and their projections onto the shared set variables Xs , Ys , Zs , and
Z1s . Using the BAPA decision procedure, we can again prove that the conjunction
of the two projections is unsatisfiable.
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def gcs[T](xs: List[T], lxs: Int, ys: List[T], lys: Int): (List[T], Int)
require (length(xs)=lxs ∧ length(ys)=lys) =

(xs,ys) match {
case (nil, ) ⇒ (nil, 0)
case ( , nil) ⇒ (nil, 0)
case (cons(x, x1s), cons(y, y1s)) ⇒

if (lxs > lys) gcs(x1s, lxs−1, ys, lys)
else if (lxs < lys) gcs(xs, lxs, y1s, lys−1)
else {

val (z1s, lz1s) = gcs(x1s, lxs−1, y1s, lys−1)
if (x = y ∧ lz1s = (lxs − 1)) (cons(x, z1s), lz1s+1) else (z1s, lz1s)

}
} ensuring ((zs, lzs) ⇒ length(zs) = lzs ∧ zs = xs ⊓ ys)

Fig. 4. Function gcs that computes the greatest common suffix of two lists

length(xs) = lxs ∧ length(ys) = lys ∧ xs 6= nil ∧ ys 6= nil ∧ lxs = lys ∧ x = y ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ lz1s = lxs − 1 ∧
length(z1s) = lz1s ∧ z1s = xs1 ⊓ y1s ∧ zs = cons(x, z1s) ∧ lzs = lz1s + 1 →

length(zs) = lzs
| {z }

G1

∧ zs = xs ⊓ ys
| {z }

G2

Fig. 5. One of the verification conditions for the function gcs

Example 3: interactive theorem proving. Given a complete specification of
functions such as drop and gcd in our logic, we can use our decision procedure to
automatically prove more complex properties about such functions. For instance,
the function drop is not just defined in the Scala standard library, but also in
the theory List of the Isabelle/HOL interactive theorem prover [13]. Consider the
following property of function drop:

n ≤ m → τ(drop(n, xs)) ⊆ τ(drop(m, xs))

where the expression τ(xs) denotes the content set of a list xs, i.e., τ(xs) =
{head(l). l � xs}. This property corresponds to Lemma set drop subset set drop

stated and proved in the Isabelle theory List. Using the postcondition of function
drop to eliminate all occurrences of this function in Lemma set drop subset set drop

yields the formula shown in Figure 7. This formula belongs to our logic. The proof
of lemma set drop subset set drop that is presented inside the Isabelle theory is not
fully automated, and involves the statement of an intermediate auxiliary lemma.
Using our decision procedure, the main lemma can be proved directly and fully
automatically, without requiring an auxiliary lemma. Our logic is, thus, useful
to increase the degree of automation in interactive theorem proving.
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FLS fragment:
Xs = σ(xs) ∧ Ys = σ(ys) ∧ Zs = σ(zs) ∧ Z1s = σ(z1s) ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ xs 6= nil ∧ x = y ∧ ys 6= nil ∧
z1s = x1s ⊓ y1s ∧ zs = cons(x,z1s)
Projection onto shared sets Xs, Ys , Zs, Z1s :
card(Xs) > 1 ∧ card(Ys) > 1 ∧ card(Zs) > 1 ∧
Z1s ⊆ Zs ∧ card(Zs) = card(Z1s) + 1 ∧
((card(Z1s) = card(Xs) − 1 ∨ card(Z1s) = card(Ys) − 1) → Zs = Xs = Ys)

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧
zs length = card(Zs) − 1 ∧ z1s length = card(Z1s) − 1 ∧
xs length = lxs ∧ ys length = lys ∧ z1s length = lz1s ∧
lxs = lys ∧ lz1s = lxs − 1 ∧ lzs = lz1s + 1 ∧ zs length 6= lzs
Projection onto shared sets Xs, Ys , Zs, Z1s :
card(Z1s) = card(Xs) − 1 ∧ card(Z1s) = card(Ys) − 1 ∧ card(Zs) 6= card(Z1s) + 1

Fig. 6. Separated conjuncts for the negated subgoal G1 of the VC in Figure 5
with projections onto the shared sets

(n < 0 → zsn = xs) ∧ (n ≥ 0 ∧ length(xs) < n → zsn = nil) ∧
(n ≥ 0 ∧ length(xs) ≥ n → zsn � xs ∧ length(zsn) = length(xs) − n) ∧
(m < 0 → zsm = xs) ∧ (m ≥ 0 ∧ length(xs) < m → zsm = nil) ∧
(m ≥ 0 ∧ length(xs) ≥ m → zsm � xs ∧ length(zsm) = length(xs) − m) ∧
n ≤ m → τ (zsn) ⊆ τ (zsm)

Fig. 7. Lemma set drop subset set drop expressed in our logic

3 Logic FLS2 of Functional Lists with Sublists Sets

The grammar of our logic of functional lists with sublist sets is shown in Fig-
ure 8. It supports reasoning about lists built from list constructors and selectors,
sublists, the length of lists, and cardinality and set algebraic constraints over the
sets of sublists of lists σ(l) as well their content sets τ(l).

The remainder of the paper is structured as follows. In Section 5 we first
present the fragment FLS of the logic FLS2 that allows formulas over lists and
sublists, but not sets, cardinalities, or length constraints. We then formally define
the semantics of the logic FLS and give a decision procedure for its satisfiability
problem in Section 6. Finally, in Section 7 we show how to use this decision
procedure for a BAPA reduction that decides the full logic FLS2.

4 Preliminaries

In the following, we define the syntax and semantics of formulas. We also review
the notions of partial structures and local theory extensions from [18].

Sorted logic. We present our problem in sorted logic with equality. A signature
Σ is a tuple (S, Ω), where S is a countable set of sorts and Ω is a countable set of
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F ::= AL | AS | F1 ∧ F2 | F1 ∨ F2 | ¬F

AL ::= TL � TL | TL = TL | TH = TH

TL ::= vL | nil | cons(TH , TL) | tail(TL) | TL ⊓ TL

TH ::= vH | head(TL)

AS ::= BL = BL | BL ⊆ BL | TI = TI | TI < TI

BL ::= sL | ∅ | {TL} | σ(TL) | BL ∪ BL | BL \ BL

BH ::= sH | ∅ | {TH} | τ (TL) | head[BL] | BH ∪ BH | BH \ BH

TI ::= vI | K | TI + TI | K · TI | card(BL) | card(BH) | length(TL)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 8. Logic FLS2 of lists, sublist, sublist sets, list contents, and size constraints

function symbols f with associated arity n ≥ 0 and associated sort s1×· · ·×sn →
s0 with si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant
symbols. We assume that all signatures contain the sort bool and for every other
sort s ∈ S a dedicated equality symbol =s ∈ Ω of sort s × s → bool. Note that
we generally treat predicate symbols of sort s1, . . . , sn as function symbols of
sort s1 × . . .× sn → bool. Terms are built as usual from the function symbols in
Ω and (sorted) variables taken from a countably infinite set X that is disjoint
from Ω. A term t is said to be ground, if no variable appears in t. We denote by
Terms(Σ) the set of all ground Σ-terms.

A Σ-atom A is a Σ-term of sort bool. We use infix notation for atoms built
from the equality symbol. A Σ-formula F is defined via structural recursion
as either one of A, ¬F1, F1 ∧ F2, or ∀x : s.F1, where A is a Σ-atom, F1 and
F2 are Σ-formulas, and x ∈ X is a variable of sort s ∈ S. We typically drop
the sort annotation (both for quantified variables and the equality symbols) if
this does not cause any ambiguity. We use syntactic sugar for Boolean constants
(true, false), disjunctions (F1 ∨ F2), implications (F1 → F2), and existential
quantification (∃x.F1). We define literals and clauses as usual. A clause C is
called flat if no term that occurs in C below a predicate symbol or the symbol
= contains nested function symbols. A clause C is called linear if (i) whenever a
variable occurs in two non-variable terms in C that do not start with a predicate
or the equality symbol, the two terms are identical, and if (ii) no such term
contains two occurrences of the same variable.

Total and partial structures. Given a signature Σ = (S, Ω), a partial Σ-
structure α is a function that maps each sort s ∈ S to a non-empty set α(s)
and each function symbol f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function
α(f) : α(s1) × · · · × α(sn) ⇀ α(s0). If α is understood, we write just t instead
of α(t) whenever this is not ambiguous. We assume that all partial structures
interpret the sort bool by the two-element set of Booleans {0, 1}. We further
assume that all structures α interpret the symbol =s by the equality relation
on α(s). A partial structure α is called total structure or simply structure if it
interprets all function symbols by total functions. For a Σ-structure α where
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Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0

for the Σ0-structure obtained by restricting α to Σ0.

Given a total structure α and a variable assignment β : X → α(S), the
evaluation JtKα,β of a term t in α, β is defined as usual. For a ground term
t we typically write just JtKα. A quantified variable of sort s ranges over all
elements of α(s). From the interpretation of terms the notions of satisfiability,
validity, and entailment of atoms, formulas, clauses, and sets of clauses in total
structures are derived as usual. In particular, we use the standard interpretations
for propositional connectives of classical logic. We write α, β |= F if α satisfies
F under β where F is a formula, a clause, or a set of clauses. Similarly, we
write α |= F if F is valid in α. In this case we also call α a model of F . The
interpretation JtKα,β of a term t in a partial structure α is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then JtKα,β is undefined if either JtiKα,β

is undefined for some i, or (Jt1Kα,β , . . . , JtnKα,β) is not in the domain of α(f).
We say that a partial structure α weakly satisfies a literal L under β, written
α, β |=w L, if (i) L is an atom A and either JAKα,β = 1 or JAKα,β is undefined, or
(ii) L is a negated atom ¬A and either JAKα,β = 0 or JAKα,β is undefined. The
notion of weak satisfiability is extended to clauses and sets of clauses as for total
structures. A clause C (respectively, a set of clauses) is weakly valid in a partial
structure α if α weakly satisfies α for all variable assignments β. We then call α

a weak partial model of C.

Theories and local theory extensions. A theory T for a signature Σ is
simply a set of Σ-formulas. We consider theories T (M) defined as a set of Σ-
formulas that are valid in a given set of models M, as well as theories T (K)
defined as a set of Σ-formulas that are consequences of a given set of formulas
K. In the latter case, we call K the axioms of the theory T (K) and we often
identify K and T (K).

In what follows, we consider theories that are defined by a set of axioms.
Let Σ0 = (S, Ω0) be a signature and assume that signature Σ1 = (S, Ω0 ∪ Ω1)
extends Σ0 by new function symbols Ω1. We call the function symbols in Ω1

extension symbols and terms starting with extension symbols extension terms.
Now, a theory T1 over Σ1 is an extension of a theory T0 over Σ0, if T1 is
obtained from T0 by adding a set of (universally quantified) clauses K. In the
following, when we refer to a set of ground clauses G, we assume they are over
the signature Σc

1 = (S, Ω0 ∪Ω1∪Ωc) where Ωc is a set of new constant symbols.
Let K be a set of (universally quantified) clauses. We denote by st(K, G) the
set of all ground subterms that appear in K or G and by K[G] the set of all
instantiations of clauses in K where variables appearing below extension terms
have been instantiated by the terms in st(K, G). Then an extension T1 = T0 ∪K
is a local extension if it satisfies condition (Loc):

(Loc) For every finite set of ground clauses G, G ∪ T1 |= false iff there is
no partial Σc

1-structure α such that α|Σ0
is a total model of T0, all

terms in st(K, G) are defined in α, and α weakly satisfies K[G] ∪ G.
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nil : list

cons : data × list → list

tail : list → list

head : list → data

� : list × list → bool

⊓ : list × list → list

Fig. 9. Sorts of function symbols in the signature ΣFLS

αFLS(list)
def

= L
def

= { t ∈ Terms(ΣL) | t : list }
αFLS(data)

def

= D
def

= { t ∈ Terms(ΣL) | t : data }
αFLS(cons)

def

= consL
def

= λ(d, l). cons(d, l)
αFLS(nil)

def

= nil
αFLS(tail)

def

= tailL
def

= λl. if l = nil then nil else l′ where l = cons(d, l′)
αFLS(head)

def

= headL
def

= λl. if l = nil then d1 else d where l = cons(d, l′)
αFLS(�)

def

= λ(l1, l2). l1 �L l2
αFLS(⊓)

def

= λ(l1, l2). l1 ⊓L l2

Fig. 10. The canonical model αFLS of functional lists with sublists

5 Logic FLS of Functional Lists with Sublists

We now define the logic of functional lists with sublists (FLS) and its accompany-
ing theory. The logic FLS is given by all quantifier-free formulas over the signature
ΣFLS = (SFLS, ΩFLS). The signature ΣFLS consists of sorts SFLS = {bool, list, data}
and function symbols ΩFLS = {nil, cons, head, tail,⊓,�}. The sorts of the function
symbols in ΩFLS are shown in Figure 9. We use infix notation for the symbols ⊓
and �.

The theory of functional lists with sublist relationship TFLS is the set of all
formulas in FLS that are true in the canonical model of lists. We denote this
canonical model by αFLS. The structure αFLS is the term algebra generated by
the signature ΣL = (SFLS, {cons, nil, d1, d2, . . . }), where d1, d2, . . . are infinitely
many constant symbols of sort data. The complete definition of αFLS is given in
Figure 10. The canonical model interprets the sort list as the set of all ΣL-terms
of sort list. We denote this set by L. Likewise, the sort data is interpreted as the
set of all ΣL-terms of sort data. We denote this set by D. The function symbols
cons and nil are interpreted as the corresponding term constructors. The function
symbols head and tail are interpreted as the appropriate selectors headL and tailL.
The predicate symbol � is interpreted as the sublist relation �L⊆ L×L on lists.
The sublist relation is defined as the inverse of the reflexive transitive closure of
the tail selector function:

l1 �L l2
def

⇐⇒ (l2, l1) ∈ { (l, tailL(l)) | l ∈ L }∗

The relation �L is a partial order on lists. In fact, it induces a meet-semilattice
on the set L. We denote by ⊓L the meet operator of this semilattice. Given two
lists l1 and l2, the list l1 ⊓L l2 denotes the greatest common suffix of l1 and l2.
The structure αFLS interprets the function symbol ⊓ as the operator ⊓L.

We further define the theory of all finite substructures of αFLS. Let ΣFLSf

be the signature ΣFLS without the function symbol cons and let αFLSf be the
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structure αFLS restricted to the signature ΣFLSf . We call a finite subset L of L

sublist closed if for all l ∈ L, l′ ∈ L, l′ �L l implies l′ ∈ L. For a finite sublist
closed subset L of L, the structure αL is the finite total substructure of αL induced
by the restricted support sets αL(list)

def

= L and αL(data)
def

= { headL(l) | l ∈ L }.
We denote by MFLSf the set of all such finite total substructures αL of αFLSf .
The theory TFLSf is the set of all FLS formulas that are true in all structures
MFLSf .

6 Decision Procedure for FLS

In the following, we show that the theory TFLS is decidable. For this purpose we
reduce the decision problem for TFLS to the decision problem of the theory TFLSf .
We then give a finite first-order axiomatization of the theory TFLSf and show that
it is a local theory extension. In total, this implies that deciding satisfiability of
a ground formula F with respect to the theory TFLS can be reduced to deciding
satisfiability of F conjoined with finitely many ground instances of the first-order
axioms of TFLSf .

Reducing FLS to FLSf. We first note that satisfiability of an FLS formula
F in the canonical model can be reduced to checking satisfiability in the finite
substructures, if the function symbol cons does not occur in F .

Proposition 1. Let F be a quantifier-free ΣFLSf -formula. Then F is satisfiable
in αFLS if and only if F is satisfiable in some structure α ∈ MFLSf .

We can now exploit the fact that, in the term algebra αFLS, the constructor
consL is uniquely determined by the functions headL and tailL. Let F be an FLS

formula. Then we can eliminate an occurrence F (cons(td, tl)) of function symbol
cons in a term of F by rewriting F (cons(td, tl)) into:

x 6= nil ∧ head(x) = td ∧ tail(x) = tl ∧ F (x)

where x is a fresh variable of sort list that does not appear elsewhere in F . Let
elimcons(F ) be the formula that results from rewriting recursively all appear-
ances of function symbol cons in F . Clearly, in the canonical model αFLS, the
formulas F and elimcons(F ) are equisatisfiable. Thus, with Proposition 1 we can
conclude.

Lemma 2. Let F be an FLS formula. Then F is satisfiable in αFLS if and only
if elimcons(F ) is satisfiable in some structure α ∈ MFLSf .

Axiomatizing FLSf. We next show that there exists a first-order axiomatiza-
tion KFLSf of the theory TFLSf . The axioms KFLSf are given in Figure 11. The free
variables appearing in the formulas are implicitly universally quantified.

Lemma 3. The axioms KFLSf are sound, i.e., for all α ∈ MFLSf , α |= KFLSf .



Deciding Functional Lists with Sublist Sets 11

Pure: head(x) = head(y) ∧ tail(x) = tail(y) → x = y ∨ x = nil ∨ y = nil

NoCycle1: nil � x UnfoldL: tail(x) � x

NoCycle2: tail(x) = x → x = nil UnfoldR: x � y → x = y ∨ x � tail(y)

Refl: x � x GCS1: x ⊓ y � x

Trans: x � y ∧ y � z → x � z GCS2: x ⊓ y � y

AntiSym: x � y ∧ y � x → x = y GCS3: z � x ∧ z � y → z � x ⊓ y

Total: y � x ∧ z � x → y � z ∨ z � y

Fig. 11. First-order axiomatization KFLSf of the theory TFLSf

As a prerequisite for proving completeness of the axioms, we next show that
the finite models of the axioms KFLSf are structurally equivalent to the finite
substructures of the canonical model of functional lists.

Proposition 4. Every finite model of KFLSf is isomorphic to some structure in
MFLSf .

Locality of FLSf. We will now prove that the theory KFLSf can be understood
as a local theory extension and, at the same time, prove that KFLSf is a complete
axiomatization of the theory TFLSf .

In what follows, the signature ΣFLSf is the signature of the theory extension
KFLSf . We also have to determine the signature Σ0 of the base theory T0 by
fixing the extension symbols. We treat the function symbols Ωe

def

= {head, tail,⊓}
as extension symbols, but the sublist relation � as a symbol in the signature
of the base theory, i.e. Σ0

def

= (SFLS, {nil,�}). The base theory itself is given by
the axioms that define the sublist relation, but that do not contain any of the
extension symbols, i.e., T0

def

= {NoCycle1, Refl, Trans, AntiSym, Total}. We further
denote by Ke

def

= KFLSf \ T0 the extension axioms.
We now show that KFLSf = T0 ∪ Ke is a local theory extension. As in the

definition of local theory extensions in Section 4, for a set of ground clauses G, we
denote by Ke[G] all instances of axioms Ke where the variables occurring below
extension symbols Ωe are instantiated by all ground terms st(Ke, G) that appear
in Ke and G. Furthermore, we denote by Σc

FLSf the signature ΣFLSf extended with
finitely many new constant symbols Ωc.

Lemma 5. For every finite set of Σc
FLSf ground clauses G, if α is a partial

Σc
FLSf-structure such that α|Σ0

is a total model of T0, all terms in st(Ke, G) are
defined in α, and α weakly satisfies Ke[G] ∪ G then there exists a finite total
Σc

FLSf-structure that satisfies KFLSf ∪ G.

We sketch the proof of Lemma 5. Let α be a partial Σc
FLSf-structure as re-

quired in the lemma. We can obtain a finite partial substructure α′ from α by
restricting the interpretations of sorts data and list to the elements that are used
in the interpretations of the ground terms st(Ke, G). Then α′ is still a total model
of T0 and still weakly satisfies Ke[G]∪G, since all axioms in KFLSf are universal.
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We can then complete α′ to a finite total model of KFLSf ∪G as follows. First, for
every u ∈ α′(list) where α′(head) is not defined, we can extend α′(data) by a fresh
element du and define α′(head)(u) = du. Now, let u ∈ α′(list) such that α(tail) is
not defined on u. If u = α′(nil), we define α′(tail)(u) = u. Otherwise, from the fact
that α′ satisfies axioms NoCycle1, AntiSym, and Total we can conclude that there
exists a maximal element v ∈ α′(list) \ {u} such that (v, u) ∈ α′(�). However,
we cannot simply define α′(tail)(u) = v. The resulting structure would poten-
tially violate axiom Pure. Instead, we extend α′(list) with a fresh element w and
α′(data) with a fresh element dw, and define: α′(head)(w) = dw, α′(tail)(w) = v,
and α′(tail)(u) = w. We further extend the definition of α′(�) for the newly
added element w, as expected. The completion of α′(⊓) to a total function is
then straightforward.

From Lemma 5 we can now immediately conclude that the theory KFLSf

satisfies condition (Loc). Completeness of the axioms follows from Proposition 4
and Lemma 5.

Theorem 6. KFLSf is a local theory extension of the theory T0.

Theorem 7. KFLSf is an axiomatization of the theory TFLSf , i.e., T (KFLSf) =
TFLSf .

Deciding FLS. We now describe the decision procedure for deciding satisfia-
bility of FLS formulas. Given an FLS input formula F , the decision procedure
proceeds as follows: (1) compute F̂ = elimcons(¬F ), replace all variables in F̂

with fresh constant symbols, and transform the resulting formula into a set of
ground clauses G; and (2) use Theorem 6 and the reduction scheme for rea-
soning in local theory extensions [18], to reduce the set of clauses KFLSf ∪ G

to an equisatisfiable formula in the Bernays-Schönfinkel-Ramsey class, which is
decidable. The reduction scheme computes the set of clauses T0 ∪Ke[G]∪G and
then eliminates all occurrences of extension functions Ωe in literals of clauses in
this set. The resulting set of clauses contains only universally quantified vari-
ables, constants, relation symbols, and equality, i.e., it belongs to the Bernays-
Schönfinkel-Ramsey class. Soundness and completeness of the decision procedure
follows from Lemma 2, Theorems 6 and 7, and [18, Lemma 4].

Complexity. For formulas in the Bernays-Schönfinkel-Ramsey class that have
a bounded number of universal quantifiers, the satisfiability problem is known to
be NP-complete [2, page 258]. The only quantified variables appearing in the set
of clauses obtained after the reduction step of the decision procedure are those
that come from the axioms in KFLSf , more precisely, the axioms in T0 and the
(partial) instantiations of the axioms in Ke. In fact, we can write the clauses for
these axioms in such a way that they use exactly 3 quantified variables. Finally,
from the parametric complexity considerations in [18] follows that the size of the
set of clauses obtained in the final step of our decision procedure is polynomial
in the size of the input formula. It follows that the satisfiability problem for FLS

is decidable in NP. NP-hardness follows immediately from the fact that FLS can
express arbitrary propositional formulas.

Theorem 8. The decision problem for the theory TFLS is NP-complete.
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7 Extension with Sets of Sublists and Content Sets

We next show decidability of the logic that extends FLS with constraints on sets
of sublists and the contents of lists. We do this by reducing the extended logic to
constraints on sets. For this we need a normal form of formulas in our logic. To
obtain this normal form, we start from partial models of FLS, but refine them
further to be able to reduce them to constraints on disjoint sets. We then give a
BAPA reduction [24] for each of these refined models.

Predecessor-Refined Partial Structures. Our normal form of an FLS for-
mula F is given by a disjunction of certain partial models α of KFLSf . We call
these models predecessor-refined partial models.

Definition 9. α is a predecessor-refined partial (PRP) structure if it is a partial
substructure of a structure in MFLSf and the following conditions hold in α

1. � is totally defined on α(list)
2. for all x, y ∈ α(list), (x ⊓ y) ∈ α(list). Moreover, if x, y, (x ⊓ y) are three

distinct elements, then there exists x1 ∈ α(list) such that x1 � x and
tail(x1) = (x ⊓ y).

3. for all x, y ∈ α(list), if x 6= y and tail(x) and tail(y) are defined and equal,
then both head(x) and head(y) are defined.

With each PRP structure α we associate the conjunction of literals that are
(strongly) satisfied in α. We call this formula a PRP conjunction.

Theorem 10. Each FLS formula is equivalent to an existentially quantified fi-
nite disjunction of PRP conjunctions.

We can compute the PRP structures for an FLS formula F by using a simple
modification of the decision procedure for FLS presented in Section 6: instead
of instantiating the axioms Ke of the theory extension only with the ground
subterms st(Ke, G) appearing in the extension axioms Ke and the clauses G

generated from F , we instantiate the axioms with a larger set of ground terms
Ψ defined as follows:

Ψ0 = st(Ke, G) ∪ { t1 ⊓ t2 | t1, t2 ∈ st(Ke, G) }

Ψ = Ψ0 ∪ { head(t) | t ∈ Ψ0 } ∪ { pre(t1, t2), tail(pre(t1, t2)) | t1, t2 ∈ Ψ0 }

Here pre is a fresh binary function symbol, which we introduce as a Skolem
function for the existential variable x1 in Property 2 of PRP structures, i.e., we
constrain pre using the following axiom:

Pre : ∀xy. x 6= y ∧ x 6= x ⊓ y ∧ y 6= x ⊓ y → pre(x, y) � x ∧ tail(pre(x, y)) = x ⊓ y

The PRP structures for F are then given by the partial models of T0 ∪ (Ke ∪
{Pre})[Ψ ] ∪ G in which all terms in Ψ and � are totally defined. These partial
models can be computed using a tool such as H-PILoT [5].
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Input: a PRP structure α. Output: a set constraint Gα.
Step 1: Define the relation �1 as irreflexive transitive reduct of � without

the tail relation. Formally, for all x, y ∈ α(list), define x �1 y iff all of the
following conditions hold: (1) x � y, (2) x 6= y, (3) tail(y) is undefined, and
(4) there is no z in α(list) such that x, y, z are distinct, x � z, and z � y.

Step 2: Introduce sets Sx,y with the meaning Sx,y = (σ(y) \ σ(x)) \ {y} and
define Segs = {Sx,y | x �1 y}.

Step 3: Generate the conjunction Ĝα of the following constraints:
1. σ(nil) = {nil}
2. σ(y) = {y} ∪ σ(x), for each x, y such that α satisfies tail(y) = x

3. σ(y) = {y} ∪ Sx,y ∪ σ(x), for each x, y such that α satisfies x �1 y

4. disjoint((S)S∈Segs, ({x})x∈α(list))

Step 4: Existentially quantify over all Segs variables in Ĝα. If the goal is to
obtain a formula without Segs variables, replace each variable Sx,y with
(σ(y) \ σ(x)) \ {y}.

Step 5: Return the resulting formula Gα.

Fig. 12. Generation of set constraints from a PRP structure

Constraints on Sets of Sublists. Define σ(y) = {x. x � y}. Our goal
is to show that extending FLS with the σ( ) operator and the set alge-
bra of such sets yields in a decidable logic. To this extent, we consider an
FLS formula F with free variables x1, . . . , xn and show that the defined re-
lation on sets ρ = {(σ(x1), . . . , σ(xn)). F (x1, . . . , xn)} is definable as ρ =
{(s1, . . . , sn). G(s1, . . . , sn)} for some quantifier-free BAPA [8] formula G. By
Theorem 10, it suffices to show this property when F is a PRP conjunction,
given by some PRP structure α. Figure 12 shows the generation of set con-
straints from a PRP structure. By replacing each σ(x) with a fresh set variable
sx in the resulting constraint we obtain a formula in set algebra. We can check
the satisfiability of such formulas following the algorithms in [8].

Among the consequences of this reduction is NP-completeness of a logic con-
taining atomic formulas of FLS, along with formulas s = σ(x), set algebra ex-
pressions containing ⊆,∩,∪, \, = on sets, and the cardinality operator card(s)
that computes the size of the set s along with integer linear arithmetic con-
straints on such sizes. Because the length of the list x is equal to card(σ(x))− 1,
this logic also naturally supports reasoning about list lengths. We note that
such a logic can also support a large class of set comprehensions of the form
S = {x. F (x, y1, . . . , yn)} when the atomic formulas within F are of the form
u � v and at least one atomic formula of the form x � yi occurs positively in
disjunctive normal form of F . Because ∀x.F is equivalent to card({x.¬F}) = 0,
sets give us a form of universal quantification on top of FLS.

Additional Constraints on List Content. We next extend the language of
formulas to allow set constraints not only on the set of sublists σ(x) but also on
the images of such sets under the head function. We define the list content func-
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Input: a PRP structure α and an image constraint C.
Output: a set constraint Cα without head[s] expressions
Step 1: Replace each τ(x) in C with head[σ(x) \ {nil}].
Step 2: Let Pi be all sets of the form {xi} or Sxi,xj

from Figure 12. If s is
a Boolean combination of expressions of the form σ(x), {x}, let J(s) be
such that s =

⋃
i∈J(s) Pi is the decomposition of s into disjoint sets, derived

from set equalities in Figure 12. Then replace each expression head[s] with⋃
i∈J(s) head[Pi].

Step 3: Replace each head[Pi] with a fresh set variable Qi and conjoin the result
with the following constraints on the image sets Qi:
1. card(Qi) ≤ card(Pi)
2. Qi = ∅ → Pi = ∅
3. Qi ∩ Qj = ∅, for each x, y ∈ α(list) such that Pi = {x}, Pj = {y}, x 6= y

and tail(x) = tail(y).
Step 4: Existentially quantify over all Qi and return the resulting formula Cα.

Fig. 13. Eliminating head[s] from image constraints by introducing additional
constraints on top of Figure 12.

tion by τ(x) = head[σ(x) \ {nil}] where we define head[s] = {head(x) | x ∈ s}.
We then obtain our full logic FLS2 shown in Figure 8 that introduces constraints
of the form head[s] = v on top of FLS and constraints on sets of sublists. To
show decidability of this logic, we use techniques inspired by [25] to eliminate
the image constraints. The elimination procedure is shown in Figure 13. We use
the properties of PRP structures that the elements for which tail(xL) = tail(xR)
holds have defined values head(xL) and head(xR). This allows us to enforce suf-
ficient conditions on sets of sublists and sets of their heads to ensure that the
axiom Pure can be enforced. The elimination procedure assumes that we have
head(s) expressions only in the cases where s is a combination of sets of the
form σ(x) and {x}, which ensures that s is a disjoint combination of polyno-
mially many partitions. This restriction is not necessary [25], but is natural in
applications and ensures the membership in NP.

8 Conclusion

We presented a new decidable logic that can express interesting properties of
functional lists and has a reasonably efficient decision procedure. We showed
that this decision procedure can be useful to increase the degree of automation
in verification tools and interactive theorem provers.
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