
On Deciding Functional Lists with Sublist Sets

Thomas Wies1, Marco Muñiz2, andViktor Kuncak3

1 Institute of Science and Technology (IST), Austria
wies@ist.ac.at

2 University of Freiburg, Germany
muniz@informatik.uni-freiburg.de

3 EPFL, Switzerland
viktor.kuncak@epfl.ch

Abstract. Motivated by the problem of deciding verification conditions for the
verification of functional programs, we present new decision procedures for au-
tomated reasoning about functional lists. We first show how to decide in NP the
satisfiability problem for logical constraints containingequality, constructor, se-
lectors, as well as the transitive sublist relation. We thenextend this class of con-
straints with operators to compute the set of all sublists, and the set of objects
stored in a list. Finally, we support constraints on sizes ofsets, which gives us the
ability to compute list length as well as the number of distinct list elements. We
show that the extended theory is reducible to the theory of sets with linear cardi-
nality constraints, and therefore still in NP. This reduction enables us to combine
our theory with other decidable theories that impose constraints on sets of objects,
which further increases the potential of our decidability result in verification of
functional and imperative software.

1 Introduction

Specifications using high-level data types, such as sets andalgebraic data types have
proven effective for describing the behavior of functionaland imperative programs
[13, 25]. Functional lists are particularly convenient andwidespread in both programs
and specifications. Efficient decision procedures for reasoning about lists can therefore
greatly help automate software verification tasks.

Theories that allow only constructing and decomposing lists correspond to term
algebras and have efficient decision procedures for quantifier-free fragments [1, 15].
However, these theories do not support list concatenation or sublists. Adding list con-
catenation makes the logic difficult because it subsumes theexistential problem for
word equations [6,12,18], which has been well-studied and is known to be difficult.

This motivates us to use as a starting point the logic of listswith a sublist (suffix)
relation, which can express some (even if not all) of the properties expressible using
list concatenation. We give an axiomatization of this theory where quantifiers can be
instantiated in a complete and efficient way, following the methodology of local theory
extensions [19]. Although local theory extensions have been applied to term algebras
with certain recursive functions [20], they have not been applied to term algebras in
the presence of the sublist operation. The general subterm relation in term algebras

http://ist.ac.at/~wies
http://swt.informatik.uni-freiburg.de/staff/muniz
http://lara.epfl.ch/~kuncak

2 Thomas Wies, Marco Muñiz, Viktor Kuncak

was shown to be in NP using different techniques [22], without discussion of practical
implementation procedures and without support for set operators. Several expressive
logics of list-like imperative structures have been proposed [3,11]. In these logics, vari-
ables range over graph nodes, as opposed to lists viewed as terms. In other words, the
theories that we consider have an additional extensionality axiom, which ensures that no
two list objects in the universe have identical tail and head. This axiom has non-trivial
consequences on the set of satisfiable formulas and requiresa new decision procedure.

Contributions. We summarize the contributions of our paper as follows:

– We give a set of local axioms for lists with sublist relation that admits efficient im-
plementation in the spirit of [11] and can leverage general implementation methods
for local theory extensions [4].

– We show how to extend this theory with an operator to compute the longest com-
mon suffix of two lists. We also give local axioms that give thedecision procedure
for the extended logic.

– We show how to further extend the theory by defining sets of elements that corre-
spond to all sublists of a list, and then stating set algebra and size operations on such
sets. Using a characterization of the models of this theory,we establish that the the-
ory admits a reduction to the logic BAPA of sets with cardinality constraints [9,10].
We obtain a decidable logic that supports reasoning about the contents of lists as
well as about the number of elements in the list.

Impact on verification tools. We have found common functions in libraries of func-
tional programming languages that can be verified to meet a detailed specification using
our logic. We discuss several examples in the paper. Moreover, the reduction to BAPA
makes it possible to combine this logic with a number of otherBAPA-reducible log-
ics [17, 21, 23, 24]. Therefore, we believe that our logic will be a useful component of
verification tools in the near future.

2 Examples

We describe our contributions through two examples writtenin a notation similar to
the Scala programming language [14]. In each example we showhow we use our de-
cision procedure to verify functional correctness of a Scala function that manipulates
functional lists. Throughout this section we use the term sublist for a suffix of a list.

Example: dropping elements from a list. Our first example, listed in Figure1, is the
functiondrop of theList class in the Scala standard library (such functions also occur in
standard libraries for other functional languages, such asHaskell). The function takes
as input an integer numbern and a parametrized functional listxs. The function returns
a functional listzs which is the sublist obtained fromxs after dropping the initialn
elements.

Theensuring statement specifies the postcondition of the function (a precondition is
not required). The postcondition is expressed in our logicFLS2 of functional lists with
sublist sets shown in Figure8. It states that (1)zs is a sublist of the input listxs, denoted
by zs � xs, and (2) if the inputn is a positive number and smaller than the length ofxs
then the length ofzs is equal to the length ofxs discounting then dropped elements.

On Deciding Functional Lists with Sublist Sets 3

def drop[T](n: Int, xs: List[T]): List[T] returning (zs) = {
if (n ≤ 0) xs
else xs match {

case nil ⇒ nil
case cons(x, ys) ⇒ drop(n−1, ys)

}
} ensuring (zs � xs ∧ (n ≥ 0 ∧ length(xs) ≥ n → length(zs) = length(xs) − n))

Fig. 1: Functiondrop that drops the firstn elements of a listxs

n > 0 ∧ xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys ∧
(n − 1 ≥ 0 ∧ length(ys) ≥ n − 1 → length(zs) = length(ys) − (n − 1)) →

zs � xs
| {z }

G1

∧ (n ≥ 0 ∧ length(xs) ≥ n → length(zs) = length(xs) − n)
| {z }

G2

Fig. 2: One of the verification conditions for the functiondrop

Deciding verification conditions. To verify the correctness of thedrop function, we
generate verification conditions and use our decision procedure to decide their validity.
Figure2 shows one of the generated verification conditions. This verification condition
corresponds to the case whenn is greater than 0 andxs is not the empty list. It is
expressed in our logic of Functional Lists with Sublists andSets (FLS2).

We further split the verification condition into two subgoals G1 andG2 (see Fig-
ure2). Each subgoal corresponds to one of the conjuncts in the postcondition of func-
tion drop. For proving subgoalG1 we only need to reason about lists and sublists, but
not about their lengths. We can prove this subgoal using the decision procedure for the
simpler theory of Functional Lists with Sublists (FLS) that we present in Section6. In
the following, we concentrate on the more interesting subgoal G2.

SubgoalG2 can be proved using theFLS2 decision procedure presented in Sec-
tion 7. The theoryFLS2 is a combination of the theoryFLS and the theory of sets with
linear cardinality constraints (BAPA) [9]. Our decision procedure follows the method-
ology of [23] that enables the combination of such set-sharing theories via reduction
to BAPA. Figure3 illustrates how this decision procedure proves subgoalG2. We first
negate the subgoal and then eliminate the length function. For every listxs we encode
its lengthlength(xs) using sublist sets as follows. We introduce a set variableXs and
define it as the set of all sublists ofxs: Xs = {l. l � xs}. We then introduce an integer
variablexs length that denotes the length ofxs by definingxs length = card(Xs)−1,
wherecard(Xs) denotes the cardinality of setXs . Note that we have to subtract 1,
sincenil is also a sublist ofxs. We then purify the resulting formula and separate it
into two conjuncts for the individual fragments. These two conjuncts are depicted in
Figure3. The two separated conjuncts share the set variablesXs, Ys, andZs . After the
separation the underlying decision procedure of each fragment computes a projection
of the corresponding conjunct onto the shared set variables. These projections are the
strongestBAPA consequence that are expressible over the shared sets. After the projec-
tions have been computed, we check satisfiability of their conjunction using theBAPA
decision procedure. In our example the conjunction of the two projections is unsatis-

4 Thomas Wies, Marco Muñiz, Viktor Kuncak

FLS fragment:
Xs = {l. l � xs} ∧ Ys = {l. l � ys} ∧ Zs = {l. l � zs} ∧
xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys
Projection onto shared sets Xs, Ys , Zs :
Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧ zs length = card(Zs) − 1 ∧
n > 0 ∧ (n − 1 ≥ 0 ∧ ys length ≥ n − 1 → zs length = ys length − (n − 1)) ∧
n ≥ 0 ∧ xs length ≥ n ∧ zs length 6= xs length − n
Projection onto shared sets Xs, Ys , Zs : card(Xs) 6= card(Ys) + 1

Fig. 3: Separated conjuncts for the negated subgoalG2 of the VC in Figure2 with the
projections onto shared sets

def gcs[T](xs: List[T], lxs: Int, ys: List[T], lys: Int): (List[T], Int) returning (zs, lzs) =
require (length(xs)=lxs ∧ length(ys)=lys)

(xs,ys) match {
case (nil,) ⇒ (nil, 0)
case (, nil) ⇒ (nil, 0)
case (cons(x, x1s), cons(y, y1s)) ⇒

if (lxs > lys) gcs(x1s, lxs−1, ys, lys)
else if (lxs < lys) gcs(xs, lxs, y1s, lys−1)
else {

val (z1s, lz1s) = gcs(x1s, lxs−1, y1s, lys−1)
if (x = y ∧ lz1s = (lxs − 1)) (cons(x, z1s), lz1s+1) else (z1s, lz1s)

}
} ensuring (length(zs) = lzs ∧ zs = xs ⊓ ys)

Fig. 4: Functiongcs that computes the greatest common suffix of two lists

fiable, which proves thatG2 is valid. In Section7 we describe how to construct these
projections onto set variables for theFLS2 theory.

Example: greatest common suffix. Figure 4 shows our second example, a Scala
function gcs, which takes as input two functional listsxs, ys and their corresponding
lengthslxs, lys. This precondition is specified by therequire statement. The function
returns a pair (zs,lzs) such thatzs is the greatest common suffix of the two input lists
andlzs its length. This is captured by the postcondition. Our logicprovides the operator
xs ⊓ ys that denotes the greatest common suffix of two listsxs andys. Thus, we can
directly express the desired property. Figure5 depicts two constellations of listsxs, ys,
and their greatest common suffixzs that may arise during the computation ofgcs.

Figure6 shows one of the verification conditions that are generated for the function
gcs. This verification condition captures the case when the lists xs, ys are not empty,
their lengths are equal, their head elementsx, y are equal, andlz1s is equal tolength(xs)-
1. This situation is depicted on the right hand side of Figure5, i.e., in this case the lists
xs andys are identical. The verification condition can again be splitinto two subgoals.
We focus on subgoalG1. Figure7 shows the separated conjuncts for this subgoal and
their projections onto the shared set variablesXs , Ys , Zs, andZ1s . Using theBAPA

On Deciding Functional Lists with Sublist Sets 5

zs

z1sx1sxs

y1sys

tail

tail
tail∗

tail∗

tail∗

z1s,y1s

x1s

zs,ys

xs tail tail∗

Fig. 5: Listsxs, ys and their greatest common suffixzs

length(xs) = lxs ∧ length(ys) = lys ∧ xs 6= nil ∧ ys 6= nil ∧ lxs = lys ∧ x = y ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ lz1s = lxs − 1 ∧
length(z1s) = lz1s ∧ z1s = xs1 ⊓ y1s ∧ zs = cons(x, z1s) ∧ lzs = lz1s + 1 →

length(zs) = lzs
| {z }

G1

∧ zs = xs ⊓ ys
| {z }

G2

Fig. 6: One of the verification conditions for the functiongcs

decision procedure, we can again prove that the conjunctionof the two projections is
unsatisfiable.

3 Logic FLS2 of Functional Lists with Sublists Sets

The grammar of our logic of functional lists with sublist sets is shown in Figure8. It
supports reasoning about lists built from list constructors and selectors, sublists, the
length of lists, and cardinality and set algebraic constraints over the sets of sublists of
listsσ(l) as well their content setsτ(l).

The remainder of the paper is structured as follows. In Section5 we first present the
fragmentFLS of the logicFLS2 that only subsumes formulas over lists and sublists, but
not sets, cardinalities, or length constraints. We then formally define the semantics of
the logicFLS and give a decision procedure for its satisfiability problemin Section6.
Finally, in Section7 we show how to use this decision procedure for aBAPA reduction
that decides the full logicFLS2.

4 Preliminaries

In the following, we define the syntax and semantics of formulas. We further recall the
notions of partial structures and local theory extensions from [19].

Sorted logic. We present our problem in sorted logic with equality. AsignatureΣ is
a tuple(S, Ω), whereS is a countable set of sorts andΩ is a countable set of function
symbolsf with associated arityn ≥ 0 and associated sorts1 . . . sn → s0 with si ∈ S
for all i ≤ n. Function symbols of arity 0 are calledconstant symbols. We assume that
all signatures contain the sortbool. We treat predicates of sorts1, . . . , sn as function
symbols of sorts1×. . .×sn → bool. Terms are built as usual from the function symbols
in Ω and (sorted) variables taken from a countably infinite setX that is disjoint from
Ω. We denote byt : s that termt has sorts. A term t is said to beground, if no

6 Thomas Wies, Marco Muñiz, Viktor Kuncak

FLS fragment:
Xs = {l.l � xs} ∧ Ys = {l. l � ys} ∧ Zs = {l. l � zs} ∧ Z1s = {l. l � z1s} ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ xs 6= nil ∧ x = y ∧ ys 6= nil ∧
z1s = x1s ⊓ y1s ∧ zs = cons(x,z1s)
Projection onto shared sets Xs , Ys, Zs, Z1s :
card(Xs) > 1 ∧ card(Ys) > 1 ∧ card(Zs) > 1 ∧
Z1s ⊆ Zs ∧ card(Zs) = card(Z1s) + 1 ∧
((card(Z1s) = card(Xs) − 1 ∨ card(Z1s) = card(Ys) − 1) → Zs = Xs = Ys)

BAPA fragment:
xs length = card(Xs) − 1 ∧ ys length = card(Ys) − 1 ∧
zs length = card(Zs) − 1 ∧ z1s length = card(Z1s) − 1 ∧
xs length = lxs ∧ ys length = lys ∧ z1s length = lz1s ∧
lxs = lys ∧ lz1s = lxs − 1 ∧ lzs = lz1s + 1 ∧ zs length 6= lzs
Projection onto shared sets Xs , Ys, Zs, Z1s :
card(Z1s) = card(Xs) − 1 ∧ card(Z1s) = card(Ys) − 1 ∧ card(Zs) 6= card(Z1s) + 1

Fig. 7: Separated conjuncts for the negated subgoalG1 of the VC in Figure6 with
projections onto the shared sets

F ::= AL | AS | F1 ∧ F2 | F1 ∨ F2 | ¬F

AL ::= TL � TL | TL = TL | TH = TH

TL ::= vL | nil | cons(TH , TL) | tail(TL) | TL ⊓ TL

TH ::= vH | head(TL)

AS ::= BL = BL | BL ⊆ BL | TI = TI | TI < TI

BL ::= sL | ∅ | {TL} | σ(TL) | BL ∪ BL | BL \ BL

BH ::= sH | ∅ | {TH} | τ (TL) | head[BL] | BH ∪ BH | BH \ BH

TI ::= vI | K | TI + TI | K · TI | card(BL) | card(BH) | length(TL)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 8: LogicFLS2 of lists, sublist, sublist sets, list contents, and size constraints

variable appears int. We denote byTerms(Σ) the set of all groundΣ-terms. AΣ-
formula is built from propositional operations that connect terms of sortbool. We write
∀x : s.F to denote a universally quantified formula where the quantified variable has
sorts (analogously for∃x : s.F). We further define atoms, literals, and clauses as usual.
We denote byFV(F) the set of all variables that occur free inF . The equality symbol
applies only to terms of the same sort. We can assume to have a distinct equality symbol
for each sort of interest, but we use the same symbol= to denote all of them.

Total and partial structures. Given a signatureΣ = (S, Ω), apartial Σ-structureα is
a function that maps each sorts ∈ S to a non-empty setα(s) and each function symbol
f ∈ Ω of sorts1 × · · · × sn → s0 to a partial functionα(f) : α(s1) × · · · × α(sn) ⇀
α(s0). We assume that all partial structures interpret the sortbool by the two-element
set of Booleans{true, false}. A partial structureα is calledtotal structureor simply
structureif it interprets all function symbols by total functions.

Given a total structureα and avariable assignmentβ : X → α(S), the evaluation
JtKα,β of a termt (respectively a formula) inα, β is defined as usual. In particular, we

On Deciding Functional Lists with Sublist Sets 7

use the standard interpretations for the equality symbol and propositional connectives
of classical logic. A quantified variable of sorts ranges over all elements ofα(s). The
notions of satisfiability, validity, and entailment of formulas, clauses, and sets of clauses
in total structures are also defined as usual. We writeα, β |= F if α satisfiesF underβ
whereF is a formula, a clause, or a set of clauses. Similarly, we write α |= F if F is
valid in α. In this case we also callα a modelof F .

The interpretationJtKα,β of a termt in a partial structureα is as for total structures,
except that ift = f(t1, . . . , tn) thenJtKα,β is undefined if eitherJtiKα,β is undefined for
somei, or f ∈ Ω and(Jt1Kα,β , . . . , JtnKα,β) is not in the domain ofα(f). We say that
a partial structureα weakly satisfiesa literalL underβ, written α, β |=w L, if either
JLKα,β is undefined orJLKα,β = true. The notion of weak satisfiability is extended to
clauses and sets of clauses as for total structures.

Theories and local theory extensions.A theoryT for a signatureΣ is simply a set of
Σ-formulas. We consider theoriesT (M) defined as a set ofΣ-formulas that are valid
in a given set of modelsM, as well as theoriesT (K) defined as a set ofΣ-formulas
that are consequences of a given set of formulasK. In the latter case, we callK the
axiomsof the theoryT (K) and we often identifyK andT (K). In particular, we call
K = ∅ theempty theory. Thedecision problemfor a theoryT is to decide whether a
givenΣ-formulaF belongs toT .

In what follows, we consider theories that are defined by a setof axioms. Let
Σ0 = (S, Ω0) be a signature and assume that signatureΣ1 = (S, Ω0 ∪Ω1) extendsΣ0

by new function symbolsΩ1. We call the function symbols inΩ1 extension symbols
and terms starting with extension symbolsextension terms. Now, a theoryT1 overΣ1

is anextensionof a theoryT0 over Σ0, if T1 is obtained fromT0 by adding a set of
(universally quantified) clausesK. In the following, when we refer to a set of ground
clausesG, we assume they are over the signatureΣc

1 = (S, Ω0 ∪ Ω1 ∪ Ωc) whereΩc

is a set of new constant symbols. LetK be a set of (universally quantified) clauses.
We denote byst(K, G) the set of all ground terms that appear inK or G and byK[G]
the set of all instantiations of clauses inK where variables appearing below extension
terms have been instantiated by the terms inst(K, G). Then an extensionT1 = T0 ∪ K
is a local extensionif it satisfies condition(Loc)4:

(Loc) For every finite set of ground clausesG, G ∪ T1 |= false iff there is no
partialΣc

1-structureα such thatα|Σ0
is a total model ofT0, all terms in

st(K, G) are defined inα, andα weakly satisfiesK[G] ∪ G.

5 Logic FLS of Funcional Lists with Sublists

We now define the logic of functional lists with sublists (FLS) and its accompanying
theory. The logicFLS is given by all quantifier-free formulas over the signatureΣFLS =
(SFLS, ΩFLS). The signatureΣFLS consists of sortsSFLS = {bool, list, data} and function
symbolsΩFLS = {nil, cons, head, tail,⊓,�}. The sorts of the function symbols inΩFLS

are shown in Figure9. We use infix notation for the symbols⊓ and�.

4 We here use a weaker notion of locality restricted to finite sets of ground clausesG.

8 Thomas Wies, Marco Muñiz, Viktor Kuncak

nil : list

cons : list × data → list

tail : list → list

head : list → data

� : list × list → bool

⊓ : list × list → list

Fig. 9: Sorts of function symbols in the signatureΣFLS

αFLS(list)
def

= L
def

= { t ∈ Terms(ΣL) | t : list }

αFLS(data)
def

= D
def

= { t ∈ Terms(ΣL) | t : data }

αFLS(cons)
def

= consL
def

= λ(l, d). cons(l, d)

αFLS(nil)
def

= nil

αFLS(tail)
def

= tailL
def

= λl. if l = nil thennil elsel
′ wherel = cons(l′, d)

αFLS(head)
def

= headL
def

= λl. if l = nil thend1 elsed wherel = cons(l′, d)

αFLS(�)
def

= λ(l1, l2). l1 �L l2

αFLS(⊓)
def

= λ(l1, l2). l1 ⊓L l2

Fig. 10: The canonical modelαFLS of functional lists with sublists

The theory of functional lists with sublist relationshipTFLS is the set of all for-
mulas in FLS that are true in the canonical model of lists. We denote this canoni-
cal model byαFLS. The structureαFLS is the term algebra generated by the signature
ΣL = (SFLS, {cons, nil, d1, d2, . . . }), whered1, d2, . . . are infinitly many constant sym-
bols of sortdata. The complete definition ofαFLS is given in Figure10. The canonical
model interprets the sortlist as the set of allΣL-terms of sortlist. We denote this set by
L. Likewise, the sortdata is interpreted as the set of allΣL-terms of sortdata. We denote
this set byD. The function symbolscons andnil are interpreted as the corresponding
term constructors. The function symbolshead andtail are interpreted as the appropriate
selectorsheadL andtailL. The predicate symbol� is interpreted as the sublist relation
�L⊆ L × L on lists. The sublist relation is defined as the reflexive transitive closure of
the tail selector function:

l1 �L l2
def

⇐⇒ (l1, l2) ∈ { (l, tailL(l)) | l ∈ L }∗

The relation�L is a partial order on lists. In fact, one can show more.

Proposition 1. The relation�L induces a meet-semilattice on the setL.

We denote by⊓L the meet operator of the semilattice induced by�L. Given two listsl1
andl2, the list l1 ⊓L l2 denotes the greatest common suffix ofl1 andl2. The structure
αFLS interprets the function symbol⊓ as the operator⊓L.

We further define the theory of all finite substructures ofαFLS. Let ΣFLSf be the
signatureΣFLS without the function symbolcons and letαFLSf be the structureαFLS

restricted to the signatureΣFLSf. We defineMFLSf to be the set of all finite total sub-
structures ofαFLSf. The theoryTFLSf is the set of allFLS formulas that are true in all
structuresMFLSf.

On Deciding Functional Lists with Sublist Sets 9

6 Decision Procedure forFLS

In the following, we show that the theoryTFLS is decidable. For this purpose we reduce
the decision problem forTFLS to the decision problem of the theoryTFLSf. We then give
a finite first-order axiomatization of the theoryTFLSf and show that it is a local theory ex-
tension of the empty theory. In total, this implies that deciding satisfiability of a ground
formulaF with respect to the theoryTFLS can be reduced to deciding satisfiability ofF
conjoined with finitely many ground instances of the first-order axioms ofTFLSf.

6.1 ReducingFLS to FLSf

We first note that satisfiability of anFLS formula F in the canonical model can be
reduced to checking satisfiability in the finite substructures, if the function symbolcons
does not occur inF .

Proposition 2. LetF be a quantifier-freeΣFLSf-formula. ThenF is satisfiable inαFLS

if and only ifF is satisfiable in some structureα ∈ MFLSf.

The proof of Proposition2 is similar to the proof of [7, Theorem 2].
We can now exploit the fact that, in the term algebraαFLS, the constructorconsL is

uniquely determined by the functionsheadL andtailL. Let F be anFLS formula. Then
we can eliminate an occurrenceF (cons(td, tl)) of function symbolcons in a term of
F by rewritingF (cons(td, tl)) into:

x 6= nil ∧ head(x) = td ∧ tail(x) = tl ∧ F (x)

where x is a fresh variable of sortlist that does not appear elsewhere inF . Let
elim-cons(F) be the formula that results from rewriting recursively all appearances
of function symbolcons in F . Clearly, in the canonical modelαFLS, the formulasF
andelim-cons(F) are equisatisfiable. Thus, with Proposition2 we can conclude.

Lemma 3. Let F be an FLS formula. ThenF is satisfiable inαFLS if and only if
elim-cons(F) is satisfiable in some structureα ∈ MFLSf.

6.2 Axiomatizing FLSf

We next show that there exists a first-order axiomatizationKFLSf of the theoryTFLSf that
is a local theory extension of the empty theory. The axiomsKFLSf are given in Figure11.
The free variables appearing in the formulas are implicitlyuniversally quantified. We
now explain each of these axioms and argue their soundness, i.e., that each axiom is
true in the canonical modelαFLS.

The axiomPure is a logical consequence of the following formula, which is true in
the canonical modelαFLS: ∀x. cons(head(x), tail(x)) = x ∨ nil = x. Hence,Pure is
true in all finite total substructures ofαFLS. The axiomNil expresses that all lists have
nil as a sublist. This axiom is true because all lists are constructed fromnil. The axioms
Refl, Trans, andAntiSym express that� is a partial order. These axioms follow from
Proposition1. The axiomTotal expresses the fact that, for a fixed listx, all sublists of

10 Thomas Wies, Marco Muñiz, Viktor Kuncak

Pure: head(x) = head(y) ∧ tail(x) = tail(y) → x = y ∨ x = nil ∨ y = nil

Nil: nil � x UnfoldL: tail(x) � x

Refl: x � x UnfoldR: x � y → x = y ∨ x � tail(y)

Trans: x � y ∧ y � z → x � z GCS1: x ⊓ y � x

AntiSym: x � y ∧ y � x → x = y GCS2: x ⊓ y � y

Total: y � x ∧ z � x → y � z ∨ z � y GCS3: z � x ∧ z � y → z � x ⊓ y

Fig. 11: First-order axiomatizationKFLSf of the theoryTFLSf

x are totally ordered by the sublist relation. This axiom follows from the definition of
�L as the reflexive transitive closure of a functional relation. The axiomsUnfoldL and
UnfoldR express that, by applyingtail to either side of the sublist relation, we stay in
the sublist relation. Finally, the axiomsGCS1, GCS2, andGCS3 express that⊓ is the
greatest lower bound operator of the partial order�. These axioms follow from the
definition of⊓L and Proposition1.

Lemma 4. The axiomsKFLSf are sound, i.e., for allα ∈ MFLSf, α |= KFLSf.

As a prerequisite for proving completeness of the axioms, wenext show that the
finite models of the axiomsKFLSf are structurally equivalent to the finite substructures
of the canonical model of functional lists.

Proposition 5. Every finite model ofKFLSf is isomorphic to some structure inMFLSf.

The proof is in AppendixB.1.

6.3 FLSf as a Local Theory Extension

We will now prove that the theory induced byKFLSf is a local theory extension of the
empty theory and, at the same time, prove thatKFLSf is a complete axiomatization of
the theoryTFLSf.

In what follows, the signatureΣFLSf is the signature of the theory extensionKFLSf.
We also have to determine the signature of the base theory by fixing the extension
symbols. We treat the function symbolsΩe

def

= {head, tail,⊓} as extension symbols,
but the sublist relation� as a symbol in the signature of the base theory. As in the
definition of local theory extensions in Section4, for a set of ground clausesG, we
denote byKFLSf[G] all instances of axiomsKFLSf where the variables occurring below
extension symbolsΩe are instantiated by all ground termsst(KFLSf, G) that appear in
KFLSf andG. Furthermore, we denote byΣc

FLSf the signatureΣFLSf extended with finitely
many new constant symbolsΩc.

Lemma 6. For every finite set ofΣc
FLSf ground clausesG, if α is a partial Σc

FLSf-
structure such thatα(�) is total, all terms inst(KFLSf, G) are defined inα, and α
weakly satisfiesKFLSf[G]∪G then there exists a finite totalΣc

FLSf-structure that satisfies
KFLSf ∪ G.

On Deciding Functional Lists with Sublist Sets 11

We sketch the proof of Lemma6. Let α be a partialΣc
FLSf-structure as required

in the lemma. We can obtain a finite partial substructureα′ from α by restricting the
interpretations of sortsdata andlist to the elements that are used in the interpretations
of the ground termsst(KFLSf, G). Thenα′ still weakly satisfiesKFLSf[G] ∪ G, since all
axioms inKFLSf are universal. We can then completeα′ to a finite total model ofKFLSf∪
G as follows. First, for everyu ∈ α′(list) whereα′(head) is not defined, we can extend
α′(data) by a fresh elementdu and defineα′(head)(u) = du. Now, letu ∈ α′(list) such
thatα(tail) is not defined onu. If u = α′(nil), we defineα′(tail)(u) = u. Otherwise,
from the fact thatα′ satisfies axiomsNil, AntiSym, andTotal we can conclude that there
exists a maximal elementv ∈ α′(list) \ {u} such that(v, u) ∈ α′(�). However, we
cannot simply defineα′(tail)(u) = v. The resulting structure would potentially violate
axiomPure. Instead, we extendα′(list) with a fresh elementw andα′(data) with a fresh
elementdw, and define:α′(head)(w) = dw, α′(tail)(w) = v, andα′(tail)(u) = w. We
further extend the definition ofα′(�) for the newly added elementw, as expected. The
completion ofα′(⊓) to a total function is then straightforward.

From Lemma6 we can now immediately conclude that the theoryKFLSf satisfies
condition (Loc), where the base theoryT0 is given by the empty theory.

Theorem 7. KFLSf is a local theory extension of the empty theory.

Similarly, from Proposition5 and Lemma6, we can conclude that the axiomsKFLSf

are complete.

Theorem 8. KFLSf is an axiomatization of the theoryTFLSf, i.e.,T (KFLSf) = TFLSf.

6.4 DecidingFLS

Following the reduction scheme for reasoning in local theory extensions [5,19], we can
now give a decision procedure that reduces the decision problem of the theoryTFLS

to the satisfiability problem of the Bernays-Schönfinkel-Ramsey class. The decision
procedure is depicted in Figure12.

Soundness and completeness of the decision procedure follow from Lemma3, The-
orems7 and8, and [19, Lemma 4]. Note that the formulâFo obtained in step 4 is indeed
in the Bernays-Schönfinkel-Ramsey class, sinceF̂0 contains only relation symbols and
equality, and all quantifiers are universal.

Complexity. For formulas in the Bernays-Schönfinkel-Ramsey class thathave a
bounded number of universal quantifiers, the satisfiabilityproblem is known to be NP-
complete [2, page 258]. The only quantified variables appearing in the formulaF̂o ob-
tained in step 4 are those inK0. In fact, we can writeK0 in such a way that it uses
exactly 3 quantified variables. Furthermore, the size of theformulaF̂0 is polynomial in
the size of the input formulaF .

Theorem 9. The decision problem for the theoryTFLS is NP-complete.

We presented the theoryTFLSf as a local theory extension with extension symbols
head, tail, and⊓. Alternatively, one can also treat the symbol� as an extension symbol,
i.e., in this case the signature of the base theory only contains constant symbols. This

12 Thomas Wies, Marco Muñiz, Viktor Kuncak

Input: anFLS formulaF .
Step 1: ComputeF̂ = elim-cons(¬F), replace all variables in̂F with fresh constant

symbols, and transform the result into a set of ground clausesG.
Step 2: Purify and flatten the set of clausesKFLSf[G]∧G by recursively replacing each

(sub)termt = f(g1, . . . , gn) starting with an extension functionf ∈ Ωe by a fresh
constantct. Then introduce fresh constantsc1, . . . , cn for the argumentsg1, . . . , gn

and add corresponding definitionsf(c1, . . . , cn) = ct andci = gi for all i. The
set of clauses thus obtained has the formK0 ∧ G ∧ D whereD is a set of ground
unit clauses of the formf(c1, . . . , cn) = c, wheref ∈ Ωe, andc1, . . . , cn, c are
constants, andK0, G0 are clauses without function symbols inΩe.

Step 3: Represent each function symbolf ∈ Ωe as a partial but functional relation
rf , i.e., obtainD∗ from D by replacing each literalf(c1, . . . , cn) = c in D by
rf (c1, . . . , cn, c) and introduce corresponding functionality axioms

Fun(D∗) = {
∧n

i=1 ci = di ∧ rf (c1, . . . , cn, c) ∧ rf (d1, . . . , dn, d) → c = d |
f ∈ Ωe, rf (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}

Step 4: Check satisfiability ofF̂0 ≡ K0 ∧ G0 ∧ D∗ ∧ Fun(D∗). If F̂0 is satisfiable,
return “F /∈ TFLS”, otherwise return “F ∈ TFLS”.

Fig. 12: Decision procedure forFLS

gives an alternative decision procedure where the axiomsKFLSf are fully instantiated
by ground terms and the setF̂0 obtained in step 4 is a set of ground clauses. However,
the decision procedure described in Figure12 can take advantage of the more com-
pact representation of formulas in the Bernays-Schönfinkel-Ramsey class by applying
specialized decision procedures for this class, e.g., [16].

7 Extension with Sets of Sublists

We next show decidability of the logic that extendsFLS with constraints on sets of sub-
lists and the contents of lists. We do this by reducing such extended logic to constraints
on sets. For this we need a normal form of formulas in our logic. To show this normal
form, we start fromΣ2

FLSf partial models, but refine them further to be able to reduce
them to constraints on disjoint sets. We then give aBAPA reduction for each of the
refined models.

7.1 Predecessor-Refined Partial Structures

Definition 10. α is a Predecessor-Refined Partial (PRP) Structure if it is a partial sub-
structure of a structure inMFLSf and the following conditions hold inα for all elements
x, y ∈ α(list):

1. x � y is totally defined onα(list)
2. (x ⊓ y) ∈ α(list). Moreover, ifx, y, (x ⊓ y) are three distinct elements, then there

existsx1 ∈ α(list) such thatx1 � x andtail(x1) = (x ⊓ y).

On Deciding Functional Lists with Sublist Sets 13

Input: aPRP structureα. Output: a set constraintGα.
Step 1: Define the relation�1 as irreflexive transitive reduct of� without thetail

relation. Formally, for allx, y ∈ α(list), definex �1 y iff all of the following
conditions hold: (1)x � y, (2) x 6= y, (3) tail(y) is undefined, and (4) there is noz
in α(list) such thatx, y, z are distinct,x � z, andz � y.

Step 2: Introduce setsSx,y with the meaningSx,y = (σ(y) \ σ(x)) \ {y} and define
Segs = {Sx,y | x �1 y}.

Step 3: Generate the conjunction̂Gα of the following constraints:
1. σ(nil) = {nil}
2. σ(y) = {y} ∪ σ(x), for eachx, y such thatα satisfiestail(y) = x
3. σ(y) = {y} ∪ Sx,y ∪ σ(x), for eachx, y such thatα satisfiesx �1 y
4. disjoint((S)S∈Segs, ({x})x∈α(list))

Step 4: Existentially quantify over allSegs variables inĜα. If the goal is to obtain a
formula withoutSegs variables, replace each variableSx,y with (σ(y)\σ(x))\{y}.

Step 5: Return the resulting formulaGα.

Fig. 13: Generation of set constraints from aPRP structure

3. if x 6= y, if tail(x) andtail(y) are defined and equal, then bothhead(x) andhead(y)
are defined.

Definition 11. With eachPRP structureα we associate a conjunction of literals that
are (strongly) satisfied inα. We call this formula aPRP conjunction.

Theorem 12. EachFLS formula is equivalent to an existentially quantified finite dis-
junction ofPRP conjunctions.

The proof of the theorem is in AppendixB.2. We can compute thePRP structures for
an FLS formula by using a simple modification of the decision procedure for FLS in
Figure12.

7.2 Constraints on Sets of Sublists

Defineσ(y) = {x. x � y}. Our goal is to show that extendingFLS with the σ()
operator and the set algebra of such sets yields in a decidable logic. To this extent,
we consider anFLS formula F with free variablesx1, . . . , xn and show that the
defined relation on setsρ = {(σ(x1), . . . , σ(xn)). F (x1, . . . , xn)} is definable as
ρ = {(s1, . . . , sn). G(s1, . . . , sn)} for some quantifier-freeBAPA [10] formulaG. By
Theorem12, it suffices to show this property whenF is a PRP conjunction, given by
somePRP structureα. Figure13 shows the generation of set constraints from aPRP
structure. By replacing eachσ(x) with a fresh set variablesx in the resulting constraint
we obtain a formula in set algebra. We can check the satisfiability of such formulas
following the algorithms in [9, 10] and generate explicit models or perform synthesis
as in [8]. Soundness and completeness of the reduction in Figure13 are proved in Ap-
pendiciesB.3 andB.4. In AppendixA we demonstrate the reduction for the example
shown in Figure3.

Among the consequences of this reduction is NP-completeness of a logic contain-
ing atomic formulas ofFLS, along with formulass = σ(x), set algebra expressions

14 Thomas Wies, Marco Muñiz, Viktor Kuncak

Input: aPRP structureα and an image constraintC.
Output: a set constraintCα withouthead[s] expressions
Step 1: Replace eachτ(x) in C with head[σ(x) \ {nil}].
Step 2: Let Pi be all sets of the form{xi} or Sxi,xj

from Figure 13. If s is a
boolean combination of expressions of the formσ(x), {x}, let J(s) be such that
s =

⋃

i∈J(s) Pi is the decomposition ofs into disjoint sets, derived from set equal-
ities in Figure13. Then replace each expressionhead[s] with

⋃

i∈J(s) head[Pi].
Step 3: Replace eachhead[Pi] with a fresh set variableQi and conjoin the result with

the following constraints on the image setsQi:
1. card(Qi) ≤ card(Pi)
2. Qi = ∅ → Pi = ∅
3. Qi ∩Qj = ∅, for eachx, y ∈ α(list) such thatPi = {x}, Pj = {y}, x 6= y and

tail(x) = tail(y).
Step 4: Existentially quantify over allQi and return the resulting formulaCα.

Fig. 14: Eliminatinghead[s] from image constraints by introducing additional con-
straints on top of Figure13.

containing⊆,∩,∪, \, = on sets, and the cardinality operatorcard(s) that computes the
size of the sets along with integer linear arithmetic constraints on such sizes. Because
the length of the listx is equal tocard(σ(x)) − 1, this logic also naturally supports
reasoning about list lengths. We note that such a logic can also support a large class
of set comprehensions of the formS = {x. F (x, y1, . . . , yn)} when the atomic for-
mulas withinF are of the formu � v and at least one atomic formula of the form
x � yi occurs positively in disjunctive normal form ofF . Because∀x.F is equivalent
to card({x.¬F}) = 0, sets give us a form of universal quantification on top ofFLS.

7.3 Additional Constraints on List Content

We next extend the previous constraints to impose set constraints not only on the
set of sublistsσ(x) but also on the images of such sets under thehead function.
We define the list content function byτ(x) = head[σ(x) \ {nil}] where we define
head[s] = {head(x) | x ∈ s}. We then obtain our full logicFLS2 shown in Figure8
that introduces constraints of the formhead[s] = v on top ofFLS and constraints on
sets of sublists. To show decidability of this logic, we use techniques inspired by [24]
to eliminate the image constraints. The elimination procedure is shown in Figure14.
We use the properties ofPRP structures that the elements for whichtail(xL) = tail(xR)
holds have defined valueshead(xL) andhead(xR). This allows us to enforce sufficient
conditions on sets of sublists and sets of their heads to ensure that the axiomPure can
be enforced. The elimination procedure assumes that we havehead(s) expressions only
in the cases wheres is a combination of sets of the formσ(x) and{x}, which ensures
thats is a disjoint combination of polynomially many partitions.This restriction is not
necessary [24], but is natural in applications and ensures the membership in NP.

We claim that we have thus obtained an interesting point in the design space of
decidable verification logics: the logic can express many interesting properties and has
a reasonably efficient decision procedure.

On Deciding Functional Lists with Sublist Sets 15

References

1. C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability
in the theory of recursive data types.Electronic Notes in Theoretical Computer Science,
174(8):23–37, 2007.

2. E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem. Springer, 1997.
3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-based framework for reasoning

about composite data structures. InCONCUR, 2009.
4. S. Jacobs. Incremental instance generation in local reasoning. InCAV, pages 368–382, 2009.
5. S. Jacobs.Hierarchic Decision Procedures for Verification. PhD thesis, Saarland University,

2010.
6. J. Jaffar. Minimal and complete word unification.J. ACM, 37(1):47–85, 1990.
7. V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. InJoint 10th ESEC

and 13th ACM SIGSOFT FSE, 2005.
8. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. InPLDI,

2010.
9. V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra with Presburger Arith-

metic. J. of Automated Reasoning, 2006.
10. V. Kuncak and M. Rinard. Towards efficient satisfiabilitychecking for Boolean Algebra with

Presburger Arithmetic. InCADE-21, 2007.
11. S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using

SMT solvers. InPOPL, 2008.
12. G. Makanin. The problem of solvability of equations in a free semigroup.Math. USSR

Sbornik, pages 129–198, 1977. (In AMS, (1979)).
13. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape, size and

bag properties via separation logic. InVMCAI, 2007.
14. M. Odersky, L. Spoon, and B. Venners.Programming in Scala: a comprehensive step-by-step

guide. Artima Press, 2008.
15. D. C. Oppen. Reasoning about recursively defined data structures. InPOPL, pages 151–157,

1978.
16. R. Piskac, L. de Moura, and N. Bjørner. Deciding Effectively Propositional Logic using

DPLL and substitution sets.J. of Automated Reasoning, 44(4):401–424, 2010.
17. R. Piskac, P. Suter, and V. Kuncak. On decision procedures for ordered collections. Technical

Report LARA-REPORT-2010-001, EPFL, 2010.
18. W. Plandowski. Satisfiability of word equations with constants is in PSPACE.J. ACM, 51(3),

2004.
19. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. InCADE, pages

219–234, 2005.
20. V. Sofronie-Stokkermans. Locality results for certainextensions of theories with bridging

functions. InCADE, 2009.
21. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with ab-

stractions. InPOPL, 2010.
22. K. N. Venkataraman. Decidability of the purely existential fragment of the theory of term

algebras.Journal of the ACM (JACM), 34(2):492–510, 1987.
23. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set operations. In

FroCoS, 2009.
24. K. Yessenov, V. Kuncak, and R. Piskac. Collections, cardinalities, and relations. InVMCAI,

2010.
25. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data structures. In

PLDI, 2008.

16 Thomas Wies, Marco Muñiz, Viktor Kuncak

A BAPA Reduction for Drop Example

We use the procedure given in Section7 to reduce theFLS conjunct shown in Figure3 to
a BAPA formula over the set variablesXs ,Ys,Zs . Figure15depicts thePRP structures
that are equivalent to theFLS conjunct in Figure3. Every node denotes an element of
sort list. The square nodes denote thenil element.

ys

zsxs tail tail∗

zsysxs tail tail∗tail∗

zsysxs tail tail∗

ys

zs

xs tail

Fig. 15:PRP structures for theFLS conjunct in Figure3

Figure16 shows the set constraints generated from the fourPRP structures. There
is one disjunct for eachPRP in Figure15. In each disjunct we can now replace the sets
σ(xs), σ(ys), andσ(zs) by the shared set variablesXs, Ys , andZs . Existentially quan-
tifying over all remaining variables and applying quantifier elimination to the resulting
disjunction then yields theBAPA formula

Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1 .

This formula is the projection onto the shared set variablesshown in Figure3.

B Additional Proofs

B.1 Proof of Proposition5

Proposition 5. Every finite model ofKFLSf is isomorphic to some structure inMFLSf.

Proof. Let α be a finite model ofKFLSf. In the following, for a function symbolf , we
usefα as a short-hand forα(f). Similarly, we denote bytail∗α the reflexive transitive
closure of the functionα(tail).

First, note that the axiomsRefl, Trans, AntiSym, andGCS1, GCS2, GCS3 ensure
that (α(list),�α,⊓α) is a meet-semilattice. We next prove that�α is the inverse of
tail∗α.

On Deciding Functional Lists with Sublist Sets 17

∃Snil,ys. σ(nil) = {nil} ∧ σ(ys) = {ys} ∪ Snil,ys ∪ σ(nil) ∧ σ(zs) = σ(ys) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,ys = (σ(ys) \ σ(nil)) \ {ys} ∧
disjoint(Snil,ys, {xs}, {ys}, {nil})

∨ ∃Snil,ys. σ(nil) = {nil} ∧ σ(zs) = σ(nil) ∧ σ(ys) = {ys} ∪ Snil,ys ∪ σ(nil) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,ys = (σ(ys) \ σ(nil)) \ {ys} ∧
disjoint(Snil,ys, {xs}, {ys}, {nil})

∨ ∃Szs,ys, Snil,zs. σ(nil) = {nil} ∧ σ(zs) = {zs} ∪ Snil,zs ∧ σ(ys) = {ys} ∪ Szs,ys ∪ σ(zs) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,zs = (σ(zs) \ σ(nil)) \ {zs} ∧
Szs,ys = (σ(ys) \ σ(zs)) \ {ys} ∧ disjoint(Snil,zs, Szs,ys, {xs}, {ys}, {zs} , {nil})

∨ σ(nil) = {nil} ∧ σ(ys) = σ(nil) ∧ σ(zs) = σ(nil) ∧ σ(xs) = {xs} ∪ σ(nil) ∧
disjoint({xs}, {nil})

Fig. 16: Set constraints generated fromPRP structures in Figure15.

For provingtail∗α ⊆�−1
α , let u, v ∈ α(list) such that(u, v) ∈ tail∗α. Then there exist

u1, . . . , un such thatu = u1, v = un, and for all1 ≤ i < n, tailα(ui) = ui+1. If
n = 1 thenu = v and by axiomRefl we immediately havev �α u. If on the other hand
u 6= v then byUnfoldL we have for all1 ≤ i < n, tailα(ui) �α ui and thusui+1 �α ui.
Using axiomTrans we then conclude by induction oni that for all1 < i ≤ n, ui �α u1.
Hence,v �α u.

For proving the other direction, letu ∈ α(list) and letSu = { v | v �α u }. We
show that for allv ∈ Su, (u, v) ∈ tail∗α. Sinceα is finite,Su is finite, as well. Thus, using
axiomsTotal andAntiSym we can construct an enumerationu1, . . . , un of the elements
of Su such that for all1 ≤ i < j ≤ n, uj �α ui but notui �α uj . In particularu1 = u.
We prove by induction oni that for all1 ≤ i ≤ n, (u1, ui) ∈ tail∗α. By reflexivity of
tail∗α we immediately have(u1, u1) ∈ tail∗α. Now assume that(u1, ui) ∈ tail∗α. Since
ui ∈ Su, we know byUnfoldL andTrans thattailα(ui) ∈ Su. Hence,tailα(ui) = uj for
somej ≥ i. By UnfoldR we know that for allj ≥ i, uj = ui or uj �α tailα(ui). Hence,
by construction of the enumeration it follows thatui+1 = tailα(ui). Together with the
induction hypothesis we then conclude(u1, ui+1) ∈ tail∗α.

We can now define a structure isomorphismφ betweenα and some structureα′ ∈
MFLSf, i.e., for each sorts, φ is a structure-preserving bijection fromα(s) to α′(s).
Since all structures agree on the interpretation of sortbool, we first defineφ as the
identity mapping onα(bool). For the sortdata, we letφ be some injective mapping
from α(data) to the set of data termsD, such thatφ(α(nil)) = d1. In order to defineφ
onα(list), note thatα satisfies axiomsNil andAntiSym. Thus, we know that the inverse
of the relationtail∗α is well-founded andα(nil) is the smallest element ofα(list) with
respect to this relation. We can hence recursively defineφ as a mapping fromα(list) to
L as follows:

φ(u) =

{

nil if u = α(nil)

cons(φ(v), φ(w)) if α(tail)(u) = v andα(head)(u) = w

From axiomPure follows thatφ is an injective mapping fromα(list) to L. Now define
the structureα′ as follows: for all sortss ∈ ΣFLSf, let α′(s) = φ(α(s)), and for all
function symbolsf ∈ ΣFLSf of sort s1 × · · · × sn → s, let α′(f)(u1, . . . , un) =

18 Thomas Wies, Marco Muñiz, Viktor Kuncak

φ(α(f)(φ−1(u1), . . . , φ
−1(un))). By constructionα′ ∈ MFLSf andα′ is isomorphic to

α. ⊓⊔

B.2 Proof of Theorem12

Consider aFLS formulaF . A minor modification of the algorithm in Figure12 can
enumerate a finite set of partial substructures of structures in MFLSf for which F is
true. It suffices to show that each partial substructure can be represented by finitely
manyPRP structures.

To ensure that a relation (such asx � y) is defined, we perform case analysis on
whetherx � y holds or not. To ensure the remaining properties, proceed asfollows.

Define anultimately converging tripleto be a triple of distinct elements(xL, y, xR)
such thaty � xL andy � xR. Then define aconverging tripleto be an ultimately
converging triple such that there is no distinct ultimatelyconverging triple(x′

L, y′, x′
R)

with the propertyx′
L � xL, z′ � z, x′

R � xR.
An unresolved converging tripleis a converging triple(xL, y, xR) such thatxL⊓xR

is not defined in the structure. Given an unresolved converging triple (xL, y, xR), we
consider the case 1)xL ⊓ xR = y and the case 2)xL ⊓ xR = z for a fresh elements
of the structure such thatxL ⊓ xR = z andy � z. In each step of this process the
number of unresolved converging triples reduces by one, so we can construct finitely
many structures where all converging triples are resolved.

In the next step, we ensure that for all converging triples(xL, y, xR) we have that
tail(xL) andtail(xR) are defined and equal toy. We call a triple for which this does not
hold non-refined. Given a non-refined triple(xL, y, xR) then it cannot be the case that
both tail(xL) or tail(xR) are undefined, otherwise there would be a converging triple
(tail(xL), y, xR) or (xL, y, tail(xR)). Suppose without loss of generality thattail(xL) is
undefined. We then consider eithertail(xL) = y, or we introducez such thattail(z) = y
andz � xL. By repeating this process at most twice for each non-refinedtriple, we
ensure that all triples are both resolved and refined.

Suppose every converging triple(xL, y, xR) is refined. Then define bothhead(xL)
and head(yL) to be either existing or fresh elements. ThePure axiom ensures
head(xL) 6= head(yL). As a result we obtain a finite set ofPRP structures. By ex-
istentially quantifying over the freshly introduced elements we obtain a disjunction of
PRP conjunctions equivalent toF . ⊓⊔

B.3 Soundness of the Reduction in Figure13

Consider aMFLSf element whose substructure ifα. We show that the generated for-
mulaGα is a consequence of thePRP conjunction corresponding toα. The condition
σ(nil) = {nil} follows from the definition, as well asσ(y) = {y}∪σ(x) for tail(y) = x.
To ensureσ(y) = {y} ∪ Sx,y ∪ σ(x) we defineSx,y = (σ(y) \ σ(x)) \ {y}. It remains
to show that for this definition the setsSx,y and the singleton sets{x} are all disjoint.
By construction{x}∩{y} = ∅ for distinctx, y. Consider two distinct set variablesSx,y

andSu,v. Let z = x⊓ u. Then alsoz = y ⊓ v. By definition ofσ(y) andσ(v), we have
σ(y) ∩ σ(v) = σ(z). We also haveσ(z) ⊆ σ(x) andσ(z) ⊆ σ(u). This implies that

On Deciding Functional Lists with Sublist Sets 19

the setsσ(y) \ σ(x) andσ(v) \ σ(u) are disjoint, soSx,y andSu,v are also disjoint.
Showing that{x} andSu,v are disjoint is similarly straightforward.

B.4 Completeness of the Reduction in Figure13

Given a partial structureα and the values of sets that satisfy the generated formulaGα

in Figure13, we extendα to a finite total structure inMFLSf. To do this, consider each
pairx, y in the domain ofα for whichx �1 y. Letk be the size of the setSx,y. If k = 0
then lettail(y) = x. Otherwise, introducek fresh and distinct list elementsz1, . . . , zk

and extendtail such that

tail(y) = zk ∧

(

k−1
∧

i=1

tail(zi+1) = zi

)

∧ tail(z1) = x

To ensure that the elements are distinct, definehead(zi) = hi wherehi are fresh head
elements. Extend� and ⊓ according totail to ensure that the structure belongs to
MFLSf. This completes the construction showing the completenessof a reduction from
FLS to BAPA.

	On Deciding Functional Lists with Sublist Sets
	Thomas Wies, Marco Muñiz, and Viktor Kuncak

