On Deciding Functional Lists with Sublist Sets

Thomas Wiek, Marco MufiiZ, andViktor Kuncalk®

! Institute of Science and Technology (IST), Austria
W es@st. ac. at
2 University of Freiburg, Germany
muni z@ nf ormati k. uni - frei burg. de
3 EPFL, Switzerland
vi kt or. kuncak@pfl . ch

Abstract. Motivated by the problem of deciding verification conditsofor the
verification of functional programs, we present new decigiococedures for au-
tomated reasoning about functional lists. We first show howaecide in NP the
satisfiability problem for logical constraints containiaguality, constructor, se-
lectors, as well as the transitive sublist relation. We tixetend this class of con-
straints with operators to compute the set of all sublists, the set of objects
stored in a list. Finally, we support constraints on sizeset$, which gives us the
ability to compute list length as well as the number of distirst elements. We
show that the extended theory is reducible to the theorytsfigith linear cardi-
nality constraints, and therefore still in NP. This redantenables us to combine
our theory with other decidable theories that impose cairgs on sets of objects,
which further increases the potential of our decidabilggult in verification of
functional and imperative software.

1 Introduction

Specifications using high-level data types, such as setalgethraic data types have
proven effective for describing the behavior of functiomald imperative programs
[13, 25]. Functional lists are particularly convenient avidespread in both programs
and specifications. Efficient decision procedures for neiagpabout lists can therefore
greatly help automate software verification tasks.

Theories that allow only constructing and decomposing legirrespond to term
algebras and have efficient decision procedures for quemtiBe fragments [1, 15].
However, these theories do not support list concatenatigulolists. Adding list con-
catenation makes the logic difficult because it subsumesxtistential problem for
word equations [6, 12, 18], which has been well-studied arkehown to be difficult.

This motivates us to use as a starting point the logic of Wiste a sublist (suffix)
relation, which can express some (even if not all) of the prtps expressible using
list concatenation. We give an axiomatization of this tlyemhere quantifiers can be
instantiated in a complete and efficient way, following thethodology of local theory
extensions [19]. Although local theory extensions havenkagaplied to term algebras
with certain recursive functions [20], they have not beeplied to term algebras in
the presence of the sublist operation. The general subtelation in term algebras

http://ist.ac.at/~wies
http://swt.informatik.uni-freiburg.de/staff/muniz
http://lara.epfl.ch/~kuncak

2 Thomas Wies, Marco Muiiiz, Viktor Kuncak

was shown to be in NP using different techniques [22], wittdiscussion of practical
implementation procedures and without support for setaipes. Several expressive
logics of list-like imperative structures have been praub8, 11]. In these logics, vari-
ables range over graph nodes, as opposed to lists viewethas 1@ other words, the
theories that we consider have an additional extensigredibm, which ensures that no
two list objects in the universe have identical tail and h8dds axiom has non-trivial
consequences on the set of satisfiable formulas and reguires decision procedure.

Contributions. We summarize the contributions of our paper as follows:

— We give a set of local axioms for lists with sublist relatibiat admits efficient im-
plementation in the spirit of [11] and can leverage genanglémentation methods
for local theory extensions [4].

— We show how to extend this theory with an operator to comphaddngest com-
mon suffix of two lists. We also give local axioms that give tlezision procedure
for the extended logic.

— We show how to further extend the theory by defining sets ahehs that corre-
spond to all sublists of a list, and then stating set algehdss&ze operations on such
sets. Using a characterization of the models of this theegygstablish that the the-
ory admits a reduction to the logic BAPA of sets with cardityatonstraints [9,10].
We obtain a decidable logic that supports reasoning abeutdhtents of lists as
well as about the number of elements in the list.

Impact on verification tools. We have found common functions in libraries of func-
tional programming languages that can be verified to meetzédl elé specification using
our logic. We discuss several examples in the paper. Moretheereduction to BAPA
makes it possible to combine this logic with a number of otB&PA-reducible log-
ics [17,21, 23, 24]. Therefore, we believe that our logid Wwé a useful component of
verification tools in the near future.

2 Examples

We describe our contributions through two examples writtea notation similar to

the Scala programming language [14]. In each example we Sloswwe use our de-
cision procedure to verify functional correctness of a &dahction that manipulates
functional lists. Throughout this section we use the terbiistifor a suffix of a list.

Example: dropping elements from a list. Our first example, listed in Figur® is the
functiondrop of theList class in the Scala standard library (such functions alsardoc
standard libraries for other functional languages, sucHaskell). The function takes
as input an integer numberand a parametrized functional ligt. The function returns
a functional listzs which is the sublist obtained froms after dropping the initiah
elements.

Theensuring statement specifies the postcondition of the function (egméition is
not required). The postcondition is expressed in our I6gi8> of functional lists with
sublist sets shown in Figuge It states that (13s is a sublist of the input lists, denoted
by zs < xs, and (2) if the input is a positive number and smaller than the lengtksof
then the length ofs is equal to the length o& discounting thex dropped elements.

On Deciding Functional Lists with Sublist Sets 3

def drop[T](n: Int, xs: List[T]): List[T] returning (zs) = {
if (n <0)xs
else xs match {
case nil = nil
case cons(x, ys) = drop(n—1, ys)

} ensuring (zs < xs A (n > 0 A length(xs) > n — length(zs) = length(xs) — n))

Fig. 1: Functiondrop that drops the first elements of a lists

n>0 A xs#nil A cons(x,ys) =xs A zS 2Yys A
(n—1>0Alength(ys) > n—1 — length(zs) = length(ys) — (n — 1)) —
zs < xsA(n > 0 Alength(xs) > n — length(zs) = length(xs) — n)

——
Gl G2

Fig. 2: One of the verification conditions for the functidmp

Deciding verification conditions. To verify the correctness of thi¢op function, we
generate verification conditions and use our decision phaeeto decide their validity.
Figure2 shows one of the generated verification conditions. Thidigation condition
corresponds to the case wheris greater than 0 angs is not the empty list. It is
expressed in our logic of Functional Lists with Sublists Seds FLS?).

We further split the verification condition into two subgeél; and G, (see Fig-
ure2). Each subgoal corresponds to one of the conjuncts in thequdition of func-
tion drop. For proving subgoal?; we only need to reason about lists and sublists, but
not about their lengths. We can prove this subgoal usingelesin procedure for the
simpler theory of Functional Lists with SublistsL{S) that we present in Sectidh In
the following, we concentrate on the more interesting sabge.

SubgoalG, can be proved using theLS? decision procedure presented in Sec-
tion 7. The theoryFLS? is a combination of the theo®LS and the theory of sets with
linear cardinality constraint8@PA) [9]. Our decision procedure follows the method-
ology of [23] that enables the combination of such set-sigatieories via reduction
to BAPA. Figure3 illustrates how this decision procedure proves subgsalWe first
negate the subgoal and then eliminate the length functimnevery listxs we encode
its lengthlength(xs) using sublist sets as follows. We introduce a set varidhleand
define it as the set of all sublists xé: Xs = {l.! < xs}. We then introduce an integer
variablezs_length that denotes the length gf by definingzs_length = card(Xs) — 1,
wherecard(Xs) denotes the cardinality of séfs. Note that we have to subtract 1,
sincenil is also a sublist oks. We then purify the resulting formula and separate it
into two conjuncts for the individual fragments. These tvemjancts are depicted in
Figure3. The two separated conjuncts share the set variabded’s, andZs. After the
separation the underlying decision procedure of each feajrromputes a projection
of the corresponding conjunct onto the shared set variablesse projections are the
strongesBAPA consequence that are expressible over the shared setsthifierojec-
tions have been computed, we check satisfiability of thaijuaction using thé8APA
decision procedure. In our example the conjunction of the pwojections is unsatis-

4 Thomas Wies, Marco Muiiiz, Viktor Kuncak

FLS fragment:

Xs={l.l=xs}AYs={l.lXys} AN Zs={l.l S zs} A

xs # nil A cons(x,ys) = Xxs A zs < ys

Projection onto shared sets Xs, Ys, Zs:

Zs CYs N Ys C Xs A card(Xs) > 1 A card(Xs) = card(Ys) + 1

BAPA fragment:

zs_length = card(Xs) — 1 A ys_length = card(Ys) — 1 A zs_length = card(Zs) — 1 A
n>0A (n—1>0 A yslength >n—1— zs.length = ys_length — (n — 1)) A
n>0 A zs_length > n A zs_length # xs_length —n

Projection onto shared sets Xs, Ys, Zs: card(Xs) # card(Ys) + 1

Fig. 3: Separated conjuncts for the negated subgealf the VC in Figure2 with the
projections onto shared sets

def gecs[T](xs: List[T], Ixs: Int, ys: List[T], lys: Int): (List[T], Int) returning (zs, Izs) =
require (length(xs)=Ixs A length(ys)=lys)
(xs,ys) match {
case (nil,) = (nil, 0)
case (., nil) = (nil, 0)
case (cons(x, x1s), cons(y, y1s)) =
if (Ixs > lys) gcs(x1s, Ixs—1, ys, lys)
else if (Ixs < lys) ges(xs, Ixs, y1s, lys—1)
else {
val (z1s, Iz1s) = gcs(x1s, Ixs—1, y1s, lys—1)
if (x=y Alzls = (Ixs — 1)) (cons(x, z1s), Iz1s+1) else (z1s, 1z1s)

} ensuring (length(zs) = Izs A zs = xs 1ys)

Fig. 4: Functionges that computes the greatest common suffix of two lists

fiable, which proves that'; is valid. In Section7 we describe how to construct these
projections onto set variables for theS? theory.

Example: greatest common suffix. Figure 4 shows our second example, a Scala
function gcs, which takes as input two functional lists, ys and their corresponding
lengthsixs, lys. This precondition is specified by thequire statement. The function
returns a pairzs,izs) such thats is the greatest common suffix of the two input lists
andizs its length. This is captured by the postcondition. Our Iqmiavides the operator
xs Mys that denotes the greatest common suffix of two hst@ndys. Thus, we can
directly express the desired property. Figbrepicts two constellations of lists, ys,
and their greatest common suffixthat may arise during the computationgos.

Figure6 shows one of the verification conditions that are generateth€ function
ges. This verification condition captures the case when the %stys are not empty,
their lengths are equal, their head elemenysare equal, and1s is equal tdength(xs)-

1. This situation is depicted on the right hand side of Fidyries., in this case the lists

xs andys are identical. The verification condition can again be sptid two subgoals.
We focus on subgoal. Figure7 shows the separated conjuncts for this subgoal and
their projections onto the shared set variablgs Ys, Zs, and Z1s. Using theBAPA

On Deciding Functional Lists with Sublist Sets 5

tail
Xs Xls."u-”_'t_all‘l* s ail* xs @il XS il
.--:: ---------------- > | O 3@
tail L5 zs\ys z1s,yls
tail
ys yls

Fig.5: Listsxs, ys and their greatest common suffix

length(xs) = Ixs A length(ys) =lys A xs #Znil A ys#nil A Ixs=1IlysAXx=y A

cons(x,x1s) = xs A cons(y,yls) =ys A lzls =Ixs — 1 A

length(z1s) = Izls A zls =xslMyls A zs =cons(x,z1ls) A lzs=Izls+1 —
length(zs) = Izs A zs = xsT1ys

Gy Gao

Fig. 6: One of the verification conditions for the functigss

decision procedure, we can again prove that the conjunofidine two projections is
unsatisfiable.

3 Logic FLS? of Functional Lists with Sublists Sets

The grammar of our logic of functional lists with sublistsét shown in Figure. It
supports reasoning about lists built from list construstand selectors, sublists, the
length of lists, and cardinality and set algebraic constsabver the sets of sublists of
lists o (1) as well their content setgl).

The remainder of the paper is structured as follows. In 8eétive first present the
fragmentFLS of the logicFLS? that only subsumes formulas over lists and sublists, but
not sets, cardinalities, or length constraints. We them#dly define the semantics of
the logicFLS and give a decision procedure for its satisfiability problarsection6.
Finally, in Section7 we show how to use this decision procedure f@&AdA reduction
that decides the full logiELS>.

4 Preliminaries

In the following, we define the syntax and semantics of foamuWWe further recall the
notions of partial structures and local theory extensioosf[19].

Sorted logic. We present our problem in sorted logic with equalitysignatureX’ is

a tuple(S, 2), whereS is a countable set of sorts atfitis a countable set of function
symbolsf with associated arity, > 0 and associated sost ... s, — so with s; € S

for all i < n. Function symbols of arity O are callednstant symboldVe assume that
all signatures contain the sdsbol. We treat predicates of sost, . .., s, as function
symbols of sort; x. . .x s, — bool. Terms are built as usual from the function symbols
in 2 and (sorted) variables taken from a countably infiniteXsdhat is disjoint from

2. We denote byt : s that term¢ has sorts. A term ¢ is said to beground if no

6 Thomas Wies, Marco Muiiiz, Viktor Kuncak

FLS fragment:

Xs={ll3Ixs} AYs={l.1 2ys} AZs={l.1 K zs} AZls = {l.] < z1s} A
cons(x,x1s) = xs Acons(y,yls) =ys Axs # nil AX =y Ays # nil A

z1s = x1s Myls A zs = cons(x,z1s)

Projection onto shared sets Xs, Ys, Zs, Z1s:

card(Xs) >1 A card(Ys) >1 A card(Zs) > 1A

Z1s C Zs A card(Zs) = card(Z1s) + 1 A

((card(Z1s) = card(Xs) — 1V card(Z1s) = card(Ys) — 1) — Zs = Xs = Ys)
BAPA fragment:

xzs_length = card(Xs) — 1 A ys_length = card(Ys) — 1 A

zs_length = card(Zs) — 1 A zls_length = card(Z1s) — 1 A

zs_length = Ixs A ys_length =lys A zls_length =lzls A

Ixs=1lys A lzls=1Ixs—1 A lIzs=lzls+ 1 A zs_length # lzs

Projection onto shared sets Xs, Ys, Zs, Z1s:

card(Z1s) = card(Xs) —1 A card(Z1s) =card(Ys) —1 A card(Zs) # card(Z1s) + 1

Fig. 7: Separated conjuncts for the negated subghqabf the VC in Figure6 with
projections onto the shared sets

F:::AL|A5|F1/\F2|F1\/F2|ﬁF
Ap =T X T | To =T | Tu =Tw
T := vr, | nil | COHS(TH,TL) |taiI(TL) | T, 1Ty,
TH = UVH | head(TL)
As :::BL:BL|BLQBL|T1:T1 |T1<T1

Br z=s. |0 [{TL} | o(TL) | BLUBL | BL\ By
BH.:SH|®|{TH}|T(TL)|head[BL]|BHUBH|BH\BH
Tro=wvr | K |Tr+T; | K-T; | card(Br) | card(Bg) | length(7%)
Ku=...-2|-1]0|1]2...

Fig. 8: LogicFLS? of lists, sublist, sublist sets, list contents, and sizestaints

variable appears in. We denote bylerms(X') the set of all ground~-terms. A X-
formula is built from propositional operations that conttecms of sorbool. We write

Vz : s.F to denote a universally quantified formula where the quaatifiariable has
sorts (analogously fodzx : s.F). We further define atoms, literals, and clauses as usual.
We denote byFV(F') the set of all variables that occur freefh The equality symbol
applies only to terms of the same sort. We can assume to hasgrectiequality symbol

for each sort of interest, but we use the same symbtl denote all of them.

Total and partial structures. Given a signaturél = (S, £2), apartial X-structurea is
a function that maps each sert S to a non-empty set(s) and each function symbol
f € ofsorts; x --- x s, — 50 to @ partial functionu(f) : a(sy) x -+ X a(s,) —
a(sg). We assume that all partial structures interpret the lsmst by the two-element
set of Booleandtrue, false}. A partial structurex is calledtotal structureor simply
structureif it interprets all function symbols by total functions.

Given a total structure: and avariable assignment : X — «(S), the evaluation
[t]a,s of a termt (respectively a formula) i, 3 is defined as usual. In particular, we

On Deciding Functional Lists with Sublist Sets 7

use the standard interpretations for the equality symbdlmopositional connectives
of classical logic. A quantified variable of sarranges over all elements of s). The
notions of satisfiability, validity, and entailment of foutas, clauses, and sets of clauses
in total structures are also defined as usual. We wwjté |= F' if « satisfiesF’ under
whereF is a formula, a clause, or a set of clauses. Similarly, weewrit= F' if F is
valid in «. In this case we also call amodelof F.

The interpretatiofft], s of a termt in a partial structurex is as for total structures,
exceptthatif = f(t1,...,t,) then[t]. g is undefined if eitheft;] . 5 is undefined for
somei, or f € 2 and([t1]a.3, - - -, [tn]a,s) is NOtin the domain of(f). We say that
a partial structurex weakly satisfies literal L underg, written o, 8 =, L, if either
[L]«,s is undefined of L]~ = true. The notion of weak satisfiability is extended to
clauses and sets of clauses as for total structures.

Theories and local theory extensionsA theory7 for a signatureX’ is simply a set of
X-formulas. We consider theorigs(M) defined as a set of-formulas that are valid
in a given set of modeld, as well as theorieg (K) defined as a set af-formulas
that are consequences of a given set of formidasn the latter case, we call the
axiomsof the theory7 (K) and we often identifyC and7 (K). In particular, we call
K = 0 theempty theoryThedecision problenfor a theoryT is to decide whether a
given X-formula F' belongs td7 .

In what follows, we consider theories that are defined by aofetxioms. Let
Yo = (S, £29) be a signature and assume that signattire= (.S, £2o U £21) extends¥y
by new function symbolg?;. We call the function symbols ifY; extension symbols
and terms starting with extension symbeldension termNow, a theory7Z; over X
is anextensiorof a theoryZ, over X, if 7; is obtained fromZ, by adding a set of
(universally quantified) clausés. In the following, when we refer to a set of ground
clausegs, we assume they are over the signatbife= (S, 2 U {1 U {2.) wheref2.
is a set of new constant symbols. Li6tbe a set of (universally quantified) clauses.
We denote byt(K, G) the set of all ground terms that appeatiror G and byK[G]
the set of all instantiations of clauseskinwhere variables appearing below extension
terms have been instantiated by the termst(fC, G). Then an extensiof; = 7o U K
is alocal extensiorif it satisfies conditior(Loc)*:

(Loc) For every finite set of ground clausés G U 7; = false iff there is no
partial X'{-structurea such thaty, 5, is a total model of7y, all terms in
st(K, G) are defined iny, anda weakly satisfiedC[G] U G.

5 Logic FLS of Funcional Lists with Sublists

We now define the logic of functional lists with sublisEL8) and its accompanying
theory. The logic=LS is given by all quantifier-free formulas over the signatblkes =
(SkLs, $2rLs). The signatureélr s consists of sortSk s = {bool, list, data} and function
symbols{2 s = {nil, cons, head, tail, M, <}. The sorts of the function symbols it s
are shown in Figur®. We use infix notation for the symbafsand=<.

4 We here use a weaker notion of locality restricted to finits séground clause§'.

8 Thomas Wies, Marco Muiiiz, Viktor Kuncak

nil : list tail : list — list < :list X list — bool
cons : list x data — list head : list — data M list x list — list

Fig. 9: Sorts of function symbols in the signaturg s

o

ef def

ops(list) = L= {t € Terms(X\) | t: list}
apLs(data) = D < {t € Terms(Xy) | ¢ : data}
apLs(cons) ¥ cons, & A(1, d). cons(l, d)

apLs (nil) < il

opLs(tail) & tail, AL if I = nil thennil elsel’ wherel = cons(l’, d)
apLs(head) & head, ' AL.if I = nil thend, elsed wherel = cons(’, d)

aps(2) E A, l2). b =Ll

aps(M) (I, la). 1 1 Lo

Fig. 10: The canonical modek s of functional lists with sublists

The theory of functional lists with sublist relationship,s is the set of all for-
mulas inFLS that are true in the canonical model of lists. We denote thisoni-
cal model byar s. The structureyg s is the term algebra generated by the signature
XL = (Sks, {cons, nil, dy, da, . .. }), whered, do, . . . are infinitly many constant sym-
bols of sortdata. The complete definition afr s is given in FigurelO. The canonical
model interprets the solitt as the set of alt, -terms of sortist. We denote this set by
L. Likewise, the sortlata is interpreted as the set of &l}_ -terms of sortlata. We denote
this set byD. The function symbolsons andnil are interpreted as the corresponding
term constructors. The function symbaksad andtail are interpreted as the appropriate
selectorshead, andtail . The predicate symbaok is interpreted as the sublist relation
<rC L x Lon lists. The sublist relation is defined as the reflexiveditare closure of
the tail selector function:

L=l €5 (1) € {(Ltail (1)) | leL}
The relation=_is a partial order on lists. In fact, one can show more.
Proposition 1. The relation=, induces a meet-semilattice on the ket

We denote by, the meet operator of the semilattice inducedsy Given two listsl;
andls, the listl; M Is denotes the greatest common suffiXpfindls. The structure
afs interprets the function symbol as the operaton, .

We further define the theory of all finite substructuresnefs. Let X ¢ be the
signatureXr, s without the function symbotons and letar s; be the structurer s
restricted to the signaturEr s;. We defineMe ;s to be the set of all finite total sub-
structures ofxr sq. The theoryZg s is the set of alFLS formulas that are true in all
structuresMeg, s;.

On Deciding Functional Lists with Sublist Sets 9

6 Decision Procedure forFLS

In the following, we show that the theof, s is decidable. For this purpose we reduce
the decision problem fdfg s to the decision problem of the thedfy, s;. We then give

a finite first-order axiomatization of the thedfyt s; and show that it is a local theory ex-
tension of the empty theory. In total, this implies that d&wj satisfiability of a ground
formula F’ with respect to the theor¥r s can be reduced to deciding satisfiability/of
conjoined with finitely many ground instances of the firsl@raxioms of7¢ s;.

6.1 ReducingFLS to FLSf

We first note that satisfiability of aALS formula F' in the canonical model can be
reduced to checking satisfiability in the finite substrues,if the function symbalons
does not occur it

Proposition 2. Let F' be a quantifier-freelr si-formula. ThenF' is satisfiable img s
if and only if F' is satisfiable in some structure € Mg s;.

The proof of PropositioR is similar to the proof of [7, Theorem 2].

We can now exploit the fact that, in the term algebgas, the constructotons, is
uniquely determined by the functiohsad, andtail, . Let F' be anFLS formula. Then
we can eliminate an occurrené&cons(ty, t;)) of function symbolcons in a term of
F by rewriting F'(cons(t4, t;)) into:

x # nil A head(z) = tq Atail(x) = t; A F(z)

where z is a fresh variable of soflist that does not appear elsewhere Aih Let
elim-cons(F') be the formula that results from rewriting recursively glpaarances
of function symbolcons in F. Clearly, in the canonical modelr s, the formulasF’
andelim-cons(F’) are equisatisfiable. Thus, with Propositiwe can conclude.

Lemma 3. Let F' be anFLS formula. ThenF is satisfiable inar s if and only if
elim-cons(F") is satisfiable in some structurec Mg st.

6.2 Axiomatizing FLSf

We next show that there exists a first-order axiomatizakipr; of the theory7g s that
is a local theory extension of the empty theory. The axi®ins; are given in Figuréd 1.
The free variables appearing in the formulas are impliaitiversally quantified. We
now explain each of these axioms and argue their soundnesshiat each axiom is
true in the canonical modelg, s.

The axiomPure is a logical consequence of the following formula, whichrigetin
the canonical modetg s: V. cons(head(z), tail(x)) = = V nil = z. Hence,Pure is
true in all finite total substructures afs. The axiomNil expresses that all lists have
nil as a sublist. This axiom is true because all lists are cottstalifromnil. The axioms
Refl, Trans, andAntiSym express thak is a partial order. These axioms follow from
Propositionl. The axiomTotal expresses the fact that, for a fixed listall sublists of

10 Thomas Wies, Marco Mufiiz, Viktor Kuncak

Pure: head(z) = head(y) A tail(z) = tail(y) — =y Vz =nilVy =nil

Nil: nil <z UnfoldL: tail(z) <z

Refl: x <z UnfoldR: z Ry — =y V z =< tail(y)
Trans: x R yANy<Xz — x =z GCS1l: zNy <Xz
AntiSym: z XyAy=z — x =y GCS2: zMNy =Xy

Total: y XxzNz=z2z - yxX2z2zVz=xy GCS3 zXzANzy—z3zxzMNy

Fig. 11: First-order axiomatizatiofg s; of the theoryZg, s

2 are totally ordered by the sublist relation. This axiomdwis from the definition of
<. as the reflexive transitive closure of a functional relatibhe axiomdJnfoldL and
UnfoldR express that, by applyingil to either side of the sublist relation, we stay in
the sublist relation. Finally, the axion®&CS1, GCS2, andGCS3 express thaltl is the
greatest lower bound operator of the partial orderThese axioms follow from the
definition of M, and Propositior.

Lemma 4. The axiomsCr s are sound, i.e., for alle € Mg s, o = Kpist.

As a prerequisite for proving completeness of the axiomsna show that the
finite models of the axiom&r s are structurally equivalent to the finite substructures
of the canonical model of functional lists.

Proposition 5. Every finite model ofr_s; is isomorphic to some structure g s;.

The proofis in AppendiB.1.

6.3 FLSfas a Local Theory Extension

We will now prove that the theory induced IS < is a local theory extension of the
empty theory and, at the same time, prove fiatss is a complete axiomatization of
the theoryZg s;.

In what follows, the signatur&’r s; is the signature of the theory extensibg, ;.
We also have to determine the signature of the base theoryimg fihe extension
symbols. We treat the function symbdls = {head, tail, M} as extension symbols,
but the sublist relation< as a symbol in the signature of the base theory. As in the
definition of local theory extensions in Sectidnfor a set of ground clauses, we
denote by s[G] all instances of axiomKr ss where the variables occurring below
extension symbol$2. are instantiated by all ground terre§/Cr sf, G) that appear in
Kest andG. Furthermore, we denote y¢, ., the signaturely, ¢ extended with finitely
many new constant symbafg,..

Lemma 6. For every finite set o ¢; ground clausess, if « is a partial X' -
structure such thaty(=) is total, all terms inst(Kr sr, G) are defined ina, and «
weakly satisfie&r sf[G] UG then there exists a finite totalg, g-structure that satisfies
Krist UG.

On Deciding Functional Lists with Sublist Sets 11

We sketch the proof of Lemm@ Let o be a partial¢ -structure as required
in the lemma. We can obtain a finite partial substructdrérom « by restricting the
interpretations of sortdata andlist to the elements that are used in the interpretations
of the ground termst(Ke_st, G). Thena' still weakly satisfiedCr :[G] U G, since all
axioms inCr s are universal. We can then completeto a finite total model oK g s U
G as follows. First, for every, € o/ (list) wherea’ (head) is not defined, we can extend
o/ (data) by a fresh element, and definey' (head)(u) = d,,. Now, letu € «/(list) such
that «(tail) is not defined onu. If u = &/(nil), we defined/(tail)(u) = u. Otherwise,
from the fact thaty’ satisfies axiomslil, AntiSym, andTotal we can conclude that there
exists a maximal element € o/ (list) \ {u} such that(v,u) € o/(=<). However, we
cannot simply define’ (tail)(u) = v. The resulting structure would potentially violate
axiomPure. Instead, we extendl (list) with a fresh element anda’ (data) with a fresh
elementd,,, and definex/ (head)(w) = d,,, &/ (tail)(w) = v, andd’ (tail) (u) = w. We
further extend the definition af’ (<) for the newly added element, as expected. The
completion ofa/ (M) to a total function is then straightforward.

From Lemma6 we can now immediately conclude that the thefiiy s; satisfies
condition (oc), where the base theof is given by the empty theory.

Theorem 7. Kr_st is a local theory extension of the empty theory.

Similarly, from Propositiors and Lemmab, we can conclude that the axioris, st
are complete.

Theorem 8. Kr ¢ is an axiomatization of the theof, s, i.e., 7 (Krist) = Trist.

6.4 DecidingFLS

Following the reduction scheme for reasoning in local thentensions [5,19], we can
now give a decision procedure that reduces the decisionerobf the theoryZe s

to the satisfiability problem of the Bernays-Schonfinkelrisey class. The decision
procedure is depicted in Figuie.

Soundness and completeness of the decision procedure folim Lemma3, The-
orems?7 and8, and [19, Lemma 4]. Note that the formuig obtained in step 4 is indeed
in the Bernays-Schonfinkel-Ramsey class, siigeontains only relation symbols and
equality, and all quantifiers are universal.

Complexity. For formulas in the Bernays-Schonfinkel-Ramsey class tizat a
bounded number of universal quantifiers, the satisfialjliblem is known to be NP-
complete [2, page 258]. The only quantified variables appgam the formulaZ,, ob-
tained in step 4 are those i6,. In fact, we can writely in such a way that it uses
exactly 3 quantified variables. Furthermore, the size ofdhmula £y is polynomial in
the size of the input formula.

Theorem 9. The decision problem for the thed¥y, s is NP-complete.

We presented the theofft, s; as a local theory extension with extension symbols
head, tail, andr. Alternatively, one can also treat the symbbés an extension symbol,
i.e., in this case the signature of the base theory only amtonstant symbols. This

12 Thomas Wies, Marco Mufiiz, Viktor Kuncak

Input: anFLS formulaF'.

Step 1: ComputeF’ = elim-cons(—F), replace all variables ith" with fresh constant
symbols, and transform the result into a set of ground cltise

Step 2: Purify and flatten the set of clausk€s s¢[G] A G by recursively replacing each
(sub)termt = f(g1, ..., gn) Starting with an extension functighe (2. by a fresh
constant,. Then introduce fresh constants . . ., ¢,, for the arguments, .. ., g,
and add corresponding definitioffécs, ..., c,) = ¢ ande; = g; for all i. The
set of clauses thus obtained has the fé&émA G A D whereD is a set of ground
unit clauses of the fornf(c1,...,c,) = ¢, wheref € 2., andcy,...,c,,c are
constants, anffy, G are clauses without function symbols(ih.

Step 3: Represent each function symbple (2, as a partial but functional relation
rs, i.e., obtainD* from D by replacing each literaf(ci,...,¢,) = cin D by
rs(c1, ..., cn, c) and introduce corresponding functionality axioms

Fun(D*) = {A\/_,ci =di Argpler, ... cn,e) Arp(dy, ... dp,d) = c=d |
fee,ri(cr,... cn,c),rp(dr,...,dyp,d) € D*}

Step 4: Check satisfiability ofFy = Ko A Go A D* A Fun(D*). If Fy is satisfiable,
return “F' ¢ Tr 5", otherwise return ¥ € 7g.s".

Fig. 12: Decision procedure f&iLS

gives an alternative decision procedure where the axikims: are fully instantiated

by ground terms and the s&} obtained in step 4 is a set of ground clauses. However,
the decision procedure described in Figitecan take advantage of the more com-
pact representation of formulas in the Bernays-SchonfiRkensey class by applying
specialized decision procedures for this class, e.g., [16]

7 Extension with Sets of Sublists

We next show decidability of the logic that exterflss with constraints on sets of sub-
lists and the contents of lists. We do this by reducing sutbreled logic to constraints
on sets. For this we need a normal form of formulas in our logcshow this normal
form, we start from¥ 2 ¢, partial models, but refine them further to be able to reduce
them to constraints on disjoint sets. We then giveA®A reduction for each of the
refined models.

7.1 Predecessor-Refined Partial Structures

Definition 10. « is a Predecessor-Refined Parti®dRP) Structure if it is a partial sub-
structure of a structure itM s; and the following conditions hold in for all elements
z,y € alist):

1. x <X yis totally defined om(list)
2. (x My) € a(list). Moreover, ifz, y, (x M y) are three distinct elements, then there
existsz; € af(list) such thate; < = andtail(zy) = (z Ny).

On Deciding Functional Lists with Sublist Sets 13

Input: aPRP structurex. Output: a set constrain,,.

Step 1: Define the relation <; as irreflexive transitive reduct of without thetail
relation. Formally, for allz,y € a(list), definex =<, y iff all of the following
conditions hold: (1)} =< y, (2) z # y, (3)tail(y) is undefined, and (4) there is no
in a(list) such thatr, y, z are distincty < z, andz < y.

Step 2: Introduce setsS, , with the meanings, , = (o(y) \ o(x)) \ {y} and define
Segs = {Sm,y | T =1 1/}

Step 3: Generate the conjunctiaf,, of the following constraints:

1. o(nil) = {nil}

2. o(y) = {y} Uo(z), for eachr, y such thatr satisfiegail(y) = «

3. 0(y) ={y} U S, Uoc(x), for eache,y such thai satisfiesr <; y
4. diSJOint((S)SESegSa ({‘T})IEO{(”SI))

Step 4: Existentially quantify over alBegs variables inG,,. If the goal is to obtain a
formula withoutSegs variables, replace each varialslg,, with (o(y)\o(z))\{y}.

Step 5: Return the resulting formulé@,, .

Fig. 13: Generation of set constraints frorRRP structure

3. ifx # y, if tail(x) andtail(y) are defined and equal, then bdtsad(x) andhead(y)
are defined.

Definition 11. With eachPRP structure« we associate a conjunction of literals that
are (strongly) satisfied in. We call this formula @RP conjunction.

Theorem 12. EachFLS formula is equivalent to an existentially quantified finits-d
junction of PRP conjunctions.

The proof of the theorem is in Appendix2. We can compute theRP structures for
anFLS formula by using a simple modification of the decision pragedor FLS in
Figurel2.

7.2 Constraints on Sets of Sublists

Defineo(y) = {z. « < y}. Our goal is to show that extendird.S with the o(_)
operator and the set algebra of such sets yields in a deeidiadpc. To this extent,
we consider arFLS formula F' with free variablesrq,...,z, and show that the
defined relation on sets = {(o(z1),...,0(zy)). F(x1,...,2,)} is definable as
p={(s1,...,8n). G(s1,...,s,)} for some quantifier-freBAPA [10] formulaG. By
Theoreml?2, it suffices to show this property whdnis aPRP conjunction, given by
somePRP structurex. Figure13 shows the generation of set constraints froPRP
structure. By replacing eaet(x) with a fresh set variable, in the resulting constraint
we obtain a formula in set algebra. We can check the satikfyabf such formulas
following the algorithms in [9, 10] and generate explicit dets or perform synthesis
as in [8]. Soundness and completeness of the reduction i@ are proved in Ap-
pendiciesB.3 andB.4. In AppendixA we demonstrate the reduction for the example
shown in Figures.

Among the consequences of this reduction is NP-complesenfess logic contain-
ing atomic formulas oFLS, along with formulass = o(z), set algebra expressions

14 Thomas Wies, Marco Mufiiz, Viktor Kuncak

Input: aPRP structurex and an image constraint.
Output: a set constrainf’, withouthead[s] expressions
Step 1: Replace each(x) in C with head[o(x) \ {nil}].
Step 2: Let P; be all sets of the form{z;} or S, ., from Figure13. If s is a
boolean combination of expressions of the farix), {«}, let J(s) be such that
s = U;e(s) I is the decomposition of into disjoint sets, derived from set equal-
ities in Figurel3. Then replace each expresstwead(s] with {J, ;) head[F;].
Step 3: Replace eachead[P;] with a fresh set variabl€); and conjoin the result with
the following constraints on the image séls
1. card(Q;) < card(P;)
2. Qz = @ i Pi = (Z)
3. Q;NQ, =0, foreache,y € a(list) such thatP; = {z}, P; = {y}, = # y and
tail(z) = tail(y).
Step 4: Existentially quantify over al); and return the resulting formuig,.

Fig. 14: Eliminatinghead[s] from image constraints by introducing additional con-
straints on top of Figuré3.

containingC, N, U, \, = on sets, and the cardinality operatard(s) that computes the
size of the set along with integer linear arithmetic constraints on suaesi Because
the length of the listc is equal tocard(c(x)) — 1, this logic also naturally supports
reasoning about list lengths. We note that such a logic cam @pport a large class
of set comprehensions of the forth= {z. F(z,41,...,y»)} when the atomic for-
mulas withinF" are of the formu < v and at least one atomic formula of the form
x = y; occurs positively in disjunctive normal form @f. Becausé/x.F' is equivalent
tocard({z. —F'}) = 0, sets give us a form of universal quantification on tofio$.

7.3 Additional Constraints on List Content

We next extend the previous constraints to impose set @nttrnot only on the
set of sublistso(z) but also on the images of such sets underhbad function.
We define the list content function by(z) = head[o(z) \ {nil}] where we define
head[s] = {head(x) | = € s}. We then obtain our full logi€LS* shown in Figure3
that introduces constraints of the foimad([s] = v on top of FLS and constraints on
sets of sublists. To show decidability of this logic, we usehniques inspired by [24]
to eliminate the image constraints. The elimination proceds shown in Figuré4.
We use the properties 8RP structures that the elements for whieli(z) = tail(zg)
holds have defined valuésad(zy,) andhead(z). This allows us to enforce sufficient
conditions on sets of sublists and sets of their heads taeisat the axionfure can
be enforced. The elimination procedure assumes that wehieadés) expressions only
in the cases whergis a combination of sets of the fora{z) and{z}, which ensures
thats is a disjoint combination of polynomially many partitioridhis restriction is not
necessary [24], but is natural in applications and ensheesiembership in NP.

We claim that we have thus obtained an interesting point éndbsign space of
decidable verification logics: the logic can express matgrasting properties and has
a reasonably efficient decision procedure.

On Deciding Functional Lists with Sublist Sets 15

References

1.

N

(e2}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. Barrett, I. Shikanian, and C. Tinelli. An abstract dem procedure for satisfiability
in the theory of recursive data typeglectronic Notes in Theoretical Computer Science
174(8):23-37, 2007.

. E. Borger, E. Gradel, and Y. Gurevichhe Classical Decision Problenspringer, 1997.
. A.Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A&based framework for reasoning

about composite data structures.d®NCUR 2009.

. S.Jacobs. Incremental instance generation in locabn@as INCAV, pages 368—382, 2009.
. S. JacobsHierarchic Decision Procedures for VerificatioRhD thesis, Saarland University,

2010.

. J. Jaffar. Minimal and complete word unificatiGh. ACM 37(1):47-85, 1990.
. V. Kuncak and D. Jackson. Relational analysis of algetstatatypes. Idoint 10th ESEC

and 13th ACM SIGSOFT FSEO005.

. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Completetfunal synthesis. IPLDI,

2010.

. V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Booleagéiira with Presburger Arith-

metic. J. of Automated Reasoning006.

V. Kuncak and M. Rinard. Towards efficient satisfiabitihecking for Boolean Algebra with
Presburger Arithmetic. ITADE-21, 2007.

S. Lahiri and S. Qadeer. Back to the future: revisitingcige program verification using
SMT solvers. INPPOPL, 2008.

G. Makanin. The problem of solvability of equations inreef semigroup.Math. USSR
Shornik pages 129-198, 1977. (In AMS, (1979)).

H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automatedfication of shape, size and
bag properties via separation logic. \iMCAI, 2007.

M. Odersky, L. Spoon, and B. VennePsogramming in Scala: a comprehensive step-by-step
guide Artima Press, 2008.

D. C. Oppen. Reasoning about recursively defined datetstes. IlPOPL, pages 151-157,
1978.

R. Piskac, L. de Moura, and N. Bjgrner. Deciding EffeslgivPropositional Logic using
DPLL and substitution setd. of Automated Reasoningg(4):401-424, 2010.

R. Piskac, P. Suter, and V. Kuncak. On decision procedar@rdered collections. Technical
Report LARA-REPORT-2010-001, EPFL, 2010.

W. Plandowski. Satisfiability of word equations with stants is in PSPACH. ACM 51(3),
2004.

V. Sofronie-Stokkermans. Hierarchic reasoning inlittteory extensions. ICADE, pages
219-234, 2005.

V. Sofronie-Stokkermans. Locality results for certakiensions of theories with bridging
functions. INCADE, 2009.

P. Suter, M. Dotta, and V. Kuncak. Decision proceduresafgebraic data types with ab-
stractions. IPOPL, 2010.

K. N. Venkataraman. Decidability of the purely existahtragment of the theory of term
algebrasJournal of the ACM (JACM)34(2):492-510, 1987.

T. Wies, R. Piskac, and V. Kuncak. Combining theoriehwsiared set operations. In
FroCoS 2009.

K. Yessenov, V. Kuncak, and R. Piskac. Collections,ioatilies, and relations. INMCA\,
2010.

K. Zee, V. Kuncak, and M. Rinard. Full functional verificam of linked data structures. In
PLDI, 2008.

16 Thomas Wies, Marco Mufiiz, Viktor Kuncak

A BAPA Reduction for Drop Example

We use the procedure given in Sectioio reduce th&LS conjunct shown in Figuréto

a BAPA formula over the set variablé&, Ys, Zs. Figurel5depicts thé?RP structures
that are equivalent to theLS conjunct in Figure3. Every node denotes an element of
sortlist. The square nodes denote tlilkelement.

XS tail zs tail* xs tail YS tail* 2z
o——@ -). o O—@ e).

ys
X tail YS tail* ;s tail* - xs gl S
@ 3@ P —[
A

Fig. 15:PRP structures for th&LS conjunct in Figure3

Figure 16 shows the set constraints generated from the FiRP structures. There
is one disjunct for eacRRP in Figure15. In each disjunct we can now replace the sets
o(xs), o(ys), ando(zs) by the shared set variablés, Ys, andZs. Existentially quan-
tifying over all remaining variables and applying quantiiémination to the resulting
disjunction then yields thBAPA formula

ZsCYs N YsC Xs A card(Xs) >1 A card(Xs) =card(Ys)+1 .

This formula is the projection onto the shared set variafiesvn in Figures.

B Additional Proofs

B.1 Proof of Proposition5
Proposition 5. Every finite model of¢_s; is isomorphic to some structure i g, st

Proof. Let « be a finite model ofCr, ;. In the following, for a function symbof, we
use f, as a short-hand fax(f). Similarly, we denote byail”, the reflexive transitive
closure of the functiom(tail).

First, note that the axiomRefl, Trans, AntiSym, andGCS1, GCS2, GCS3 ensure
that (a(list), <., M) IS @ meet-semilattice. We next prove thay, is the inverse of
tail’,.

On Deciding Functional Lists with Sublist Sets 17

IAShilys- o(nil) = {nil} A o(ys) = {ys} U Shiys U a(nil) A o(zs) = a(ys) A
o(x5) = {xs} Ua(ys) A Shiys = (o(ys) \ o(ni) \ {ys} A
distint(Snil,yS7 {XS}7 {ys}7 {n”})
V 3Shiys. o(nil) = {nil} A o(zs) = o(nil) A o(ys) = {ys} U Snilys U o(nil) A
o(x5) = {xs} Ua(ys) A Shiys = (o(ys) \ o(ni) \ {ys} A
distint(Snil,yS7 {XS}7 {ys}7 {n”})
V 3Szs,ys, Shilzs- o(nil) = {nil} A o(zs) = {zs} U Shiizs A o(ys) = {ys} U Szsys Uo(zs) A
o(xs) = {xs} Uo(ys) A Snizs = (o(zs) \ a(nil)) \ {zs} A
Szsys = (o(ys) \ o(zs)) \ {ys} A disjoint(Shi zs, Szs,ys, {xs}, {ys}, {zs}, {nil})
Voo (nil) = {nil} A o(ys) = a(nil) A o(zs) = o(nil) A o(xs) = {xs} U o(nil) A
disjoint({xs}, {nil})

Fig. 16: Set constraints generated fr@RP structures in Figuré5.

For provingtail?, C=<_!, letu,v € a(list) such thatu, v) € tail’,. Then there exist
U, ..., u, such thatu = uq, v = u,, and for alll < i < n, tail,(u;) = wipr. If
n=1 thenu = v and by axionRefl we immediately have <, u. If on the other hand
u # v then byUnfoldL we have for alll < i < n, tail, (u;) <, w; and thusu,; 1 <, u;.
Using axiomTrans we then conclude by induction athat foralll < ¢ < n,u; <, u1.
Hencep <, u.

For proving the other direction, let € «(list) and letS, = {v|v <, u}. We
showthatforalb € S, (u, v) € tail},. Sincex is finite, S,, is finite, as well. Thus, using
axiomsTotal andAntiSym we can construct an enumeration . . . , u,, of the elements
of S, suchthatforall <i < j <n,u; <, u; butnotu; <, u;. In particularu; = u.
We prove by induction om that for all1 < i < n, (u1,u;) € tail’,. By reflexivity of
tail}, we immediately havéu,,u;) € tail’,. Now assume thatui,u;) € tail’,. Since
u; € Sy, we know byUnfoldL andTrans thattail, (u;) € S,. Hencetail, (u;) = u; for
somej > i. By UnfoldR we know that for allj > ¢, u; = u; oru; =<, tail,(u;). Hence,
by construction of the enumeration it follows that,; = tail, (u;). Together with the
induction hypothesis we then conclu@e , u;;1) € tail’,.

We can now define a structure isomorphigrbetweeny and some structure’ €
Meist, i.€., for each sort, ¢ is a structure-preserving bijection froa(s) to o/(s).
Since all structures agree on the interpretation of boot, we first defineg as the
identity mapping omx(bool). For the sortdata, we let$ be some injective mapping
from «(data) to the set of data tern3, such that(«(nil)) = d;. In order to define
on«(list), note thaty satisfies axiomslil andAntiSym. Thus, we know that the inverse
of the relationtail’, is well-founded andx(nil) is the smallest element af(list) with
respect to this relation. We can hence recursively define a mapping from(list) to
L as follows:

_ il if u= a(nil)
olu) = cons(o(v), p(w)) if a(tail)(u) = v anda(head)(u) =

From axiomPure follows that¢ is an injective mapping from(list)
the structuren’ as follows: for all sortss € Y g, let &/(s) = ¢(a(s)), and for all

to L. Now define
(a(s
function symbolsf € Xr g of sorts; x -+ x s, — s, leto(f)(u1,...,un) =

18 Thomas Wies, Marco Mufiiz, Viktor Kuncak

dla(f)(o (ur), ..., 6~ (uy))). By construction’ € Mg s anda’ is isomorphic to
Q. O

B.2 Proof of Theorem12

Consider aFLS formula F'. A minor modification of the algorithm in Figurg2 can
enumerate a finite set of partial substructures of strustime\g ¢ for which F' is
true. It suffices to show that each partial substructure @anepresented by finitely
manyPRP structures.

To ensure that a relation (such as< y) is defined, we perform case analysis on
whetherz < y holds or not. To ensure the remaining properties, proceéullas/s.

Define arultimately converging tripléo be a triple of distinct elements .., v, 2r)
such thaty < z; andy =< xzg. Then define a&onverging tripleto be an ultimately
converging triple such that there is no distinct ultimadywverging triple(x’ , v, 2’;)
with the propertyr), <z, 2’ < z, 2%, < zg.

An unresolved converging tripis a converging tripléz ., y, x g) such that:;, Nx g
is not defined in the structure. Given an unresolved conmgriyiple (x1,,y, zr), we
consider the case 1)y, Mxzr = y and the case 2); Mxr = z for a fresh elements
of the structure such that; M 2r = z andy =< z. In each step of this process the
number of unresolved converging triples reduces by one,escam construct finitely
many structures where all converging triples are resolved.

In the next step, we ensure that for all converging trigles, y, zz) we have that
tail(x,) andtail(z i) are defined and equal {o We call a triple for which this does not
hold non-refinedGiven a non-refined tripléx,, y, zr) then it cannot be the case that
bothtail(x;,) or tail(xzr) are undefined, otherwise there would be a converging triple
(tail(zr),y,zr) or (zL,y, tail(zgr)). Suppose without loss of generality thait(z 1) is
undefined. We then consider eithait(z1,) = y, or we introduce: such thatail(z) = y
andz =< xy. By repeating this process at most twice for each non-refiripie, we
ensure that all triples are both resolved and refined.

Suppose every converging tripler,, v, zr) is refined. Then define bottead(z,)
and head(y;) to be either existing or fresh elements. ThRare axiom ensures
head(zr) # head(yr). As a result we obtain a finite set B8RP structures. By ex-
istentially quantifying over the freshly introduced elamsewe obtain a disjunction of
PRP conjunctions equivalent té'. a

B.3 Soundness of the Reduction in Figuré3

Consider aMg s element whose substructuredf We show that the generated for-
mulaG, is a consequence of tlRRP conjunction corresponding t@. The condition
o(nil) = {nil} follows from the definition, as well as(y) = {y}Uo(x) for tail(y) = =.
Toensurer(y) = {y} US, , Uo(x) we defineS, , = (c(y) \ o(x)) \ {y}. Itremains
to show that for this definition the sefs , and the singleton sefs:} are all disjoint.
By construction{z} N{y} = 0 for distinctz, y. Consider two distinct set variabl&s ,,
andS, .. Letz = 2 Mu. Then also: = y Mv. By definition ofo(y) ando(v), we have
o(y) No(v) = o(z). We also haver(z) C o(x) ando(z) C o(u). This implies that

On Deciding Functional Lists with Sublist Sets 19

the setsr(y) \ o(z) ando(v) \ o(u) are disjoint, saS,, ,, and S, ,, are also disjoint.
Showing that{«} andS,, ,, are disjoint is similarly straightforward.

B.4 Completeness of the Reduction in Figuré3

Given a partial structura and the values of sets that satisfy the generated fortiyla
in Figure13, we extend to a finite total structure it s;. To do this, consider each
pairz, y in the domain ofx for whichz <; y. Letk be the size of the sét, ,. If k =0
then lettail(y) = x. Otherwise, introducé fresh and distinct list elements, .. ., zx
and extendail such that

k—1

tail(y) = zx A (/\ tail(z;41) = zl> Atail(z1) = x

i=1

To ensure that the elements are distinct, defisel(2;) = h; whereh; are fresh head
elements. Extenek and_ M _ according tatail to ensure that the structure belongs to
MEst. This completes the construction showing the completenfesseduction from
FLS to BAPA.

	On Deciding Functional Lists with Sublist Sets
	Thomas Wies, Marco Muñiz, and Viktor Kuncak

