arXiv:cs.PL/0609104 vl 18 Sep 2006

On Verifying Complex
Properties using Symbolic
Shape Analysis

Thomas Wies Viktor Kuncak
Karen Zee Andreas Podelski
Martin Rinard

MPI1-1-2006-2-001 April 2006

Authors’ Addresses

Thomas Wies
Max-Planck-Institut fiir Informatik
Saarbriicken, Germany

Viktor Kuncak
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Karen Zee
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Andreas Podelski
Max-Planck-Institut fiir Informatik
Saarbriicken, Germany

Martin Rinard
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Abstract

One of the main challenges in the verification of softwardesys is the analy-
sis of unbounded data structures with dynamic memory dilmeasuch as linked
data structures and arrays. We describe Bohne, a new anfdysierifying data
structures. Bohne verifies data structure operations andssthat 1) the opera-
tions preserve data structure invariants and 2) the opasatiatisfy their specifi-
cations expressed in terms of changes to the set of objece&xish the data struc-
ture. During the analysis, Bohne infers loop invariantsiafiorm of disjunctions
of universally quantified Boolean combinations of formuylapresented as sets of
binary decision diagrams. To synthesize loop invariantkisfform, Bohne uses a
combination of decision procedures for Monadic Seconde®Ltagic over trees,
SMT-LIB decision procedures (currently CVC Lite), and aricemiated reasoner
within the Isabelle interactive theorem prover. This amtture shows that syn-
thesized loop invariants can serve as a useful communicatechanism between
different decision procedures. In addition, Bohne used fieinstraint analysis,
a combination mechanism that enables the use of uninterpfenction symbols
within formulas of Monadic Second-Order Logic over treessirlg Bohne, we
have verified operations on data structures such as linkegdiith iterators and
back pointers, trees with and without parent pointers, level skip lists, array
data structures, and sorted lists. We have deployed Bohtieeinlob and Jahob
data structure analysis systems, enabling us to combineéwith analyses of
data structure clients and apply it in the context of largegpams. This report
describes the Bohne algorithm as well as techniques that@oses to reduce the
ammount of annotations and the running time of the analysis.

Contents

[1__Introduction 2
1.1 Contributiods 4
[2__Motivating Exampld 7
10
3.1 Reachability Analydis 10
3.2 Svmbolic Shape Analvbis 12
3.3 Quantifier Instantiatidbn 16
B.4 SemanticCachihg 17
3.5 Propagation of Precondition Conjumcts 18
4__Experiments 20
I5__Conclusionk 22

1 Introduction

Complex data structure invariants are one of the main aingdle in verifying soft-
ware systems. Unbounded data structures such as linkedtdatéures and dy-
namically allocated arrays make the state space of softaréifacts infinite and
require new reasoning techniques (such as reasoning asmitability) that have
traditionally not been part of theorem provers specialiftedorogram verifica-
tion. The ability of linked structures to change their shayakes them a powerful
programming construct, but at the same time makes themuiftwanalyze, be-
cause the appropriate analysis representation is depeodéhe invariants that
the program maintains. It is therefore not surprising thatrhost successful ver-
ification approaches for analysis of data structures ussnpeterized abstract do-
mains; these analyses include parametric shape anal@iag3vell as predicate
abstraction [2,17] and its generalizations [9, 24].

This paper presenBohne an algorithm for inferring loop invariants of pro-
grams that manipulate heap-allocated data structureg. griédicate abstraction,
Bohne is parameterized by the properties to be verified. \Wiakies the Bohne
algorithm unique is the use of a precise abstraction dont@hdan express de-
tailed properties of different regions of programs infimtemory, and a range of
techniques for exploring this analysis domain using denigirocedures. The al-
gorithm was initially developed as a symbolic shape ansalgb, 42] for linked
data structures and uses the key idea of shape analysisartiteoping of objects
according to certain unary predicates. One of the obsens&bf our paper is that
the synthesis of heap partitions is not only useful for anialy shape properties
(which involve transitive closure), but also for combinisigch shape properties
with sorting properties of data structures and propertiggessible using linear
arithmetic and first-order logic.

We next put the core Bohne algorithm in the context of pradiedstraction
and parametric shape analysis approaches.

Predicate abstraction. Bohne builds on predicate abstraction but introduces
important new techniques that make it applicable to the diowfashape analysis.

There are two main sources of complexity of loop invariantshape analysis.
The first source of complexity is the fact that the invariacdsitain reachabil-
ity predicates. To address this problem, Bohne uses a dagsocedure for
monadic second-order logic over trees [19], and combinestlit uninterpreted

function symbols in a way that preserves completeness iitapt cases [43].
The second source of complexity is that the invariants ¢ontaiversal quanti-

fiers in an essential way. Among the main approaches forrdgalith quantified

invariants in predicate abstraction is the use of Skolenst@ms [9], indexed
predicates [24] and the use of abstraction predicates timthin quantifiers. The
key difficulty in using Skolem constants for shape analysthat the properties of
individual objects depend on the “context”, given by thegadies of surround-
ing objects, which means that it is not enough to use a fixedegk@onstant

throughout the analysis, it is instead necessary to inataniniversal quantifiers
from previous loop iterations, in some cases multiple tinizsmpared to indexed
predicates [24] the domain used by Bohne is more generalubeda contains

disjunctions of universally quantified statements. Thes@nee of disjunctions is
not only more expressive in principle, but allows Bohne tegkérmulas under
the universal quantifiers more specific. This enables theotitess precise, but
more efficient algorithms for computing changes to propsrtif objects without
losing too much precision in the overall analysis. Findlhg advantage of using
abstraction tailored to shape analysis compared to usiagtdied global predi-

cates is that the parameters to shape-analysis-oriengtihetion are properties
of objects in a state, as opposed to global properties oft@, stad the number of
global predicates needed to emulate state predicatesamerpal in the number
of properties [31,42].

Shape analysis. Shape analyses are precise analyses for linked data s&sictu
They were originally used for compiler optimizations [18,18] and lacked preci-
sion needed to establish invariants that Bohne is analyBAngrise data structure
analysis for the purpose of verification include [11,2028 32, 39] and have re-
cently also been applied to verify set implementations.[3Hjlike Bohne, most
shape analyses that synthesize loop invariants are baspreoomputed trans-
fer functions and a fixed (though parameterized) set of ptigseto be tracked,;
recent approaches enable automation of such computatiog dscision proce-
dures [35, 43, 45-47] or finite differencing [38]. We are emtty working on
an effort to compare such different analysis on a joint sébafchmarks [22].
Our approach differs from [25] in using complete reasonibhgud reachability
in both lists and trees, and using a different architectdirth@ reasoning proce-
dure. Our reasoning procedure uses a coarse-grain comnairzdtreachability
reasoning with decision procedures and theorem provensuimerical and first-
order properties, as opposed to using a Nelson-Oppen bgdeedm prover. This

allowed us to easily combine several tools that were deeel@ompletely inde-
pendently [3, 19, 34]. Shape analysis approaches have atso sed to verify
sortedness properties [30] relying on manually abstrg&ortedness relation.

Recently there has been a resurgence of decision proceahalesnalyses for
linked list data structures [1, 4, 8, 31, 36], where the ersjghia on predictability
(decision procedures for well-defined classes of propedfdinked lists), effi-
ciency (membership in NP), the ability to interoperate vather reasoning pro-
cedures, and modularity. Although the Bohne approach idimated to lists, it
can take advantage of decision procedures for lists by agpbkuch specialized
decision procedures when they are applicable and using gereral reasoning
otherwise.

Bohne could also take advantage of logics for reasoning tatleachability,
such as the logic of reachable shapes [44]. Existing logiesh as guarded fix-
point logic [15] and description logics with reachabilify, [L2] are attractive be-
cause of their expressive power, but so far no decision pruoes for these logics
have been implemented. Automated theorem provers suchrapinga[40] and
SPASS [41] can be used to reason about properties of linkiedstiaictures, but
axiomatizing reachability in first-order logic is non-tiavin practice [29, 33] and
not possible in general.

1.1 Contributions

We have previously described the general idea of symboéipekanalysis [35] as
well as the field constraint analysis decision proceduredonbining reachability
reasoning with uninterpreted function symbols [43]. In][%& have described
splitting of proof obligations in the context of verifyinggof obligations using
the Isabelle interactive theorem prover. One of the insighthis paper is that
such splitting can be an effective way of combining diffémr@asoning procedures
during fixpoint computation in abstract interpretatione$é previous techniques
are therefore the starting point of this paper. The mainrdmutions of this paper
are the following:

1. We present a technique for combining different decisiac@dures through
1) a static analysis that synthesizes Boolean algebra €sipres over sets
defined by arbitrary abstraction predicates, 2) a proofgalibn splitting
approach that discharges different conjuncts using @iffedecision pro-
cedures, and 3) a verification-condition generator thasgrees abstract
variables. This approach addresses a key question in extead\elson-
Oppen style combination to theories that shsets of elementdn general,
such combination would require guessing and propagatingxponential

number of Boolean algebra expressions. In our approachhaershape
analysis [35] synthesizes Boolean algebra expressionstbaised as as-
sumptions in decision procedures calls and are theref@edltby all par-
ticipating decision procedures.

2. We describe a method for synthesis of Boolean heap pragtahimproves
the efficiency of fixpoint evaluation by precomputing absttaansition re-
lations and can control the precision/efficiency tradeklyffrecomputing
transition relations on-demand during fixpoint computatio

3. We introduce semantic caching of decision procedureiegiacross differ-
ent fixpoint iterations and even different analyzed procesluThe caching
yields substantial improvements for procedures that éxkdme similar-
ity, which opens up the possibility of using our analysis miateractive
context.

4. We describe a static analysis that propagates preconditnjuncts and
quickly finds many true facts, reducing the running time dredrtumber of
needed abstraction predicates for the subsequent synsbalpe analysis.

5. We present a domain-specific quantifier instantiatiohriggie that often
eliminates the need for the underlying decision procedtmedeal with
guantifiers.

Together, these new techniques allowed us to verify a rafigata structures
without specifying loop invariants and without specifyiadarge number of ab-
straction predicates. Our examples include implementatad lists (with itera-
tors and with back pointers), trees with parent pointers, sorted lists. What
makes these results particularly interesting is a higha lef automation than in
previous approaches: Bohne synthesizes loop invariaatsrvolve reachability
expressions and numerical quantities, yet it does not heaseomputed transfer
functions for a particular set of abstraction predicateshri instead uses decision
procedures to reason about arbitrary predicates definalalgiven logic. More-
over, in our system the developer is not required to mansaicify the changes
of membership of elements in sets because such changesapeteal by Bohne
and used to communicate information between differentsitaeiprocedures.

Bohne as component of Hob and Jahob. Bohne is part of the data structure
verification frameworks Hob [26, 27] and Jahob [21]. The gfahese systems
is to verify data structure consistency properties in th&ext of non-trivial pro-
grams. To achieve this goal, these tools combine multipkecshnalyses, theorem
proving, and decision procedures. In this paper we presamgxperience in de-
ploying Bohne in the Jahob framework. The input languagdétiob is a subset

5

field
Isabelle MONA lag= cCoOnstraint CVC Lite Omega
analysis

\ decision
ProCEdUre — me————- BAPA

dispatcher

/N

verification |« Bohne
condition loop invariant
generator = inference

analysis of
high-level
properties
Hob and Jahob
data structure

analysis systems

Figure 1.1: Architecture of the Hob and Jahob Data Struchmadysis Systems

of Java extended with annotations written as special cortsn@herefore, Jahob
programs can be compiled and executed using existing Javpilars and virtual
machines.

Figurd1.1 illustrates the integration of Bohne into theakafnamework. Bohne
uses Jahob's facilities for symbolic execution of progrdatesnents and the va-
lidity checker to compute the abstraction of the source fanog The output of
Bohne is the source program annotated with the inferred Inegriants. The
annotated program serves as an input to a verification gondienerator. The
generated verification conditions are verified using a glichecker that com-
bines special purpose decision procedures, a generalgritpeorem prover, and
reasoning techniques such as field constraint analysis [43]

2 Motivating Example

We illustrate our technique on the proced@ertedList.insert shown in
Figure[2Z1. This procedure insertdN@de object into a global sorted list. The
annotation given by special commefits ... */ consists of data structure
invariants, pre- and postconditions, as well as hints ferdhalysis. Formulas
are expressed in a subset of the language used in the Isaibetkctive theorem
prover [34]. The specification uses an abstract set variedodent which is
defined as the set of non-null objects reachable from theagjhdriablefirst

by following field Node.next . The constructtrancl_pt is a higher-order
function that maps a binary predicate to its reflexive ttaresiclosure. The data
structure invariants are specified by the annotatiorariant "..." . For

instance, the first invariant expresses the fact that the felde.next forms
trees in the heap, i.e. thhlode.next is acyclic and injective; the third invari-
ant expresses the fact that the elements stored in the éissated in increas-
ing order according to fieldNode.data . The precondition of the procedure,
requires "..." , States that the object to be inserted is non-null and not yet
contained in the list. The postconditioensures "..." , expresses that the
content of the list is unchanged except for the argumenigoadued.

The loop in the procedure body traverses the list until itditite proper posi-
tion for insertion. It then inserts the argument such that#sulting data structure
is again a sorted list. Our analysis, Bohne, is capable ofyweg that the post-
condition holds at the end of the procedursert , that data structure invariants
are preserved, and that there are no run-time errors suchllagamter deref-
erences. In order to establish these properties, Bohneedea complex loop
invariant shown in Fig—212. The main difficulties for infeng this invariant are:
(1) it contains universal quantifiers over an unbounded do®@yad (2) it requires
reasoning over multiple theories, here reasoning ovehedality, reasoning over
numerical domains, and reasoning over uninterpreted ifumsiymbols.

Figure 2.1: Insertion into a sorted list

tree [Node.next] &
(first = null | (ALL n. n..Node.next "= first)) &
(ALL v. v : content & v..Node.next "= null -->
v..Node.data <= v..Node.next..Node.data) &
(ALL v w. v "= null & w "= null & v..Node.next = w -->
w @ content) &
n "= null & n ™ content &
reach_curr = {v. rtrancl_pt (% X y. Xx..Node.next = y) curr v} &
content = old content &
(curr "= null --> curr : content) &
(prev = null --> first = curr) &
(prev "= null -->
prev : content & prev " reach_curr & prev..Node.next = curr) &
(ALL v. v 7 reach_curr & v : content --> v : It n)

Figure 2.2: Loop invariant for proceduortedList.insert

Bohne infers universally quantified invariants using sytitbshape analysis
based on Boolean heaps [35,42]. This approach can be viessedeneralization
of predicate abstraction or a symbolic approach to parametbape analysis.
Abstraction predicates can be Boolean-valued state @edi¢which are either
true or false in a given state, such@sr_prev) or predicates denoting sets of
heap objects in a given state (which are true given objecin agiven statesuch
aslt_n). The latter serve as building blocks of the inferred ursedly quantified
invariants. Therack(...) annotation is used as a hint on which predicates
the analysis should use for the abstraction of which codgriemnts.

To reduce the annotation burden we use a syntactic anatysi$er abstrac-
tion predicates automatically (e.g. predicegach_curr in the loop invariant).
Furthermore, parts of the invariant often literally comeanfrthe procedure’s pre-
condition. In particular, data structure invariants atewfpreserved as long as the
heap is not mutated. We therefore precede the symbolic stregbgsis phase with
an analysis that propagates precondition conjuncts axtihescontrol-flow graph
of the procedure’s body. Using this propagation technigeewe able to infer the
first six conjuncts of the invariant. The symbolic shape wsialphase makes use
of this partial invariant to infer the full invariant shown Fig.[2.2.

Bohne’s symbolic shape analysis enables the combinatiateoision pro-
cedures by connecting the analysis with a proof obligatitteng approach that
discharges different conjuncts using different decisimtpdures, and a verification-
condition generator that preserves abstract variablestebly the inferred invari-
ants communicate information between different decisimtg@dures. This com-
bination is best illustrated with an example. Figuré 2.3xhone of the generated
verification conditions for the proceduB&ortedList.insert . It expresses

I & “(curr.Node.data < n..Node.data) & prev "= null &
Node.next' = Node.next[n := curr][prev := n] &

content’ =
{v. v "= null & rtrancl_pt (% x y. x..Node.next’ = vy) first v} &
v : content’ & n..Node.next’ "= null -->

v..Node.data <= v..Node.next'..Node.data

Figure 2.3: Verification condition for preservation of smhhess

the fact that the sortedness property is reestablishedeaféeuting the path from
the exit point of the loop through the if-branch of the coiwdial to the proce-
dure’s return point. The symbol “ denotes the loop invariant given in Fig. R.2.
This verification condition is valid. Its proof requires tfaet

content” =contentUn {n}

Denote this fact. P follows from the given assumptions. The MONA decision
procedure is able to concludeby expanding the definitions of the abstract sets
content andcontent’ . However, MONA is not able to prove the verification
condition, because proving its conclusion requires reagaover integers. On the
other hand, the CVC Lite decision procedure is able to progebnclusion given
the factP by reasoning over the abstract sets without expanding dieéimitions,
but is not able to conclud® from the assumptions, because this deduction step
requires reasoning over reachability. In order to commatei@ between the
two decision procedures, symbolic shape analysis infaraddition to the loop
invariantl , an invariant for the procedure’s return point that inckittee missing
fact P. This invariant enables CVC Lite to prove the verificatiomdiion.

3 The Bohne Algorithm

We next describe the symbolic shape analysis algorithmamphted in Bohne.
What makes this algorithm unique is the fact that abstractsition relations are
computed on-demand in each fixpoint iteration taking intooaat thecontext
in form of already explored abstract states. This approlotvathe algorithm to
take advantage of precomputed abstract transition ragfrom previous fixpoint
iterations, while maintaining sufficient precision for thealysis of linked data
structures by recomputing the transitions when the cowtetges in a significant
way.

3.1 Reachability Analysis

The input of Bohne is the procedure to be analyzed, predongispecifying the
initial states of the procedure, and a set of abstractiodipages. Bohne converts
the procedure into a set of guarded commands that corredpaihe loop-free
paths in the control-flow graph.

Figure[3 gives the pseudo code of Bohne's top-level fixpoamputation
loop. The analysis first abstracts the conjunction of theg@udare’s preconditions
obtaining an initial set of abstract states. It then compateabstract reachability
tree in the spirit of lazy abstraction [17]. Each node in tine® is labeled by a
program location and a set of abstract states, the root belreded by the initial
location and the abstraction of the preconditions. The edythe tree are labeled
by guarded commands. The reachability tree keeps tracksbfeat traces which
are used for the analysis of abstract counterexamples.

For each unprocessed node in the tree, the analysis contbataisstract post-
condition for the associated abstract states and all cuggoansitions of the cor-
responding program location. Transitions are abstractedemand taking into
account the already discovered reachable abstract statéisef associated pro-
gram location. Whenever the difference between the alrdétyvered abstract
states of the post location and the abstract post state® @irtitessed transition

10

proc Reach(init : precondition formula
linie - Initial program location
T : set of guarded commanys:
let init” = abstract(init)
let root = (location = /;;; states = init#; sons = (})
let unprocessed = {root}
while unprocessed # () do
choosen € unprocessed
for all (n.location, ¢, ") € T do
let context = { m.states | m.location = ¢}
let old = { m.states | m.location = ¢’ }
let new = AbstractPost(c, context, n.states) — old
if new # () then
let n” = (location = ¢’; states = new; sons = ()
n.sons := n.sons U {(c,n’)}
unprocessed := unprocessed U {n'}
unprocessed := unprocessed — {n}
return root

Figure 3.1: Reachability analysis in Bohne

is non-empty, a new unprocessed node is added to the treeanBgsis stops
after the list of unprocessed nodes becomes empty, indgc#tiat the fixpoint

is reached. After termination of the reachability analyfishne annotates the
original procedure with the computed loop invariants ansspa the result to the
verification condition generator, which verifies that théemed loop invariants

are sufficient to prove the target properties.

The algorithm in Figur€=3l1 is parameterized by the absttantain and its
associated operators. An abstract state of the analysigas by a set of bitvec-
tors over abstraction predicates which we call a Booleam.hdacorresponds
to a universally quantified Boolean combination of abstoacpredicates. A
Boolean heap describes all concrete states whose heaptittopad according
to the bitvectors in the Boolean heap. Focusing on algoittdatails, we now
give a detailed description of the abstract domain, abstradunction, and the
abstract post operator.

11

3.2 Symbolic Shape Analysis

Following the framework of abstract interpretation [7]tat& analysis is defined

by lattice-theoretic domains and by fixpoint iteration othex domains. Symbolic
shape analysis can be seen as a generalization of predisitaction [16]. For
predicate abstractiohe analysis computes an invariant; the fixpoint operator is
an abstraction of thpostoperator; the concrete domain consists of sets of states
(represented by closed formulas), and the abstract donfanfiaite lattice of
closed formulas.

Abstract Domain. Let Pred be a finite set of abstraction predicajgs) with an
implicit free variablev ranging over heap objects. @ibeC' is a partial mapping
from Pred to {0, 1}. We call a total cubeomplete We say that predicateoccurs
positively (occurs negatively, does not occurylif C'(p) = 1 (C(p) =0,C(p)is
undefined). We denote lubes the set of all cubes. An abstract state is a subset
of cubes, which we call Boolean heapThe abstract domain is given by sets of
Boolean heaps, i.e. sets of sets of cubes:

AbsDom = 22"

Meaning Function. The meaning function is defined on cubes, Boolean heaps,
and sets of Boolean heaps as follows:

vey= N\ ", A) =v. \/1(0), yH) =\ vH).

pePredNdom(C) CeH HeH

The meaning of a cubé€' is the conjunction of the predicates lined and their
negations. A concrete state is represented by a BooleanAiaagpll objects in
the heap are represented by some cub.imhe meaning of a sét of Boolean
heaps is the disjunction of the meaning of all its elements.

Lattice Structure. Define a partial ordeC on cubes by:

CCC < vpePred C'(p) = C(p) V (C'(p) is undefined .

For a cubeC’ and Boolean heapl/ we writeC €. H as a short notation for the
fact thatC' is complete and there exists € H such thatC T C’. The partial
orderC is extended from cubes to a preorder on Boolean heaps:

HCH £ voen aceH . cco .

For notational convenience we identify Boolean heaps uplissmption of cubes,
i.e. up to equivalence under the relati@n () C—!). We then identifyC with the

12

partial order on the corresponding quotient of Boolean behlpthe same way we
extendC from Boolean heaps to a partial order on the abstract doriaiese par-
tial orders induce Boolean algebra structures. We denote byand™~ the meet,
join and complement operations of these Boolean algebrasleBn heaps, the
abstract domain, and operations of the Boolean algebrasngtemented using
BDDs [5].

Context-sensitive Cartesian post. The abstract post operator implemented in
Bohne is a refinement of the abstract post operator on Bodleaps that is pre-
sented in [35]. Its core is given by tlentext-sensitive Cartesian post operator
This operator maps a guarded commaalformulal’, and a set of Boolean heaps
H to a set of Boolean heaps as follows:

CartesianPost(c, I', H) =
{{[H{C"|V¥p € Pred. C Cwlp#(c,T,p"PYY | C . H} | HeH}.

The actual abstraction is hidden in the computation of tetionwlp™ which is
defined by:
wip? (¢, I, F) = { C | T A4(C) = wip(c, F) } .

The Cartesian post maps each Boolean hiédp 7 to a new Boolean heafi’.
For a given state satisfyingy(H), a cubeC' in H represents a set of heap objects
in s. The Cartesian post computes the local effect of commamml each set of
objects which is represented by some complete cubié:irach complete cube
C' in H is mapped to the smallest cubé that represents at least the same set of
objects in the post states under comman@onsequently each object in a given
post state is represented by some cube in the resulting &odbleapH’, i.e. all
post states satisfy(H’). The effect ofc on the objects represented by some cube
is expressed in terms of weakest preconditions of abstragtiedicates. These
are abstracted by the functierp™.

Computing the effect ot for each cube inH locally implies that we do
not take into account the full information provided B#. In principle one can
strengthen the abstraction of weakest preconditions biypgakito account the
Boolean heap for which the post is computedp™ (¢, v(H),p). The abstract
post would be more precise, but as a consequence abstrdast@aeconditions
would have to be recomputed for each Boolean heap. This woale the anal-
ysis infeasible. Nevertheless, such global context infdrom is valuable when
updated predicates describe global properties such asaigitity. Therefore, we
would like to strengthen the abstraction using some glatfakination, accept-
ing that abstract weakest preconditions have to be recadmdcasionally. The
formula T allows this kind of strengthening. It is the key tuning paeten of
the analysis. We impose a restriction Brio ensure soundness: we say that

13

proc CartesianPost(c : guarded command
I' : context formula
H : AbsDom) : AbsDom =
let c# = Cubes
if ¢# is precomputed fofe, T') then ¢ := lookup(c, T")
else foreachp € Pred do

*im ot (' = 1] N wlp(c, T, =p) U)
[/ — 0] N W|p#(c, I, p)
letH =0
foreach H € ‘H do
let H' = RelationalProduct(H, c*)
N =N U{H}
return H’

Figure 3.2: Context-sensitive Cartesian post

is acontext formuldor a set of Boolean heags if () impliesT'. Restricting
the Cartesian post to context formulas ensures soundn#éssespect to the best
abstract post operator on sets of Boolean heaps.

Figure[3.2 gives an implementation of the Cartesian postapethat exploits
the representation of Boolean heaps as BDDs. First it prpates an abstract
transition relation=* which is expressed in terms of cubes over primed and un-
primed abstraction predicates. After that it computes é¢hational product of*
and each Boolean heap. The relational product conjoins éeBodeap with the
abstract transition relation, projects the unprimed ateis, and renames primed
to unprimed predicates in the resulting Boolean heap. Nwttthat the abstract
transition relation only depends on the abstracted commeaauad the context
formulaT’. This allows us to cache abstract transition relations amdidatheir
recomputation in later fixpoint iterations whdras unchanged.

Splitting. The Cartesian post operator maps each Boolean heap in eBsmilefin
heaps to one Boolean heap. This means that in terms of pedts¢ Cartesian
post does not exploit the fact that the abstract domain gy setsof Boolean
heaps. In the following we describe an operation that spliB®olean heap into
a set of Boolean heaps. The splitting maintains importardriants of Boolean
heaps that result from best abstractions of concrete sttesplit Boolean heaps
before applying the Cartesian post. This increases theésaof the analysis by
carefully exploiting the disjunctive completeness of theteact domain.
Traditional shape analysis uses the idea of summary nodsisttoguish ab-
stract objects that represent multiple concrete objeci® fabstract objects that

14

represent single objects. This information is useful feréasing the precision of
the abstract post operator. We can mimic this idea by addistraction predi-
cates that denote singleton sets, e.g. by adding predieapesssing properties
such as that an object is pointed to by some local variabla.Bbolean heap!/
is the best abstraction of some concrete state then for suggleton predicate

it contains exactly one complete cube with a positive o@wre ofp. Boolean
heaps resulting from the Cartesian post typically do notthis property which
makes the analysis imprecise. Therefore we split each Boddeap before ap-
plication of the Cartesian post into a set of Boolean heaph #uat the above
property is reestablished. Lét be the subset of abstraction predicates denoting
singletons then thsplitting operatoris defined as follows:

Split(H) = split(P,H)
split(0, H) = H
split({p} UP',H) = letC,=[p— 1]andC_, =[p+— 0]in
Unensplit(P . { H{C,} U{C} | C e (HT{G}) }) -

The splitting operator takes a set of Boolean helpas arguments. For each
singleton predicatg and Boolean heafd it splits / into a set of Boolean heaps.
Each of the resulting Boolean heaps corresponds, tiout contains only one of the
complete cubes it/ that have a positive occurrenceof The splitting operator
IS sound, i.e. satisfies:

Y(Split(P,’H)) = ~v(H) .

Cleaning. Splitting might introduce unsatisfiable Boolean heaps.abse it
is done propositionally without taking into account the satics of predicates.
Unsatisfiable Boolean heaps potentially lead to spuriousitewsexamples in the
analysis and hence should be eliminated. The same applees&s that are un-
satisfiable with respect to other cubes within one Booleap hé/e use aleaning
operatorto eliminate unsatisfiable Boolean heaps and unsatisfiattlescwithin
satisfiable Boolean heaps. At the same time we strengthddotblean heaps with
the guard of the commands before the actual computationeo€C#rtesian post.
The cleaning operator is defined as follows:

Clean(F,H) = letH,={H e H|FAN~(H) [~ false } in
{{Ce.H|FANyH)Ny(C)}-false} | HE H1} .
The operatoflean takes as arguments a formuig(e.g. the guard of a command)
and a set of Boolean heaps. It first removes all Boolean hbaparte unsatisfiable
with respect ta. After that it removes from each remaining Boolean héaall

complete cubes which are unsatisfiable with respedt &and /. The cleaning
operator is sound, i.e. strengthérwith respect taF:

FA~(H) = y(Clean(F,H)) = ~(H) -

15

abstract(F) = letH={C|CE-F}in
Clean(F, Split(H))

proc AbstractPost(c : guarded command
context : AbsDom,
Ho : AbsDom) : AbsDom =
let H = Clean(guard(c), Split(Ho))
let ' = x(context LI H)
return CartesianPost(c, I', H)

Figure 3.3: Bohne’s abstract post operator

Abstract post operator. Figure[3:B defines the abstract post operator used in
Bohne. It is defined as the composition of the splitting, cleg, and the Carte-
sian post operator. The functionis a context operatar A context operator is
a monotone mapping from sets of Boolean heaps to a contexufar It con-
trols the trade-off between precision and efficiency of thsti@act post operator.
Our choice ofx is described in the next section. Figlirel 3.3 also defineshihe a
straction function that is used to compute the initial seBoblean heaps. For
abstracting a formuld’ the functionabstract first computes a Boolean hedp
which is the complement of an under-approximatioméf. It then splitsH with
respect to singleton predicates and strengthens the f®sthie original formula
F. We compute the abstraction indirectly because it allowsouguse all the
functionality that we need for computing the abstract ppstrator. We also avoid
computing the best abstraction function for the abstrastalo, because the com-
putational overhead is not justified in terms of the gainestigion.

Assuming that is in fact a context operator, soundnes\bétractPost fol-
lows from the soundness of all its component operators. M@kesoundness is
still guaranteed if the underlying validity checker is ingplete.

3.3 Quantifier Instantiation

The context information used to strengthen the abstracigiven by the set of
Boolean heaps that are already discovered at the respectigeam location. If
we take into account all available context for the abstosctf a transition then
we need to recompute the abstract transition relation iryateration of the fixed
point computation. Otherwise the analysis would be unsoumarder to avoid
unnecessary recomputations we use the operatorabstract the context by a
context formula that less likely changes from one iteratmthe next. For this

16

Var — object-valued program variables
instantiate(H : Boolean heap: formula=

let cube(x) = | |(H M {[(z =v) — 1]})in
/\ 7(cube(x))[v := 2]

rE€Var

kK(H)=letH = |_|H in instantiate(H)
Figure 3.4: Quantifier instantiation and the context omerat

purpose we introduce a domain-specific quantifier instaatidechnique. We
use this technique not only in connection with the contex@rafor, but more
generally to eliminate any universal quantifier in a deciggoocedure query that
originates from the concretization of a Boolean heap. Timsieates the need for
the underlying decision procedures to deal with quantifiers

We observed that the most valuable part of the context isifieemnation avail-
able over objects pointed to by program variables. This s @uthe fact that
transitions always change the heap with respect to thesetsbj\We therefore in-
stantiate Boolean heaps to objects pointed to by stackblasaBohne automat-
ically adds an abstraction predicate of the form= v) for every object-valued
program variable:. A syntactic backwards analysis of the procedure’s postieon
tions is used to determine which of these predicates areamti@t each program
point.

Figure[3.4 defines the functiomstantiate that uses the above mentioned pred-
icates to instantiate a Boolean hedpto a quantifier free formula (assuming ab-
straction predicates itself are quantifier free). For eypeogram variable: it com-
putes the least upper bound of all cubegdrnwhich have a positive occurrence
of predicate(xz = v). The resulting cube is concretized and the free variatite
substituted by program variahte The functionk maps a set of Boolean hedfs
to a formula by taking the join off and instantiating the resulting Boolean heap
as described above. One can shown that indeed a context operator, i.8.is
monotone and the resulting formula is a context formulaHor

3.4 Semantic Caching

Abstracting context does not avoid that abstract transitelations have to be
recomputed occasionally in later fixpoint iterations. \éer we recompute ab-

17

stract transition relations we would like to reuse the rssubm previous abstrac-
tions. We do this on the level of decision procedure callsdghing the queries
and the results of the calls. The problem is that the contexhdlae are passed
to the decision procedure as part of the queries, so a sigptactic caching of
formulas is ineffective. However, the context consists lbtiscovered abstract
states at the current iteration. Therefore it changes nooicdlly from one it-
eration to the next. The monotonicity of the context operatguarantees that
context formulae, too, increase monotonically with respeche entailment or-
der. We therefore cache formulas by keeping track of thegdarder on the con-
text. Since context formulae occur in the antecedents ofjtiezies, this allows
us to reuse negative results of entailment checks from quewixpoint iterations.
This method is effective because in practice the number tadlements which are
invalid exceeds the number of valid ones.

Furthermore, formulas are cached up to alpha equivalenicee $he cache
is self-contained, this enables caching results of datigiocedure calls not only
across different fixpoint iterations in the analysis of onecedure, but even across
the analysis of different procedures. This yields subg&hithprovements for
procedures that exhibit some similarity, which opens upptbgsibility of using
our analysis in an interactive context.

3.5 Propagation of Precondition Conjuncts

It often happens that parts of loop invariants literally @from the procedure’s
preconditions. A common situation where this occurs isdéh@aiocedure executes
a loop to traverse a data structure performing only updatesark variables and
after termination of the loop the data structure is manitgalaln such a case the
data structure invariants are trivially preserved whileexing the loop. Using an
expansive symbolic shape analysis to infer such invari@nitsappropriate. We
therefore developed a fast but effective analysis thatggafes conjuncts from
the precondition across the procedure’s control-flow grdiis propagation pre-
cedes the symbolic shape analysis, such that the lattelesabhssume the previ-
ously inferred invariants.

The propagation analysis works as follows: it first splits grocedure’s pre-
condition into a conjunction of formulas and assumes aljwacts at all program
locations. It then recursively removes a conjuficit program locations that have
an incoming control flow edge from some location where eifh¢rF' has been
previously removed or (2) wherg' is not preserved under post of the associ-
ated command. After termination of the analysis (none ofrthes for removal
applies anymore) the remaining conjuncts are guarantebd tovariants at the
corresponding program points.

18

The preservation of conjuncts is checked by dischargingréication con-
dition (via decision procedure calls). The use of decisimtedures makes this
analysis more general than the syntactic approach for congpiuame conditions
for loops used in ESC/Java-like desugaring of loops [10padrticular, the prop-
agation is still applicable in the presence of heap mantfmra that preserve the
invariants in each loop-free code fragment.

19

4 Experiments

We applied Bohne to verify operations on various data stmest Our experi-
ments cover data structures such as singly-linked listsbigeinked lists, two-
level skip lists, trees, trees with parent pointers, soli®d, and arrays. The
verified properties include: (1) simple safety propertms;h as absence of null
pointer dereferences and array bounds checks; (2) complexsiructure con-
sistency properties, such as preservation of the treetgstgyarray invariants, as
well as sortedness; and (3) procedure contracts, statinghew the set of ele-
ments stored in a data structure is affected by the procedure

Figure[41 shows the results for a collection of benchmauksing on a 2
GHz Pentium M with 1 GB memory. The Jahob system is implenteimteOb-
jective Caml and compiled to native code. Running timesuidelinference of
loop invariants. This time dominates the time for a final ¢h@rsing verification-
condition generator) that the resulting loop invariants sufficient to prove the
postcondition. The benchmarks can be found on the Jahobgbregb page [21].

We also examined the impact of our quantifier instantiatiod @aching on
the running time of the analysis. We have found that disgbdiaching slows
down the analysis by 1.3 to 1.5 times, while disabling inséion slows down
the analysis by 1.2 to 3.6 times.

benchmark used DP # predicates # DP calls| runningtime

total (user provided) total (cache hits) total (DP)
List.reverse MONA 7(2) 371 (22%) 4s (72%)
DLL.addLast | MONA 7(2) 156 (13%) 3s (65%)
Skiplist.add MONA 16 (3) 770 (20%) 35s (74%)
Tree.add MONA 11 (3) 983 (27%) 81s (91%)
ParentTree.add MONA 11 (3) 979 (27%) 83s (89%)
SortedList.add| MONA, CVC lite 11 (3) 541 (17%) 18s (66%)
Linear.arraylnv| CVC lite 7(5) 882 (52%) 57s (97%)

Figure 4.1: Results of Experiments

20

Note that our implementation of the algorithm is not highipéd in terms of
aspects orthogonal to Bohne’s algorithm, such as typeantar of internally ma-
nipulated Isabelle formulas. We expect that the runnings$irwould be notably
improved using more efficient implementation of Hindleyhhir type reconstruc-
tion. In previous benchmarks without type reconstructivaverage 97% of the
time was spent in the decision procedures. The most progndimections for
improving the analysis performance are therefore 1) depépynore efficient de-
cision procedures, and 2) further reducing the number asaecprocedure calls.

In addition to the presented examples, we have used thecadioin condition
generator to verify examples such as array-based impletens of containers.
The Bohne algorithm could also infer loop invariants in seghmples given the
appropriate abstraction predicates.

21

5 Conclusions

We have presented Bohne, a data structure analysis algdoiised on symbolic
shape analysis that generalizes predicate abstractioméard Boolean algebra
expressions over sets given by predicates on objects. Vediawn that this ab-
straction can be fruitfully combined with a collection ofailgon procedures that
operate on independent subgoals of the same proof oblgaitee effect of such

an approach is that the analysis synthesizes facts thatsateta communicate
information between different decision procedures. Assaltewe were able to

combine precise reasoning about reachability in treeslikectures with reasoning
about first-order properties in general graphs and intettbnaetic properties. As

an example that illustrates this combination, we have eetifi sorted linked data
structure without specializing the analysis to sortingeaahability properties.

In addition, we have deployed a range of techniques thaifgigntly improve
the running time of the analysis and the level of automatiomgared to direct
application of the algorithm. These techniques includeexdrdependent finite-
state abstraction, semantic caching of formulas, propagatff conjuncts, and
domain-specific quantifier instantiation. Our current elgrece with the Bohne
analysis in the context of the Hob and Jahob data structurBce¢ion systems
suggests that it is effective for verifying a wide range ofadstructures and that
its running time makes it usable for verification of such ctergproperties.

22

Bibliography

[1] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by jwate abstraction.
In VMCALI'05, 2005.

[2] T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. famatic predicate
abstraction of C programs. FProc. ACM PLD] 2001.

[3] C. Barrett and S. Berezin. CVC Lite: A new implementatmfithe coop-
erating validity checker. In R. Alur and D. A. Peled, editdPsoceedings
of the16'" International Conference on Computer Aided VerificatioAYC
'04), volume 3114 ol ecture Notes in Computer Sciengmages 515-518.
Springer-Verlag, July 2004. Boston, Massachusetts.

[4] J. Bingham and Z. Rakamari€. A logic and decision praredor predicate
abstraction of heap-manipulating programs. TechnicabRepR-2005-19,
UBC Department of Computer Science, September 2005.

[5] R. E. Bryant. Graph-based algorithms for boolean fusrctinanipulation.
IEEE Transactions on ComputeiS-35(8):677-691, August 1986.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoimirexpressive
description logics with fixpoints based on automata on itditrees. IrProc.
of the 16th Int. Joint Conf. on Artificial Intelligence (1JC29), pages 84—
89, 1999.

[7] P. Cousot and R. Cousot. Abstract interpretation: a edifattice model for
static analysis of programs by construction or approxiamedif fixpoints. In
Proc. 4th POPL.1977.

[8] D. Distefano, P. O'Hearn, and H. Yang. A local shape asialypased on
separation logic. ITACAS’06 2006.

[9] C. Flanagan and S. Qadeer. Predicate abstraction fovaa verification.
In Proc. 29th ACM POP].2002.

23

[10] C. Flanagan and J. B. Saxe. Avoiding exponential expiosGenerating
compact verification conditions. Iroc. 28th ACM POP|.2001.

[11] P. Fradet and D. L. Métayer. Shape typesPtoc. 24th ACM POPL1997.

[12] L. Georgieva and P. Maier. Description logics for shapalysis. InProc.
3rd SEFM pages 321-330, 2005.

[13] R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclicagra InProc.
23rd ACM POPL.1996.

[14] R. Ghiya and L. J. Hendren. Connection analysis: A peattnterprocedu-
ral heap analysis for C. IRroc. 8th Workshop on Languages and Compilers
for Parallel Computing 1995.

[15] E. Gradel. Decision procedures for guarded logics Alomated Deduc-
tion - CADE16. Proceedings of 16th International Confeenn Automated
Deduction, Trento, 199%olume 1632 oL.NCS Springer-Verlag, 1999.

[16] S. Grafand H. Saidi. Construction of abstract stat@lysavith pvs. InProc.
9th CA\, pages 72-83, 1997.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.ylLalzstraction. In
POPL, 2002.

[18] N. D. Jones and S. S. MuchnilRrogram Flow Analysis: Theory and Ap-
plications chapter Chapter 4: Flow Analysis and Optimization of LIIge-
Structures. Prentice Hall, 1981.

[19] N. Klarlund, A. Mgller, and M. I. Schwartzbach. MONA irfgmentation
secrets. IrProc. 5th International Conference on Implementation apd A
plication of AutomataLNCS, 2000.

[20] N. Klarlund and M. I. Schwartzbach. Graph types. Rroc. 20th ACM
POPL, Charleston, SC, 1993.

[21] V. Kuncak. The Jahob project web page.
http://www.mit.edutvkuncak/projects/jahob/, 2006.

[22] V. Kuncak, S. Lahiri, R. Rugina, E. Yahav, and T. Wies. iyjposal to estab-
lish shape analysis benchmarks. POPL 2006, Charlestorth &auolina,
January 2006.

[23] V. Kuncak, P. Lam, and M. Rinard. Role analysis Annual ACM Symp. on
Principles of Programming Languages (POPRPO2.

24

[24] S. K. Lahiri and R. E. Bryant. Indexed predicate disagvier unbounded
system verification. II€AV’04, 2004.

[25] S. K. Lahiriand S. Qadeer. Verifying properties of widlunded linked lists.
In POPL’06, 2006.

[26] P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifigrdata structure
consistency. Inl4th International Conference on Compiler Construction
(tool demo) April 2005.

[27] P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob projeabapage.
http://hob.csail.mit.edu, 2004.

[28] O. Lee, H. Yang, and K. Yi. Automatic verification of poam programs
using grammar-based shape analysisESOP 2005.

[29] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastaand G. Yorsh.
Simulating reachability using first-order logic with apaltions to verifica-
tion of linked data structures. BADE-2Q 2005.

[30] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingast analysis to
work for verification: A case study. limternational Symposium on Software
Testing and Analysj2000.

[31] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Ragd abstraction
and canonical abstraction for singly-linked lists.6tn VMCAI pages 181—
198, 2005.

[32] A. Mgller and M. I. Schwartzbach. The Pointer Asserti@gic Engine. In
Programming Language Design and ImplementatR001.

[33] G. Nelson. Verifying reachability invariants of lindtestructures. 1iPOPL,
1983.

[34] T. Nipkow, L. C. Paulson, and M. Wenzdbkabelle/HOL: A Proof Assistant
for Higher-Order Logi¢ volume 2283 oL NCS Springer-Verlag, 2002.

[35] A. Podelski and T. Wies. Boolean heaps.Froc. Int. Static Analysis Sym-
posium 2005.

[36] S. Ranise and C. G. Zarba. A decidable logic for pointegpams manipu-
lating linked lists, 2005.

[37] J. Reineke. Shape analysis of sets. Master’s thesisetsitat des Saarlan-
des, Germany, June 2005.

25

[38] T. Reps, M. Sagiv, and A. Loginov. Finite differencinglogical formulas
for static analysis. IfProc. 12th ESOP2003.

[39] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shapeyamalia 3-valued
logic. ACM TOPLAS24(3):217-298, 2002.

[40] A.Voronkov. The anatomy of Vampire (implementing lwott-up procedures
with code trees)Journal of Automated Reasonintp(2):237-265, 1995.

[41] C. Weidenbach. Combining superposition, sorts anittsy. In A. Robin-
son and A. Voronkov, editordiandbook of Automated Reasonjingpl-
ume ll, chapter 27, pages 1965-2013. Elsevier Science, 2001

[42] T. Wies. Symbolic shape analysis. Master’s thesisyensitat des Saarlan-
des, Saarbriicken, Germany, September 2004.

[43] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard.eléi constraint
analysis. InProc. Int. Conf. Verification, Model Checking, and Abstract
Interpratation 2006.

[44] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bojaaji. A logic
of reachable patterns in linked data-structured?roc. Foundations of Soft-
ware Science and Computation Structures (FOSSACS 22066.

[45] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computimgst-precise
abstract operations for shape analysisl®th TACAS2004.

[46] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical chaerizations of
heap abstractiong.OCL, 2005. (to appear).

[47] G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automasiswane/guarantee
reasoning for heap-manupilating programs1&h AIOOL Worksho®005.

[48] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining thexarproving with
static analysis for data structure consistencylnbernational Workshop on
Software Verification and Validation (SVV 2008kattle, November 2004.

26

	Introduction
	Contributions

	Motivating Example
	The Bohne Algorithm
	Reachability Analysis
	Symbolic Shape Analysis
	Quantifier Instantiation
	Semantic Caching
	Propagation of Precondition Conjuncts

	Experiments
	Conclusions

