
Satisfiability Modulo Recursive Programs

Philippe Suter⋆, Ali Sinan Köksal, and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. We present a semi-decision procedure for checking satisfiabil-
ity of expressive correctness properties of recursive first-order functional
programs. In our approach, both properties and programs are expressed
in the same language, a subset of Scala. We implemented our proce-
dure and integrated it with the Z3 SMT solver and the Scala compiler.
Our procedure is sound for counterexamples and for proofs of terminat-
ing functions. It is terminating and thus complete for many important
classes of specifications, including all satisfiable formulas and all formulas
where recursive functions satisfy certain syntactic restrictions. Using our
system, Leon, we verified detailed correctness properties for functional
data structure implementations, as well as syntax tree manipulations.
We have found our system to be fast for both finding counterexamples
and finding correctness proofs, and to scale to larger programs than al-
ternative techniques.

1 Introduction

This paper explores the problem of reasoning about functional programs. We
reduce this problem to solving constraints representing precisely program se-
mantics. Our starting point are SMT solving tools [22, 3, 10], which proved to
be important drivers of advances in verification of software and hardware [2,12].
SMT solvers are efficient for deciding quantifier-free formulas in the language
of useful theories, such as linear integer arithmetic, algebraic data types, and
finite sets. Nonetheless, the operations available in the existing theories are lim-
ited, which prevents verification against more detailed specifications, as well as
automated discovery of more complex invariants needed for verification. To in-
crease the power of SMT-based reasoning, we extend the expressive power of
formulas and allow them to contain user-defined recursive functions. By insist-
ing on computable (as opposed to arbitrarily axiomatizable) functions, we obtain
familiarity to developers, as well as efficiency and completeness of reasoning.

Our technique extends SMT solvers with recursive function definitions, so it
can be used for all tasks where SMT solvers are used, including verification of
functional and imperative programs, synthesis, and test generation. In this paper
we introduce this technique and its concrete implementation as a verifier, named
Leon, for a functional subset of Scala [25]. Leon enables the developer to state the
properties as pure Scala functions and compile them using the standard Scala

⋆ Philippe Suter was supported by the Swiss NSF Grant 200021 120433.

2 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

compiler. Developers never leave the familiar world of Scala; they use the ex-
isting library for dynamically checking executable contracts [24] to describe the
desired properties. As a result, run-time contract violations can be found using
testing, which would be difficult if there was a significant gap between annota-
tion and implementation language [32]. Because we can use other functions to
specify properties of the functions of interest, we obtain a very expressive speci-
fication language. We can use abstraction functions to specify abstract views of
data structures. We can naturally specify properties such as commutativity and
idempotence of operations, which require multiple function invocations and are
not easy to express in type systems and many other specification approaches.

Leon generates verification conditions that enforce 1) that the functions meet
their contracts, 2) that the preconditions at all function invocations are met,
and that 3) the pattern-matching is complete for given preconditions. Note that,
to define an external property of a set of functions, the developer can write a
boolean-valued test function that invokes the functions of interest, and state
a contract that the function always returns true. Leon searches in parallel for
proofs and counterexamples for all generated verification conditions.

Contributions. The core technical result of our paper is an algorithm for com-
bined proof and counterexample search, as well as a theoretical and experimental
analysis of its effectiveness. We summarize our contributions as follows:

– We introduce a procedure for satisfiability modulo computable functions,
which integrates DPLL(T) solving with unfolding of function definitions and
validation of candidate models, which returns a model or UNSAT.

– We establish that our satisfiability procedure is:

1. sound for models: every model it returns makes the formula true;

2. terminating for all formulas that are satisfiable;

3. sound for proofs: if it reports UNSAT, then there are no models;

4. terminating for all sufficiently surjective abstractions [28];

5. satisfying the above properties if the declared functions are always termi-
nating; more generally, UNSAT implies no “terminating models”, more-
over, each returned model leads to true.

– We describe the implementation of our system, named Leon, as a plugin for
the Scala compiler, which uses only existing constructs in Scala for specifying
functions and properties. The system integrates with the SMT solver Z3.

– We present our results in verifying over 60 functions manipulating integers,
sets, and algebraic data types, with detailed invariants of complex data struc-
tures such as red-black trees and amortized heap, and user code such as syn-
tax tree manipulation. Leon verified detailed correctness properties about
the content of data as well as completeness of pattern-matching expressions.

We have found that Leon was fast for finding both counterexamples and proofs for
verification conditions. We thus believe that the algorithm holds great promise
for practical verification of complex properties of computer systems. Leon and
all benchmarks are available from http://lara.epfl.ch.

http://lara.epfl.ch

Satisfiability Modulo Recursive Programs 3

2 Examples

We now illustrate how Leon can be used to prove interesting properties about
functional programs. Consider the following recursive datatype, written in Scala
syntax [25], that represent formulas of propositional logic:

sealed abstract class Formula
case class And(lhs: Formula, rhs: Formula) extends Formula
case class Or(lhs: Formula, rhs: Formula) extends Formula
case class Implies(lhs: Formula, rhs: Formula) extends Formula
case class Not(f: Formula) extends Formula
case class PropVar(id: Int) extends Formula

We can write a recursive function that simplifies a formula by rewriting impli-
cations into disjunctions as follows:

def simplify(f: Formula): Formula = (f match {
case And(lhs, rhs) ⇒ And(simplify(lhs), simplify(rhs))
case Or(lhs, rhs) ⇒ Or(simplify(lhs), simplify(rhs))
case Implies(lhs, rhs) ⇒ Or(Not(simplify(lhs)), simplify(rhs)) // note the replacement
case Not(f) ⇒ Not(simplify(f))
case PropVar() ⇒ f

}) ensuring(isSimplified())

Note that ensuring is an infix command in Scala, taking the entire function body
as the left argument and taking a lambda function as the right argument. The ex-
pression e ensuring p indicates that p(e) should hold for all values of the function
parameters. To denote an anonymous function, λx.B, in Scala we write x⇒B.
When there is only one occurrence of x in B, we can denote this occurrence by
and omit the binder, so both (+1) and x⇒x+1 denote the increment function.

We can write an executable function isSimplified that checks whether a given
formula contains an implication as a subformula, and use it in a contract. The
ensuring statement in the example is a postcondition written in Scala notation
[24], stating that the function isSimplified evaluates to true on the result. We
define isSimplified recursively as follows:

def isSimplified(f: Formula): Boolean = f match {
case And(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Or(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Implies(,) ⇒ false

case Not(f) ⇒ isSimplified(f)
case PropVar() ⇒ true

}

Note that a developer would also typically write such an executable specification
function for testing purposes. Using our procedure for satisfiability modulo com-
putable functions, Leon can prove that the postcondition of simplify is satisfied
for every input formula f.

Such subsets of values denoted by algebraic data types are known as re-
finement types [13]. Refinement types that are defined using functions such as
isSimplified are in fact sufficiently surjective abstractions [28], which implies that

4 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

our system is a decision procedure for such constraints (see Section 3.1). This is
confirmed with our experiments—our tool is predictably fast on such examples.

Suppose now that we wish to prove that simplifying a simplified formula
does not change it further. In other words, we want to prove that the property
simplify(simplify(f)) == simplify(f) holds for all formulas f. Because our program-
ming and specification languages are identical, we can write such universally
quantified statements as functions that return a boolean and whose postcondi-
tion is that they always return true. In this case, we would write:

def simplifyIsStable(f: Formula) : Boolean = {simplify(simplify(f)) == simplify(f)} holds

Because such specifications are common, we use the notation holds instead of the
more verbose postcondition stating that the returned result should be an iden-
tity function with boolean argument ensuring(res⇒res). Our verification system
proves this property instantly.

Another application for our technique is verifying that pattern-matching ex-
pressions are defined for all cases. Pattern-matching is a very powerful construct
commonly found in functional programming languages. Typically, evaluating a
pattern-matching expression on a value not covered by any case raises a runtime
error. Because checking that a match expression never fails is difficult in non-
trivial cases (for instance, in the presence of guards), compilers in general cannot
statically enforce this property. For instance, consider the following function that
computes the set of variables in a propositional logic formula, assuming that the
formula has been simplified:

def vars(f: Formula): Set[Int] = {
require(isSimplified(f))
f match {

case And(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Or(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Not(f) ⇒ vars(f)
case PropVar(i) ⇒ Set[Int](i) }}

Here ++ denotes the set union operation in Scala. Although it is implied by the
precondition that all cases are covered, the Scala compiler on this example will
issue the warning:

Logic.scala: warning: match is not exhaustive!

missing combination Implies

Previously, researchers have developed specialized analyses for checking such ex-
haustiveness properties [9, 11]. Our system generates verification conditions for
checking the exhaustiveness of all pattern-matching expressions, and then uses
the same procedure to prove or disprove them as for the other verification con-
ditions. It quickly proves that this particular example is exhaustive by unrolling
the definition of isSimplified sufficiently many times to conclude that t can never
be an Implies term. Note that our system will also prove that all recursive calls
to vars satisfy its precondition; it performs sound assume-guarantee reasoning.

Consider now the following function, that supposedly computes a variation
of the negation normal form of a formula f:

Satisfiability Modulo Recursive Programs 5

def nnf(formula: Formula): Formula = formula match {
case Not(Not(f)) ⇒ nnf(f)
case And(lhs, rhs) ⇒ And(nnf(lhs), nnf(rhs))
case Not(And(lhs, rhs)) ⇒ Or(nnf(Not(lhs)), nnf(Not(rhs)))
...
case Implies(lhs, rhs) ⇒ Implies(nnf(lhs), nnf(rhs))

}

From the supposed roles of the functions simplify and nnf, one could conjecture
that the operations are commutative. Because of the treatment of implications
in the above definition of nnf, though, this is not the case. We can disprove this
property by finding a counterexample to

def wrongCommutative(f: Formula) : Boolean = {
nnf(simplify(f)) == simplify(nnf(f))} holds

On this input, Leon reports

Error: Counter-example found:

f -> Implies(Not(And(PropVar(48), PropVar(47))),

And(PropVar(46), PropVar(45)))

A consequence of our algorithm is that Leon never reports false positives (see
Section 3.1). In this particular case, the counterexample clearly shows that there
is a problem with the treatment of implications whose left-hand side contains a
negation. Counterexamples such as this one are typically short and Leon finds
them quickly.

As a final example of the expressive power of our system, we consider the
question of showing that an implementation of a collection implements the
proper interface. Consider the implementation of a set as red-black trees. (We
omit the datatype definition in the interest of space.) To specify the operation
on the trees in terms of the set interface that they are supposed to implement,
we define an abstraction function that computes from a tree the set it represents:

def content(t : Tree) : Set[Int] = t match {
case Empty() ⇒ Set.empty
case Node(, l, v, r) ⇒ content(l) ++ Set(v) ++ content(r) }

Note that this is again a function one would write for testing purposes. The
specification of insertion using this abstraction becomes very natural, despite
the relative complexity of the operations:

def ins(x: Int, t: Tree): Tree = (t match {
case Empty() ⇒ Node(Red(),Empty(),x,Empty())
case Node(c,a,y,b) ⇒ if (x < y) balance(c, ins(x, a), y, b)

else if (x == y) Node(c,a,y,b)
else balance(c,a,y,ins(x, b)) }

}) ensuring (res⇒ content(res) == content(t) ++ Set(x))

We also wrote functions that check whether a tree is balanced and whether it
satisfies the coloring properties. We used these checks to specify insertion and
balancing operations. Leon proved all these properties of red-black tree opera-
tions. We present more such results in Section 5.

6 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

3 Our Satisfiability Procedure

In this section, we describe our algorithm for checking the satisfiability of for-
mulas modulo recursive functions. We start with a description of the supported
class of formulas. Let L be a base theory (logic) with the following properties:

– L is closed under propositional combination and supports boolean variables
– L supports uninterpreted function symbols
– there exists a complete decision procedure for L

Note that the logics supported by DPLL(T) SMT solvers naturally have these
properties.1

Let LΠ be the extension of L with interpreted function symbols defined in a
program Π . The interpretation is given by an expression in LΠ (the implemen-

tation). To facilitate proofs and the description of program invariants, functions
in Π can also be annotated with a pre- and postcondition. We denote the im-
plementation, pre- and postcondition of a function f in Π by implΠf , precΠ

f and

postΠf respectively. The free variables of these expressions are the arguments of f

denoted argsΠf , as well as, for the postcondition, a special variable ρ that denotes
the result of the computation.

def solve(φ, Π) {
(φ, B) = unrollStep(φ, Π, ∅)
while(true) {

decide(φ ∧
V

b∈B
b) match {

case ”SAT” ⇒ return ”SAT”
case ”UNSAT” ⇒ decide(φ) match {

case ”UNSAT” ⇒ return ”UNSAT”
case ”SAT” ⇒ (φ, B) = unrollStep(φ, Π, B) }}}}

Fig. 1. Pseudo-code of the solving algorithm. The decision procedure for the base
theory is invoked through the calls to decide.

Figure 1 shows the pseudo-code of our algorithm. It is defined in terms of two
subroutines, decide, which invokes the decision procedure for L, and unrollStep,
whose description follows. Note that the algorithm maintains, along with a for-
mula φ, a set B of boolean literals. We call these control literals and their role
is described below.

At a high-level, the role of unrollStep is to give a partial interpretation to
function invocations, which are treated as uninterpreted in L. This is achieved
in two steps: 1) introduce definitions for one unfolding of the (uninterpreted)
function invocations in φ and 2) generate an assignment of control literals that

1 In Leon, L is the multi-sorted combination of uninterpreted function symbols with
integer linear arithmetic and user-defined algebraic datatypes and finite sets.

Satisfiability Modulo Recursive Programs 7

size(lst) = lst match {
case Nil ⇒ 0
case Cons(, xs) ⇒ 1 + size(xs)

}

ψ ≡ size(lst) = tf
∧ bf ⇔ lst = Nil
∧ bf ⇒ tf = 0
∧ ¬bf ⇒ tf = 1 + size(lst.tail)

Fig. 2. Function definition and its translation into clauses with control literals.

guard newly introduced function invocations. As an example, consider a formula
φ that contains the term size(lst), where lst is a list and size is the usual recursive
definition of its length. Figure 2 shows on the left the definition of size(lst) and
on the right its encoding into clauses with fresh variables.

This encoding into clauses is obtained by recursively introducing, for each if-
then-else term, a boolean variable representing the truth value of the branching
condition, and another variable representing the value of the if-then-else term.

In addition to conjoining ψ to φ, unrollStep would produce the set of literals
{bf}. The set should be understood as follows: the decision procedure for the
base theory L, which treats size as an uninterpreted function symbol, if it reports
SAT, can only be trusted when bf is set to true. Indeed, if bf is false, the value
used for tf and hence for the term size(lst) may depend on size(lst.tail), which is
undefined (because its definition has not yet been introduced). A subsequent
call to unrollStep on φ ∧ ψ would introduce the definition of size(lst.tail). When
unrolled functions have a precondition, the definitions introduced for their body
and postcondition are guarded by the precondition. This is done to prevent
an inconsistent function definition with a precondition equivalent to false from
making the formula unsatisfiable.

The formula in L without the control literals can be seen as an under-

approximation of the formula with the semantics of the program defining LΠ , in
that it accepts all the same models plus some models in which the interpretation
of some invocations is incorrect, and the formula with the control literals is an
over-approximation, in the sense that it accepts only the models that do not rely
on the guarded invocations. This explains why the UNSAT answer can be trusted
in the first case and the SAT case in the latter.

In Figure 1, the third argument of calls to unrollStep denotes the set of con-
trol literals introduced at previous steps. An invocation of unrollStep will insert
definitions for all or only some function terms that are guarded by such con-
trol literals, and the returned set will contain all literals that were not released
as well as the newly introduced ones. From an abstract point of view, when a
new control literal is created, it is inserted in a global priority queue with all
the function invocations that it guards. An important requirement is that the
dequeuing must be fair : any control literal that is enqueued must eventually
be dequeued. This fairness condition guarantees that our algorithm is complete
for satisfiable formulas (see Section 3.1). Using a first-in first-out policy, for in-
stance, is enough to guarantee fairness and thus completeness. Finally, note that
unrollStep not only adds definitions for the implementation of the function calls,

8 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

but also for their postcondition when it exists. We discuss the issue of reliably
using these facts in Section 3.1.

Implementation notes. While the description of solve suggests that we need
to query the solver twice in each loop iteration, we can in practice use the
solver’s capability to output unsat cores to detect with a single query whether
the conjunction of control literals

∧

b∈B b played any role in the unsatisfiability.
Similarly, when adding the new constraints obtained from unrollStep, we can use
the solver’s incremental reasoning and push the new constraints directly, rather
than building a new formula and issuing a new query. SMT solvers can thus
exploit at any time facts learned in previous iterations.

Finally, although we noted that we cannot in general trust the underlying
solver when it reports SAT for the formula φ without control literals, it could
still be that the assignment the solver guessed for the uninterpreted function
symbols is valid. Because testing an assignment is fast (it amounts to executing
the specification), we can therefore sometimes report SAT early and save time.

3.1 Properties of Our Procedure

The properties of our procedure rely on the following two assumptions.

Termination: All precondition computations terminate for all values. Each
function in the program Π terminates on each input for which the pre-
condition holds, and similarly for each postcondition. Tools such as [14,1] or
techniques developed for ACL2 [20] could be used to establish this property.

Base theory solver soundness: The underlying solver is complete and sound
for the (quantifier-free) formulas in the base theory. The completeness means
that each model that the solver reports should be a model for the conjunc-
tion of all constraints passed to the solver. Similarly, soundness means that
whenever the solver reports unsatisfiability, false can be logically concluded
modulo the solver’s theories from these constraints.

We use the above assumptions throughout this section. Note, however, that
even without the termination assumption, a counterexample reported by Leon is
never a counterexample that generates a terminating execution of the property
resulting in the value true, so it is a counterexample worth inspecting.

Soundness for Proofs. Our algorithm reports unsatisfiability if and only if the
underlying solver could prove unsatisfiable the problem given to it without the
control literals. Because the control literals are not present, some function appli-
cations are left uninterpreted, and the conclusion that the problem is unsatisfi-
able therefore applies to any interpretation of the remaining function application
terms, and in particular to the one conforming to the correct semantics.

From the assumption that the underlying solver only produces sound proofs,
it suffices to show that all the axioms communicated to the solver as a result of
the unrollStep invocations are obtained from sound derivations. These are correct
by definition: they are logical consequences obtained by the definition of func-
tions, and these definitions are conservative when the functions are terminating.

Satisfiability Modulo Recursive Programs 9

An important consideration when discussing soundness of the post axioms is
that any proof obtained with our procedure can be considered valid only when
the following properties about the functions of Π have been proved:2

1. for each function f of Π , the following formula must hold:

precΠ
f =⇒ postΠf

[

implΠf /ρ
]

2. for each call in f to a function f2 (possibly f itself), the precondition precΠ
f2

must be implied by the path condition
3. for each pattern-matching expression, the patterns must be shown to cover

all possible inputs under the path condition.

The above conditions guarantee the absence of runtime errors, and they also
allow us to prove the overall correctness by induction on the call stack, as is
standard in assume-guarantee reasoning for sequential procedures without side
effects [15, Chapter 12].

The first condition shows that all postconditions are logical implications of
the function implementations under the assumption that the preconditions hold.
The second condition shows that all functions are called with arguments satis-
fying the preconditions. Because all functions terminate, it follows that we can
safely assume that postconditions always hold for all function calls. This justifies
the soundness of axioms post in the presence of φ and Π .

Soundness for Models. Our algorithm reports satisfiability when the solver
reports that the unrolled problem augmented with the control literals is satis-
fiable. By construction of the set of control literals, it follows that the solver
can only have used values for function invocations whose definition it knows. As
a consequence, every model reported by the solver for the problem augmented
with the control literals is always a true model of the original formula. We men-
tioned in Section 3 that we can also check other satisfying assignments produced
by the solver. In this second case, we use an evaluator that complies with the
semantics of the program, and therefore the validated models are true models
as well.

Termination for Satisfiable Formulas. Our procedure has the remarkable
property that it finds a model whenever the model for a formula exists. We define
a model as an assignment to the free variables of the formula such that evalu-
ating it under that assignment terminates with the value true. An assignment
that leads to a diverging evaluation is not considered to be a proper model. To
understand why our procedure always finds models when they exist, consider a
counterexample for the specification. This counterexample is an assignment of
integers and algebraic data types to variables of a function f(x) being proved.
This evaluation specifies concrete inputs a for f such that evaluating f(a) yields

2 When proving or disproving a formula φ modulo the functions of Π , it is in fact
sufficient that the three properties hold only for all functions in φ and those that
can be called (transitively) from them or from their contracts.

10 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

a value for which the postcondition of f evaluates to false (the case of precondi-
tions or pattern-matching is analogous). Consider the computation tree arising
from (call-by-value) evaluation of f and its postcondition. This computation
tree is finite. Consequently, the tree contains finitely many unrollings of function
invocations. Let us call K the maximum depth of that tree. Consider now the
execution of the algorithm in Figure 1; because we assume that any function in-
vocation that is guarded by a control literal is eventually accessible, we can safely
conclude that every function application in the original formula will eventually
be unrolled. By applying this reasoning inductively, we conclude that eventually,
all function applications up to nesting level K + 1 will be unrolled. This means
that the computation tree corresponding to f(a) has also been explored. By the
completeness of the solver for the base theory and the consistency of a satisfying
specification, it means that the solver reports a counterexample (either a itself
or another counterexample).

Termination for Sufficiently Surjective Abstraction. Our procedure
always terminates and is therefore a decision procedure in the case of a recursive
function that are sufficiently surjective catamoprhisms [28]. In fact, it also serves
as the first implementation of the technique [28]. A catamorphism is a fold
function from a tree data type to some domain, which uses a simple recursive
pattern: compute the value on subtrees, then combine these values using an
expressions from a decidable logic. The sufficient surjectivity for a function f
is a condition implying, informally, that the size of the set {x | f(x) = y}
can be made sufficiently large for “sufficiently large” elements y. Leon shows
that the technique inspired by [28] is fast in practice. Moreover, by interleaving
unrolling and satisfiability checking, it addresses in practice the open problem of
determining the maximal amount of unrolling needed for a user-defined function.

We have already established termination in the case of formula satisfiability.
In the case of an unsatisfiable formula, the termination follows because the unsat-
isfiability can be detected by unrolling the function definitions a finite number of
times [28]. The unrolling depth depends on the particular sufficiently surjective
abstraction, which is why [28] presents only a family of decision procedures and
not a decision procedure for all sufficiently surjective abstractions. In contrast,
our approach is one uniform procedure that behaves as a decision procedure for
the entire family, because it unrolls functions in a fair way. 3

Among the examples of such recursive functions for which our procedure is
a decision procedure are functions of algebraic data types such as size, height,
or content (expressed as a set, multiset, or a list). Further examples include
properties such as sortedness of a list or a tree, or a combination of any finite

3 Using the terminology of [28, p.207], consider the case of a sufficiently surjective
catamorphism with the associated parametric formula Mp and set of shapes Sp, and
an unsatisfiable formula containing a term α(t). Sufficiently unrolling α will result in
coverage of all possible shapes of t that belong to Sp. If no satisfying assignment for
t can be found with these shapes, then a formula at least as strong as Mp(α(t)) will
be implied, so a complete solver for the base theory will thus detect unsatisfiability
because [28] detects unsatisfiability when using Mp(α(t)).

Satisfiability Modulo Recursive Programs 11

number of functions into a finite domain. Through experiments with Leon, we
have also discovered a new and very useful instance of constraints for which
our tool is complete: the predicates expressing refinement types [13], which we
specify as, e.g., the isSimplified function in Section 2. These functions map data
structures into a finite domain–booleans, so they are sufficiently surjective. This
explains why Leon is complete, and why it was so successful in verifying complex
pattern-matching exhaustiveness constraints on syntax tree transformations.

Non-terminating Functions. We conclude this section with some remarks on
the behavior of our procedure in the presence of functions that do not terminate
on all their inputs. We are interested in showing that if for an input formula
the procedure returns UNSAT, then there are indeed no models whose evalua-
tion terminates with true. (The property that all models are true models is not
affected by non-terminating functions.) Note that it may still be the case that
the procedure returns UNSAT when there is an input for which the evaluation
doesn’t terminate.

To see why the property doesn’t immediately follow from the all-terminating
case, consider the definition: def f(x : Int) = f(x) + 1. Unrolling that function
could introduce a contradiction f(x) = f(x) + 1 and make the formula immedi-
ately unsatisfiable, thus potentially masking a true satisfying assignment. How-
ever, because all introduced definitions are guarded by a control literal, the
contradiction will only prevent those literals from being true that correspond to
executions leading to the infinite loop.

4 The Leon Verification System

We now present some of the characteristics of the implementation of Leon, our
verification system that has at its core an implementation of the procedure pre-
sented in the previous sections. Leon takes as an input a program written in
a purely functional subset of Scala and produces verification conditions for all
specified postconditions, calls to functions with preconditions, and match ex-
pressions in the program.

Front-end. We wrote a plugin for the official Scala compiler to use as the
front-end of Leon. The immediate advantage of this approach is that all pro-
grams are parsed and type-checked before they are passed to Leon. This also
allows users to write expressive programs concisely, thanks to type-inference
and the flexible syntax of Scala. The subset we support allows for definitions
of recursive datatypes, as shown in examples throughout this paper, as well as
arbitrarily complex pattern-matching expressions over such types. The other ad-
mitted types are integers and sets, which we found to be particularly useful for
specifying properties with respect to an abstract interface. In our function def-
initions, we allow only immutable variables for simplicity (vals and no vars in
Scala terminology).

Conversion of pattern-matching. We transform all pattern-matching expres-
sions into equivalent expressions built with if-then-else terms. For this purpose,

12 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

we use predicates that test whether their argument is of a given subtype (this is
equivalent to the method .isInstanceOf[T] in Scala). The translation is relatively
straightforward, and preserves the semantics of pattern-matching. In particular,
it preserves the property that cases are tested in their definition order. To encode
the error that can be triggered if no case matches the value, we return for the
default case a fresh, uninterpreted value. This value is therefore guarded by the
conjunction of the negation of all matching predicates. Recall that we separately
prove that all match expressions are exhaustive. When these proofs succeed, we
effectively rule out the possibility that the unconstrained error value affects the
semantics of the expression.

Proofs by induction. To simplify the statement and proof of some inductive
properties, we defined an annotation @induct, that indicates to Leon that it should
attempt to prove a property by induction on the arguments. This works only
when proving a property over a variable that is of a recursive type; in these
cases, we decompose the proof that the postcondition is always satisfied into
subproofs for the alternatives of the datatype. For instance, when proving by
induction that a property holds for all binary trees, we generate a verification
condition for the case where the tree is a leaf, then for the case where it is a
node, assuming that the property holds for both subtrees.

Communicating with the solver. We used Z3 [22] as the SMT solver at the
core of our solving procedure. As described in Section 3, we use Z3’s support for
incremental reasoning to avoid solving a new problem at each iteration of our
top-level loop.

Interpretation of selectors as total functions. We should note that the
interpretation of selector functions in Z3 is different than in Scala, since they are
considered to be total, but uninterpreted when applied to values of the wrong
type. For instance, the formula Nil.head = 5 is considered in Z3 to be satisfiable,
while taking the head of an empty list has no meaning in Scala (if not a runtime
error). This discrepancy does not affect the correctness of Leon, though, as the
type-checking algorithm run by the Scala compiler succeeds only when it can
guarantee that the selectors are applied only to properly typed terms.

5 Experimental Evaluation

We are very excited about the speed and the expressive power of properties
that Leon can prove; this feeling is probably best understood by trying out the
Leon distribution. As an illustration, we here report results of Leon on prov-
ing correctness properties for a number of functional programs, and discovering
counterexamples when functions did not meet their specification. A summary of
our evaluation can be seen in Figure 3. In this figure, LOC denotes the number of
lines of code, #p. denotes the number of verification conditions for function in-
vocations with preconditions, #m. denotes the number of conditions for showing
exhaustiveness of pattern-matchings, V/I denotes whether the verification condi-
tions were valid or invalid, U denotes the maximum depth for unrolling function

Satisfiability Modulo Recursive Programs 13

Benchmark (LOC) #p. #m. V/I U Time function #p. #m. V/I U Time

ListOperations (107)
size 0 1 V 1 0.12 sizeTailRecAcc 1 1 V 1 0.01
sizesAreEquiv 0 0 V 2 <0.01 sizeAndContent 0 0 V 1 <0.01
reverse 0 0 V 2 0.02 reverse0 0 1 V 2 0.04
append 0 1 V 1 0.03 nilAppend 0 0 V 1 0.03
appendAssoc 0 0 V 1 0.03 sizeAppend 0 0 V 1 0.04
concat 0 0 V 1 0.04 concat0 0 2 V 2 0.29
zip 1 2 V 2 0.09 sizeTailRec 1 0 V 1 <0.01
content 0 1 V 0 <0.01

AssociativeList (50)
update 0 1 V 1 0.03 updateElem 0 2 V 1 0.05
readOverWrite 0 1 V 1 0.10 domain 0 1 V 0 0.05
find 0 1 V 1 <0.01

InsertionSort (99)
size 0 1 V 1 0.06 sortedIns 1 1 V 2 0.24
buggySortedIns 1 1 I 1 0.08 sort 1 1 V 1 0.03
contents 0 1 V 0 <0.01 isSorted 0 1 V 1 <0.01

RedBlackTree (117)
ins 2 1 V 3 2.88 makeBlack 0 0 V 1 0.02
add 2 0 V 2 0.19 buggyAdd 1 0 I 3 0.26
balance 0 1 V 3 0.13 buggyBalance 0 1 I 1 0.12
content 0 1 V 0 <0.01 size 0 1 V 1 0.11
redNHaveBlckC. 0 1 V 1 <0.01 redDHaveBlckC. 0 1 V 0 <0.01
blackHeight 0 1 V 1 <0.01

PropositionalLogic (86)
simplify 0 1 V 2 0.84 nnf 0 1 V 1 0.37
wrongCommutative 0 0 I 3 0.44 simplifyBreaksNNF 0 0 I 1 0.28
nnfIsStable 0 0 V 1 0.17 simplifyIsStable 0 0 V 1 0.12
isSimplified 0 1 V 0 <0.01 isNNF 0 1 V 1 <0.01
vars 6 1 V 1 0.13

SumAndMax (46)
max 2 1 V 1 0.13 sum 0 1 V 0 <0.01
allPos 0 1 V 0 <0.01 size 0 1 V 1 <0.01
prop0 1 0 V 1 0.02 property 1 0 V 1 0.11

SearchLinkedList (48)
size 0 1 V 1 0.11 contains 0 1 V 0 <0.01
firstZero 0 1 V 1 0.03 firstZeroAtPos 0 1 V 0 <0.01
goal 0 0 V 1 0.01

AmortizedQueue (124)
size 0 1 V 1 0.14 content 0 1 V 0 <0.01
asList 0 1 V 0 <0.01 concat 0 1 V 1 0.04
isAmortized 0 1 V 0 <0.01 isEmpty 0 1 V 0 <0.01
reverse 0 1 V 3 0.20 amortizedQueue 0 0 V 2 0.05
enqueue 0 1 V 1 <0.01 front 0 1 V 3 0.01
tail 0 1 V 3 0.15 propFront 1 1 V 3 0.07
enqueueAndFront 1 0 V 4 0.21 enqDeqThrice 5 0 V 5 2.48

Fig. 3. Summary of evaluation results

14 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

definitions, and Time denotes the total running time in seconds to verify all con-
ditions for a function. The benchmarks were run on a computer equipped with
two Intel Core 2 processors running at 2.66 GHz and 3.2 GB of RAM, using
a very recent version of Z3 at the time of running the experiments (June 12,
2011). We verified over 60 functions, with over 600 lines of compactly written
code and properties that often relate multiple function invocations. This includes
a red-black tree set implementation including the height invariant (which most
reported benchmarks for automated systems omit); amortized queue data struc-
tures, and examples with syntax tree refinement that show Leon to be useful for
checking user code, and not only for data structures.4

The ListOperations benchmark contains a number of common operations on
lists. Leon proves, e.g., that a tail-recursive version of size is functionally equiv-
alent to a simpler version, that append is associative, and that content, which
computes the set of elements in a list, distributes over append. For association
lists, Leon proves that updating a list l1 with all mappings from another list l2

yields a new associative list whose domain is the union of the domains of l1 and
l2. It proves the read-over-write property, which states that looking up the value
associated with a key gives the most recently updated value. We express this
property simply as:

def readOverWrite(l : List, e : Pair, k : Int) : Boolean = (e match {
case Pair(key, value) ⇒

find(updateElem(l, e), k) == (if (k == key) Some(value) else find(l, k))
}) holds

Leon proves properties of insertion sort such as the fact that the output of the
function sort is sorted, and that it has the same size and content as the input list.
The function buggySortedIns is similar to sortedIns, and is responsible for inserting
an element into an already sorted list, except that the precondition that the list
should be sorted is missing. On the RedBlackTrees benchmark, Leon proves that
the tree implements a set interface and that balancing preserves the “red nodes
have no black children” and “every simple path from the root to a leaf has the
same number of black nodes” properties as well as the contents of the tree. In
addition to proving correctness, we also seeded two bugs (forgetting to paint a
node black and missing a case in balancing); Leon found a concise counterexample
in each case. The PropositionalLogic benchmark contains functions manipulating
abstract syntax trees of boolean formulas. Leon proves that, e.g., applying a
negation normal form transformation twice is equivalent to applying it once.

Further benchmarks are taken from the Verified Software Competition [30]:
For example, in the AmortizedQueue benchmark Leon proves that operations on
an amortized queue implemented as two lists maintains the invariant that the
size of the “front” list is always larger than or equal to the size of the “rear”
list, and that the function front implements an abstract queue interface given as
a sequence.

We also point out that, apart from the parameterless @induct hint for certain
functions, there are no other hint mechanisms used in Leon: the programmer

4 All benchmarks and the sources of Leon are available from http://lara.epfl.ch.

http://lara.epfl.ch

Satisfiability Modulo Recursive Programs 15

simply writes the code, and boolean-valued functions that describe the desired
properties (as they would do for testing purposes). We thus believe that Leon is
easy and simple to use, even for programmers that are not verification experts.

6 Related Work

We next compare our approach to the most closely related techniques.

Interactive verification systems. The practicality of computable functions
as an executable logic has been demonstrated through a long line of systems,
notably ACL2 [18] and its predecessors. These systems have been applied to
a number of industrial-scale case studies in hardware and software verification
[18, 21]. Recent systems based on functional programs include VeriFun [31] and
AProVE [14]. Moreover, computable specifications form important parts of many
case studies in proof assistants Coq [5] and Isabelle [23]. These systems support
more expressive logics, with higher-order quantification, but provide facilities for
defining executable functions and generating the corresponding executable code
in functional programming languages [16]. When it comes to reasoning within
these systems, they offer varying degrees of automation. What is common is
the difficulty of predicting when a verification attempt will succeed. This is in
part due to possible simplification loops associated with the rewrite rules and
tactics of these provers. Moreover, for performance and user-interaction reasons,
interactive proofs often fail to fully utilize aggressive case splitting that is at the
heart of modern SMT solvers.

Inductive generalizations vs. counterexamples. Existing interactive sys-
tems such as ACL2 are stronger in automating induction, whereas our approach
is complete for finding counterexamples. We believe that the focus on counterex-
amples will make our approach very appealing to programmers that are not the-
orem proving experts. The HMC verifier [17] and DSolve [26] can automatically
discover inductive invariants, so they have more automation, but it appears that
certain properties involving multiple user-defined functions are not expressible in
these systems. Recent results also demonstrate inference techniques for higher-
order functional programs [19,17]. These approaches hold great promise for the
future, but the programs on which those systems were evaluated are smaller
than our benchmarks. Leon focuses on first-order programs and is particularly
effective for finding counterexamples. Our experience suggests that Leon is more
scalable than the alternative systems that can deal with this expressive proper-
ties. Counterexample generation has been introduced into Isabelle through tools
like Nitpick [6]. Further experimental comparisons would be desirable, but these
techniques do not use theory solvers and appear slower than Leon on complex
functional programs. Counterexample generation has been recently incorporated
into ACL2 Sedan [7]. This techniques is tied to the sophisticated ALC2 proof
mechanism and uses proof failures to find counterexamples. Although it appears
very useful, it does not have our completeness guarantees.

16 Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak

Counterexample finding systems for imperative code. Researchers have
explored the idea of iterative function and loop unfolding in a number of con-
texts. Among well-known tools is CBMC [8]; techniques to handle procedures
include [29,4,27]. The use of imperative languages in these systems makes their
design more complex and limits the flexibility of the counterexample search.
Thanks to a direct encoding into SMT and the absence of side-effects, Leon can
prove more easily properties that would be harder to prove using imperative
semantics. As a result, we were able to automatically prove detailed functional
correctness properties as opposed to only checking for errors such as null deref-
erences. Moreover, both [29] and [27] focus on error finding, while we were also
able to prove several non-trivial properties correct, using counterexample finding
to debug our code and specifications during the development.

Satisfiability modulo theory solvers. SMT solvers behave as (complete)
decision procedures on certain classes of quantifier-free formulas containing the-
ory operations and uninterpreted functions. However, they do not support user-
defined functions, such as functions given by recursive definitions. An attempt to
introduce them using quantifiers leads to formulas on which the prover behaves
unpredictably for unsatisfiable instances, and is not able to determine whether a
candidate model is a real one. This is because the prover has no way to determine
whether universally quantified axioms hold for all of the infinitely many values
of the domain. Leon uses terminating executable functions, whose definitions are
a well-behaved and important class of quantified axioms, so it can check the
consistency of a candidate assignment. A high degree of automation and per-
formance in Leon comes in part from using state-of-the-art SMT solver Z3 [22]
to reason about quantifier-free formula modulo theories, as well as to perform
case splitting along with automated lemma learning. Other SMT solvers, such
as CVC3 [3] could also be used.

Acknowledgments. We thank Nikolaj Bjørner and Leonardo de Moura for
their help with Z3. We thank Mirco Dotta and Swen Jacobs for preliminary ver-
sions of some of the benchmarks. We thank Panagiotis Manolios and J Strother
Moore for discussions about ACL2.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design
and implementation of a cost and termination analyzer for java bytecode. In:
Formal Methods for Components and Objects. pp. 113–132 (2007)

2. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: CAV (2010)

3. Barrett, C., Tinelli, C.: CVC3. In: CAV. LNCS, vol. 4590 (2007)
4. Basler, G., Kroening, D., Weissenbacher, G.: A complete bounded model checking

algorithm for pushdown systems. In: Haifa Verification Conference (2007)
5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program

Development–Coq’Art: The Calculus of Inductive Constructions. Springer (2004)
6. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for

higher-order logic based on a relational model finder. In: ITP (2010)

Satisfiability Modulo Recursive Programs 17

7. Chamarthi, H.R., Dillinger, P.C., Manolios, P., Vroon, D.: The acl2 sedan
theorem proving system. In: TACAS. pp. 291–295 (2011)

8. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In:
TACAS. pp. 168–176 (2004)

9. Dotta, M., Suter, P., Kuncak, V.: On static analysis for expressive pattern
matching. Tech. Rep. LARA-REPORT-2008-004, EPFL (2008)

10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
CAV. LNCS, vol. 4144 (2006)

11. Ferrara, P.: Static type analysis of pattern matching by abstract interpretation.
In: Formal Techniques for Distributed Systems. pp. 186–200. Springer (2010)

12. Franzen, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: FMCAD (2010)

13. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proc. ACM PLDI (1991)
14. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination

proofs with AProVE. In: RTA. pp. 210–220 (2004)
15. Gries, D.: The Science of Programming. Springer (1981)
16. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In:

Theorem Proving in Higher Order Logics: Emerging Trends Proceedings (2007)
17. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: Verifying functional programs

using abstract interpreters. In: Computer Aided Verification (CAV) (2011)
18. Kaufmann, M., Manolios, P., Moore, J.S. (eds.): Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers (2000)
19. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree

transducers and recursion schemes for program verification. In: POPL (2010)
20. Manolios, P., Turon, A.: All-termination(T). In: TACAS. pp. 398–412 (2009)
21. Moore, J.S.: Theorem proving for verification - the early days. In: Keynote talk

at FLoC. Edinburgh (July 2010)
22. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
23. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer-Verlag (2002)
24. Odersky, M.: Contracts in Scala. In: International Conference on Runtime

Verification. Springer LNCS (2010)
25. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: a comprehensive

step-by-step guide. Artima Press (2008)
26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI (2008)
27. Sinha, N.: Modular bug detection with inertial refinement. In: FMCAD (2010)
28. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types

with abstractions. In: POPL (2010)
29. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE’04 (2004)
30. VSComp: The Verified Software Competition:

http://www.macs.hw.ac.uk/vstte10/Competition.html (2010)
31. Walther, C., Schweitzer, S.: About VeriFun. In: CADE (2003)
32. Zee, K., Kuncak, V., Taylor, M., Rinard, M.: Runtime checking for program

verification. In: Workshop on Runtime Verification. LNCS, vol. 4839 (2007)

http://www.macs.hw.ac.uk/vstte10/Competition.html

	Satisfiability Modulo Recursive Programs

