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Abstract
Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. To inte-
grate synthesis into programming languages, synthesis algorithms
should behave in a predictable way—they should succeed for a
well-defined class of specifications. They should also support un-
bounded data types such as numbers and data structures. We pro-
pose to generalize decision procedures into predictable and com-
plete synthesis procedures. Such procedures are guaranteed to find
code that satisfies the specification if such code exists. Moreover,
we identify conditions under which synthesis will statically decide
whether the solution is guaranteed to exist, and whether it is unique.
We demonstrate our approach by extending decision procedures for
integer linear arithmetic and data structures into synthesis proce-
dures, and establishing results on the size and the efficiency of the
synthesized code. We show that such procedures are useful asa lan-
guage extension with implicit value definitions, and we showhow
to extend a compiler to support such definitions. Our constructs
provide the benefits of synthesis to programmers, without requir-
ing them to learn new concepts or give up a deterministic execution
model.

1. Introduction
Synthesis of software from specifications [Manna and Waldinger
1980, 1971] promises to make programmers more productive. De-
spite substantial recent progress [Solar-Lezama et al. 2006, 2008;
Srivastava et al. 2010; Vechev et al. 2009], synthesis is limited to
small pieces of code. We expect that this will continue to be the
case for some time in the future, for two reasons: 1) synthesis is al-
gorithmically a difficult problem, and 2) synthesis requires detailed
specifications, which for large programs become difficult towrite
(and may be harder to debug than the code itself).

We therefore expect that practical applications of synthesis lie
in its integration into the compilers of general-purpose program-
ming languages. To make this integration feasible, we aim toiden-
tify well-defined classes of expressions and synthesis algorithms
guaranteed to succeed for these classes of expressions. Ourstarting
point for such synthesis algorithms aredecision procedures.

A decision procedure for satisfiability of a class of formulas ac-
cepts a formula in its class and checks whether the formula has a
solution. On top of this necessary functionality, many decision pro-
cedure implementations additionally generate a satisfying assign-
ment (a model) in case the given formula is satisfiable. Such model
generation functionality has many uses, from better error report-
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ing in verification, to test-case generation. This functionality could
also be used as an advanced computation mechanism, which, given
a set of values for some of the variables, finds the values of remain-
ing variables such that a given constraint holds. Such a run-time
mechanism is promising in supporting declarative programming
style. However, it involves expensive and unpredictable search at
run-time, and requires the deployment of a decision procedure as
part of the run-time system. Our goal is to provide the benefits of
the declarative approach in a more controlled way: we aim to run a
decision procedure atcompile timeand use it to generate code that
computes the desired values of variables at run-time. This approach
can generate more efficient code that is specific to the constraint
that needs to be solved at a given program point. Furthermore, it
does not require the decision procedure to be present at run-time,
and gives the developer static feedback by checking the conditions
under which the generated solution exists and is unique.

We demonstrate this approach by describing synthesis algo-
rithms for domains of linear arithmetic and for collectionsof ob-
jects. We have found that, using these expressions we were able to
express a number of program fragments in a more natural way, stat-
ing the invariants that the program should satisfy as opposed to the
computation details of how these invariants are established.

In the area of integer arithmetic, we obtain a language exten-
sion that can implicitly define integer variables to satisfygiven
constraints. The applications of integer arithmetic synthesizer in-
clude conversions of quantities expressed in terms of multiple units,
as well as a substantially more general notion of pattern matching
on integers, going well beyond matching on constants or(n + k)-
patterns of Haskell (http://haskell.org).

In the area of data structures, we describe a synthesis procedure
that can compute sets of elements subject to constraints expressed
in terms of basic set operations (union, intersection, set difference,
subset, equality) as well as linear constraints on sizes of sets. We
have found these constraints to be useful for implicitly defining sets
of objects in algorithms, from simple operations such as choosing
an element from a set and returning the rest, to picking fresh
elements or splitting sets subject to given size constraints.

We have implemented these synthesis algorithms and deployed
them as a compiler extension of the Scala programming language
[Odersky et al. 2008].

Contributions. This paper makes the following contributions.

• We describe an approach for deploying algorithms for synthe-
sis within programming languages. Our approach introducesa
higher-order library functionchoose of type(α ⇒ bool) ⇒ α,
which takes as an argument a functionF of typeα ⇒ bool. Our
compiler extension rewrites calls tochoose into efficient code
that finds a valuex of typeα such thatF (x) is true. Building on
thechoose primitive, we also show how to support substantially
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more expressive pattern matching expressions in programming
languages.

• We describe a methodology to convert decision procedures for
a class of formulas into synthesis procedures that can rewrite
the corresponding class of expressions into efficient executable
code.

• We describe synthesis procedures for rational and integer linear
arithmetic, as well as a logic of sets with size constraints.
We show that, compared to invocations of constraint solvers
at run-time, the synthesized code can have better worst-case
complexity in the number of variables. This is because our
synthesis procedure converts the given constraint (at compile
time) into a solved form that can be executed while avoiding
most of the search. The synthesized code is guaranteed to be
correct by construction.

• We describe our experience of using synthesis as a plugin for
the Scala compiler. Our implementation is publicly available.1

2. Example
We first illustrate the use of a synthesis procedure for integer linear
arithmetic. Consider the following example to break down a given
number of seconds (stored in the variabletotsec) into hours,
minutes, and leftover seconds.

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒ (
h ∗ 3600 + m ∗ 60 + s == totsec

&& 0 ≤ m && m ≤ 60
&& 0 ≤ s && s ≤ 60))

Our synthesizer succeeds, because the constraint is in integer linear
arithmetic. However, the synthesizer emits the following warning:

Synthesis predicate has multiple solutions
for variable assignment: totsec = 0
Solution 1: h = 0, m = 0, s = 0
Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds onm,s are not strict.
After replacingm <= 60 with m < 60 ands <= 60 with s < 60,
the synthesizer emits no warnings. The generated code corresponds
to the following:

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)
(loc1, loc2, loc3)

}

The absence of a warning guarantees that the solution al-
ways exists and that it is unique. By writing the code in
this style, the developer directly ensures that the condition
h * 3600 + m * 60 + s == totsec will be satisfied, which
eases the understanding of the program. Note that, if the developer
imposes the constraint

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒ (
h ∗ 3600 + m ∗ 60 + s == totsec

&& 0 ≤ h < 24
&& 0 ≤ m && m < 60
&& 0 ≤ s && s < 60))

our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

1http://lara.epfl.ch/dokuwiki/comfusy

pointing to the fact that the constraint has no solutions fortoo large
parametertotsec.

In addition to thechoose function, programmers can use syn-
thesis for more flexible pattern matching on integers. In existing
deterministic programming languages, matching on integers either
tests on constant types, or, in the case of Haskell’s(n+k) patterns,
on some very special forms of patterns. The following code illus-
trates the use of synthesis to describe a fast exponentiation function
by doing case analysis on whether the argument is even or odd:

def pow(base : Int, p : Int) = {
def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒ m
case 2∗j ⇒ fp(m, b∗b, j)
case 2∗j+1 ⇒ fp(m∗b, b∗b, j)

}
fp(1,base,p)

}

The correctness of the function follows from the observation that
fp(m, b, i) = mbi, which we can prove by induction. Indeed, if
we consider the case2 ∗ j + 1, we observe:

fp(m, b, i) = fp(m, b, 2j + 1) = fp(mb, b2, j)
(by ind. hyp.) = mb(b2)j = mb2j+1 = mbi

Note how the pattern matching on integer arithmetic expressions
exposes the equations that make the inductive proof simpler. The
pattern matching compiler generates the code that decomposes i
into the appropriate new exponentj. Moreover, it checks that the
pattern matching is exhaustive. The construct supports arbitrary
expressions of linear integer arithmetic, and can prove e.g. that the
set of patterns2 ∗ k, 3 ∗ k, 6 ∗ k − 1, 6 ∗ k + 1 is exhaustive. The
system also accepts implicit definitions, such as

val 42 ∗ x + 5 ∗ y = z

The system ensures that the above definition matches every integer
z, and emits the code to computex andy from z.

In addition to integer linear arithmetic, other decidable theories
are amenable to synthesis and provide similar benefits. Consider
the problem of splitting a set collection in a balanced way. The
following code attempts to do that:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&
a1.size == a2.size)

There are cases where the constraint above has no solution. It is
possible to decide whether this is the case and generate an example
value of a sets for which there is no solution (any set of odd size).
If instead we weaken the requirement to:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&
a1.size − a2.size ≤ 1 &&
a2.size − a1.size ≤ 1)

the system can prove that the code has a solution for all possible
input setss. The nature of sets is such that there are typically
many solutions for such constraints. Our synthesizer resolves these
choices at compile time, which means that the generated codeis
deterministic.

Another example of synthesis is efficient support for more ex-
pressive algebraic data type patterns, including non-linear patterns.
Such support reduces to the decision procedure for algebraic data
types [Barrett et al. 2007; Oppen 1978; Suter et al. 2010].

3. From Decision- to Synthesis Procedures
We next define the notion of synthesis procedure and describein
general terms our approach for deploying predictable synthesis
procedures based on decision procedures.
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The choose programming language construct.We integrate into
a programming language a construct of the form

~r = choose(~x ⇒ F (~x,~a)) (1)

HereF (~x,~a) is a formula in a decidable logic, which has variables
~x and parameters~a. The parameters~a are program variables known
at the time the statement is executed, whereas~x are values that need
to be computed so thatF (~x,~a) holds.

We can translate thechoose construct into the following se-
quence of commands in the guarded command languages [Dijkstra
1976]:

assert (∃~x.F (~x,~a));
havoc (~r);
assume(F (~r,~a));

The simplicity of the translation of thechoose construct also means
that such construct is easier to use in verification systems such as
[Barnett et al. 2004; Cohen et al. 2009; Flanagan et al. 2002;Zee
et al. 2008, 2009] compared to the standard imperative code that
would have the same effect.

Model-generating decision procedures.As a starting point for
our synthesis algorithms we consider model-generating decision
procedures. We assume that a decision procedure works on a class
of first-order formulasFormulas defined in terms of termsTerms.
The formulas can contain free variables, and we denoteFV(F ) the
set of free variables in a formulaF . By F [x := e] we denote the
result of replacing the free occurrences ofx by e in F . Given a
substitutionσ : FV(F ) → Terms, we writeFσ for the result of
substituting eachx ∈ FV(F ) with σ(x). Formulas are interpreted
over elements of a first-order structureD with a countable domain
D. We assume that for eache ∈ D there exists a ground termce

whose interpretation inD is e; let C = {ce | e ∈ D}. We further
assume that ifF ∈ Formulas then alsoF [x := ce] ∈ Formulas
(the class of formulas is closed under partial grounding with con-
stants). GivenF ∈ Formulas we expect a model-generating deci-
sion procedureδ to produce either

a) a substitutionσ : FV(F ) → C such thatFσ is a true, or

b) a special valueunsat indicating that the formula is unsatisfiable.

We assume that the decision procedure is deterministic and behaves
as a functionδ. We writeδ(F )=σ or δ(F )=unsat to denote the
result of applying the decision procedureδ to F .

Baseline: invoking a decision procedure at run-time.Just like
an interpreter can be considered as a baseline implementation for a
compiler, deploying a decision procedure at runtime can be consid-
ered as a baseline for our approach. In this scenario, we replace the
invocation of (1) with

F = makeFormulaTree(makeVars(~x), makeGroundTerms(~a));
~r = (δ(F ) match {

case σ ⇒ (σ(x1), . . . , σ(xn))
case unsat ⇒ throw new Exception(”No solution exists”)

})

The dynamic invocation approach is flexible and useful. It can
give some advantages of constraint logic programming [Jaffar and
Maher 1994] and can also be done using e.g. the Z3 SMT solver
[de Moura and Bjørner 2008] with quotations of theF# language
[Syme et al. 2007]. However, there are important advantagesof the
compilation approach in terms of performance and predictability,
as we discuss next.

Synthesis based on decision procedures.Our goal is to explore
a compilation approach where a modified decision procedure is
invoked at compile time, converting the formulaF (~x,~a) into a

solved form~x = ~Ψ(~a) that implies the formula. More precisely,
we have the following definitions.

Preliminaries. Let FV(q) denotes the set of free variables in a
formula or termq. If ~x = (x1, . . . , xn) then~xs denotes the set of
variables{x1, . . . , xn}. If q is a term or formula,~x = (x1, . . . , xn)
a vector of variables and~t = (t1, . . . , tn) a vector of terms,
then q[~x := ~t] denotes the term resulting from subsstituting in
q free variablesx1, . . . , xn with termst1, . . . , tn, respectively. If
we introduceq by writing q(~x) then we sometimes also denote
q[~x := ~t] by q(~t). Below we only identify the output variables
~x. Where needed, we writeFV(F ) \ ~xs to denote~as.

DEFINITION 1 (Synthesis Procedure).We denote an invocation of
a synthesis procedure byJ~x, F K = (pre, ~Ψ). A synthesis procedure
takes as input a formulaF and a vector of variables~x and outputs
a pair of

1. a precondition formulapre with FV(pre) ⊆ FV(F ) \ ~xs

2. a tuple of terms~Ψ with FV(~Ψ) ⊆ FV(F ) \ ~xs

such that the following two implications are valid:

∃~x.F → pre

pre → F [~x := ~Ψ]

OBSERVATION 2. The above definition implies that the the three
formulas∃~x.F , pre, and F [~x := ~Ψ] are all equivalent, because
the third implication always holds:

F [~x := ~Ψ] → ∃~x.F

Consequently, if we can define a functionwitn(~x, F ) = ~Ψ with
FV(~Ψ) ⊆ FV(F ) \ ~xs such that∃~x.F is equivalent toF [~x := ~Ψ],
then we can define

J~x, F K = (F [~x := witn(~x, F )], witn(~x, F ))

The reason we use the translation that computespre in addition to
witn(~x, F ) is that the synthesizer performs simplifications when
generatingpre, which can produce a formula faster to evaluate than
F [~x := witn(~x, F )].

The synthesizer emits the terms~Ψ in compiler intermediate
representation and compiles them along with the rest of the code.
We identify the syntax tree of~Ψ with its meaning as a function
from~a to ~x.

The overall compile-time processing of the choose statement (1)
involves the following:

• emit a non-feasibility warning if the formula¬pre is satisfiable,
reporting the counterexample for which the synthesis problem
has no solutions;

• emit a non-uniqueness warning if the formula

F ∧ F [~x := ~y] ∧ ~x 6= ~y

is satisfiable, reporting the values of all free variables asa
counterexample showing that there are at least two solutions;

• as the compiled code, emit the code that behaves as

assert(pre)

~r = ~Ψ

In practice it is often the case that the computation of~Ψ already
raises an exception in casepre does not hold, so there is no need
for an explicit assert.

The existence of a model-generating decision procedure implies
the existence of a trivial synthesis procedure (in the senseof Defi-
nition 1), which simply invokes the decision procedure at run-time.
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The usefulness of the notion of synthesis procedure comes from the
fact that we can use domain knowledge of the decision procedure
to create compiled code that avoids this trivial solution. Among the
potential advantages of the compilation approach are:

• improved run-time efficiency because part of the reasoning is
done at compile-time;

• improved error reporting: the existence and uniqueness of solu-
tions can be checked at compile time;

• simpler deployment: the emitted code can be compiled to any of
the targets of the compiler, and requires no additional run-time
support.

This paper therefore pursues the compilation approach. (Asin
processing of more standard programming language constructs, we
do believe that there is space in the future for mixed approaches,
such as just-in-time and profiling-guided synthesis.)

Efficiency of synthesis. We introduce the following measures to
quantify the behavior of our synthesis procedure:

• time to synthesize the code, as a function ofF ;

• size of the synthesized code, as a function ofF ;

• running time of the synthesized code as a function ofF and a
measure of the run-time values of~a.

When usingF as the argument of the above measures, we often
consider not only the size ofF , but also the dimension of the
variable vector~x and the parameter vector~a in F .

From quantifier elimination to synthesis. The preconditionpre
can be viewed as a result of applying quantifier elimination (see
e.g. [Nipkow 2008]) to remove~x from F , with the following
differences.

1. Synthesis procedures strengthen quantifier eliminationproce-
dures by identifying not onlypre but also emitting the code~Ψ
that efficiently computes a witness for~x.

2. Quantifier elimination is typically applied to arbitraryquanti-
fied formulas of first-order logic and aims to successively elim-
inate all variables. Therefore,pre must be in the same language
of formulas asF . This condition is not required in our case.
Whatever the language ofpre, it is still very useful for it to
havesomedecision procedure, to enable accurate generation of
compile-time warnings about the existence of solutions.

3. Worst-case bounds on quantifier elimination algorithms mea-
sure the size of the generated formula and the time needed to
generate it, but not the size of~Ψ or the time to evaluate~Ψ.

Despite the differences, we have found that we can naturallyex-
tend existing quantifier elimination procedures with explicit com-
putation of witnesses that constitute the program~Ψ.

4. Selected Generic Techniques
We next describe some basic observations and techniques forsyn-
thesis that are independent of a particular theory.

4.1 Synthesis for Multiple Variables

Suppose we have functionwitn(x, F ) that corresponds to construc-
tive quantifier elimination step for one variable and produces a
term Ψ such thatF [x := Ψ] holds iff ∃x.F holds. We then lift
witn(x, F ) to synthesis for any number of variables, using the fol-

lowing translation scheme:

J(), F K = (F, ())

J(x1, . . . , xn), F K =
let Ψn = witn(xn, F )

pren = simplify(F [xn := Ψn])
(pre, (Ψ1, . . . , Ψn−1)) = J(x1, . . . , xn−1), prenK

in
(pre, (Ψ1, . . . , Ψn−1, Ψn[x1 := Ψ1, . . . , xn−1 := Ψn−1]))

Note that in practice we use local variable definitions instead of
substitutions. Given (1), we generate, as~Ψ, a Scala code block

8

>

>

>

<

>

>

>

:

val x1 = Ψ1

. . .
val xn−1 = Ψn−1

val xn = Ψn

~x

9

>

>

>

=

>

>

>

;

where the variables inΨn directly refer to variables computed in
Ψ1, . . . , Ψn−1 and whereFV(Ψi) ⊆ FV(F ) \ {xi, . . . , xn}. A
consequence of this recursive translation pattern is that the synthe-
sized code computes values in the reverse order compared to the
steps of a quantifier elimination procedure. This observation can be
helpful in understanding the output of our synthesis procedures.

4.2 One-Point Rule Synthesis

If x /∈ FV(t) we can define

witn(x, x = t ∧ F ) = t

If the formula does not have the formx = t ∧ F , we can often
transform it into such form using theory-specific reasoning.

4.3 Output-Independent Preconditions

Note that if we can apply the following synthesis rule

J~x, F1 ∧ F2K = let (pre, ~Ψ) = J~x, F2K in

(pre ∧ F1, ~Ψ)

wheneverFV(F1) ∩ ~xs = ∅. We assume that this rule is applied
whenever applicable and do not explicitly mention it in the sequal.

4.4 Propositional Connectives in First-Order Theories

Consider a quantifier-free formula in some first-order theory and
suppose first that we wish to check formula satisfiability or apply
quantifier elimination. We can then transform the formula todis-
junctive normal form and process each disjunct independently. This
allows us to focus on handling conjunctions of literals as opposed
to arbitrary propositional combination.

We can similarly apply disjunctive normal form transformation
to synthesis. LetD1, . . . , Dn be the disjuncts in disjunctive normal
form of a formula. We then apply synthesis to eachDi yielding a
preconditionprei and the solved form~Ψi. We generate code with
conditionals that selects the first~Ψi that applies:

J~x, D1 ∨ . . . ∨ DnK =

let (pre1,
~Ψ1) = J~x, D1K

. . .

(pren, ~Ψn) = J~x, DnK
in
0

B

B

B

B

B

B

@

n
_

i=1

prei,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

if (pre1) ~Ψ1

else if(pre2)
~Ψ2

. . .

else if(pren) ~Ψn

else
throw new Exception(“No solution”)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

1

C

C

C

C

C

C

A
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While the disjunctive normal form can be exponentially larger
than the original formula, the transformation to disjunctive normal
form is used in practice [Pugh 1992] and has advantages in terms of
the quality of synthesized code generated for individual disjuncts.
What further justifies this approach is that we expect a smallnum-
ber of disjuncts in our specifications, and expect to need differ-
ent synthesized values for variables in different disjuncts. Other
methods can have better worst-case quantifier elimination com-
plexity [Cooper 1972; Ferrante and Rackoff 1979; Nipkow 2008;
Weispfenning 1997] and we also discuss their properties in the se-
quel, but disjunctive normal form is the method we currentlyuse in
our implementation.

4.5 Synthesis for Propositional Logic

Our paper focuses on synthesis for formulas overunboundeddo-
mains. However, to illustrate the potential asymptotic gain of pre-
computation in synthesis, consider the following simple approach
when F is a propositional formula (see e.g. [Kukula and Shiple
2000] for a more sophisticated approach). Suppose that~x are out-
put variables and~a are the remaining propositional variables (pa-
rameters).

Build an ordered binary decision diagram (OBDD) [Bryant
1986] for F , treating both~a and~x as variables for OBDD con-
struction, and using a variable ordering that puts all parameters~a
before all output variables~x. Then split the OBDD graph at the
point where all the decisions on~a have been made. That is, con-
sider the set of nodes that appear after all decisions on~a have been
made and no decisions on~x have been made. For each of these
OBDD nodes, we precompute whether this node reaches thetrue
sink node. As the result of synthesis, emit the code that consists of
nested if-then-else tests encoding the decisions on~a, followed by
the code that, for each node that reachestrue emits one path to the
true node.

Although the size of the code can be singly exponential, the
code executes in time linear in the total number of variables~a
and~x. This is in contrast to NP-hardness of finding a satisfying
assignment for a propositional formulaF , which would occur in
the baseline approach of invoking a SAT solver at run-time. In
summary, for propositional synthesis we can precompute solutions
to an NP-hard problem and generate code that computes unknown
propositional values in polynomial time.

In the next several sections, we describe synthesis procedures
for several useful decidable logics overinfinite domains (numbers
and data structures) and discuss the efficiency improvements due to
synthesis.

5. Synthesis for Linear Rational Arithmetic
We next consider synthesis for quantifier-free formulas of linear
arithmetic over rationals. In this theory, variables rangeover ratio-
nal numbers, terms are linear expressionsc0 + c1x1 + . . . + cnxn,
and the relations in the language are< and=. Synthesis for this
theory can be used to describe exact fractional arithmetic compu-
tations or prototype floating-point computations. It also serves as
an introduction to the more complex problem of integer arithmetic
synthesis.

Given a quantifier-free formula, we can efficiently transform it
to negation-normal form. Furthermore, we observe that¬(t1 < t2)
is equivalent to(t2 < t1) ∨ (t1 = t2) and that¬(t1 = t2) is
equivalent to(t1 < t2) ∨ (t2 < t1). Therefore, there is no need
to consider negations in the formula. We can also normalize the
equalities to the formt = 0 and the inequalities to the form0 < t.

5.1 Solving Conjunctions of Literals

Given the observations in Section 4.4, we consider conjunctions of
literals. The method follows Fourier-Motzkin elimination[Schri-
jver 1998]. Consider the elimination of a variablex.

Equalities. If x occurs in an equality constraintt = 0, then
solve the constraint forx and rewrite it asx = t′ wheret′ does
not containx. Then apply one-point rule synthesis (Section 4.2).
This step is Gaussian elimination, and we use it whenever it is
applicable. We therefore eliminate first those variables that occur
in some equalities and only then proceed to inequalities.

Inequalities. Next, suppose thatx occurs only in strict inequali-
ties0 < t. Depending on the sign ofx in t, we can rewrite these
inequalities intoap < x or x < bq for some termsap, bp. Consider
the more general case when there is both at least one lower bound
ap and at least one upper boundbq. We can then define:

witn(x,F ) = (max
p

{ap} + min
q

{bq})/2

As one would expect from quantifier elimination, thepre corre-
sponding to this case results fromF by replacing the conjunction
of all inequalities containingx with the conjunction

^

p,q

ap < bq

In case there are no lower boundsap, we definewitn(x,F ) =
minq{bq} − 1; if there are no upper boundsbq , we define
witn(x, F ) = maxp{ap} + 1.

Complexity of synthesis for conjunctions.Consider a formula
with N inequality literals,E equality literals,A input variables
andV output variables (withV ≥ E) whose values need to be
synthesized.

The number of operations required to synthesize a program is
bounded from above (modulo multiplication by a constant) by

2V (A + V ) · N2V

22V −1
+ V (A + V )(E + N)

This bound is explained in details in appendix A.1.
The size of the generated program is bounded by:

O

 

(A + V )

 

E +
N2V +1−1

22V +1−2

!!

The generated program is a sequence of linear arithmetic op-
erations; if we assume that the arithmetic operations take constant
time, its execution time is proportional to program size.

Note that the algorithm has good efficiency in the absence of
inequalities. In any case, it is polynomial whenV is constant (e.g.
synthesizing individual variable that satisfies a constraint).

5.2 Time-Efficient Code for Linear Rational Arithmetic

One way to lift synthesis for rational arithmetic from conjunctions
of literals to arbitrary propositional combinations is to apply the
disjunctive normal form method of Section 4.4. We then obtain
complexity that is one exponential higher in formula size than the
complexity of synthesis for conjunctions.

In the rest of this section we consider an alternative to disjunc-
tive normal form. This alternative synthesizes code that can execute
exponentially faster (even though it is not smaller) compared to the
approach of Section 4.4.

The starting point of this method is quantifier elimination tech-
nique that avoids disjunctive normal form transformation,see e.g.
[Ferrante and Rackoff 1979], [Nipkow 2008], [Bradley and Manna
2007, Section 7.3]. To remove a variable from negation normal
form, this method finds relevant lower boundsap and upper bounds
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bq in the formula, then computes the valuesmpq = (ap + bq)/2
and replaces a variablexi with the values from the set{mpq}p,q

extended with “sufficiently small” and “sufficiently large”values
[Nipkow 2008]. This quantifier elimination method gives us away
to computepre.

To extend this method to synthesis (computation ofwitn(~x, F )),
we propose to do the following. Whenever applying a substitution
that replacesxi with m in quantifier elimination, attach a special
substitution syntactic formxi 7→ m as an additional auxiliary
information to the literal. When using this process to eliminate one
variable, the size of the formula can increase quadratically. After
removing all variables, the size of the formulapre is bounded by
n2O(V )

. Note that, although it is doubly exponential inV , this
quantity is not exponential inn. Build a decision tree that evaluates
the values of alln2O(V )

literals in pre. On each complete path
of this tree, we can statically determine whether the truth values
of literals imply thatpre is true; this is reduces to evaluating the
truth value of a propositional formula in a given assignmentto all
variables. In the cases when the literals imply thatpre holds, we
use the attached substitutionxi 7→ m in true literals to recover
the synthesized values of variablesxi. Such decision tree has depth
n2O(V )

and we return it as the result ofwitn(~x, F ). For a constant
number of variablesV , this tree represents a synthesized program
whose running time is polynomial inn.

6. Synthesis for Linear Integer Arithmetic
We next describe our main algorithm, which performs synthesis
for quantifier-free formulas of Presburger arithmetic (integer linear
arithmetic). In this theory variables range over integers.Terms are
linear expressions of the formc0 + c1x1 + . . . + cnxn, n ≥ 0, ci

is an integer constant andxi is an integer variable. Atoms are built
using relations≥, = and|. The atomc|t is interpreted as true iff an
integer constantc divides termt. We also sometimes usea < b as a
shorthand fora ≤ b∧¬(a = b). We describe a synthesis algorithm
which works for conjunction of literals.

Pre-processing. We first apply the following pre-processing steps
to eliminate negations and divisibility constraints. We remove nega-
tions by transforming a formula into its negation-normal form and
translating negative literals into equivalent positive ones:¬(t1 ≥
t2) is equivalent tot2 ≥ t1 + 1 and¬(t1 = t2) is equivalent to
(t1 ≥ t2 + 1) ∨ (t2 ≥ t1 + 1). We also normalize equalities into
the formt = 0 and inequalities into the formt ≥ 0.

We transform divisibility constraints of a formc|t into equalities
while adding a fresh variable,l. The obtained value of the fresh
variablel is ignored in the final synthesized program:

J~x, (c|t) ∧ F K =

let (pre, (~Ψ, Ψn+1)) = J(~x, q), t = cq ∧ F K

in (pre, ~Ψ)

The negation of divisibility¬(c|t) can be handled in a similar way
by introducing two fresh variablesq andr:

J~x,¬(c|t) ∧ F K =

let F ′ ≡ t + r = cq ∧ 1 ≤ r ≤ c − 1 ∧ F

(pre, (~Ψ, Ψn+1, Ψn+2)) = J(~x, q, r), F ′K

in (pre, ~Ψ)

In the rest of this section we consider a formula without negation
or divisibility constraints.

6.1 Equality Constraints

Because equality constraints are suitable for deterministic elimina-
tion of variables, our procedure groups all equalities froma con-

junction and solves them first. For this we use theeqSyn algorithm
described in Section 6.1.1. We can formalize this translation as a
generalization of the scheme in Section 4.1 that solves for multiple
variables and returnes a solution parameterized by a smaller num-
ber of variables. In the following,~y are variables that are solved
using equations and~z are fresh variables introduced to represent
the parameterized space of solutions for~y.

J(~y, ~x), E ∧ F K =

let (preY , ~ΨY , ~z) = eqSyn(~y, E)

F ′ = simplify(F [~y := ~ΨY ])

(pre, (~ΨZ , ~ΨX)) = J(~z, ~x), F K

preY 0 = preY [~x := ~ΨX , ~z := ~ΨZ ]
~ΨY 0 = ~ΨY [~x := ~ΨX , ~z := ~ΨZ ]

in

(preY 0 ∧ pre, (~ΨY 0, ~ΨX))

6.1.1 Reducing the Number of Output Variables

In this section we describe the algorithmeqSyn. Let Σm
i=1βibi +

Σn
j=1γjyj = 0 be an equality. We assume that the equality is al-

ready simplified in the sense thatgcd(β1, . . . , βm, γ1, . . . , γn) =
1, wheregcd stands for the greatest common divisor.

First we consider the case when there is only one output variable
in the equality. In that case the algorithmeqSyn returns:

eqSyn(Σm
i=1βibi + γy = 0) =

(γ| − Σm
i=1βibi, t = (−Σm

i=1βibi)/γ, ())

From now on we assume that there is more than one output vari-
able in the equality. Out goal is to derive an alternative definition
of the setK = {~y | Σm

i=1βibi + Σn
j=1γjyj = 0} which will allow

a simple and effective computation of elements inK. Note that the
setK describes the set of all solutions of a Presburger arithmetic
formula and following [Ginsburg and Spanier 1964, 1966] there is
a semilinear set describing it . Asemilinear setis finite union of lin-
ear sets. Given an integer vector~b and a finite set of integer vectors
S, a linear setis a set{~x | ~x = ~b +~s1 + . . . +~sn; si ∈ S; n ≥ 0}.
Vector~b is called a base vector while vectors inS are called step
vectors. Every semilinear set is a solution of some Presburger arith-
metic formula. Ginsburg and Spanier showed that converse holds
as well: the set of all solutions of a Presburger arithmetic formula
can be described with a semilinear set. However, we cannot ap-
ply this result immediately because there are also input variables
whose values are not known until the execution time. We overcome
this problem by introducing witnesses. We now explain in details
three steps in defining a set describing setK.

Given the equalityΣm
i=1βibi + Σn

j=1γjyj = 0 in the first step
we define the setSH = {~y | Σn

j=1γjyj = 0} which describes a
solution set of a homogeneous equality. This is a linear set and it
has a form{~y | ~y = α1~s1 + . . . + αk~sk; αi ∈ Z}. Vectors~si are
known and their effective computation is described in Section 6.1.2.
What is important is that the number ofsi vectors is strictly smaller
thann.

In the second step we compute a witness vector~w. For this we
use generalization of Bézout’s identity: for any numbersk1, . . . , kn

with greatest common divisord there exist integersα1, . . . , αn

such thatα1k1 + · · ·+ αnkn = d. A fast algorithm for computing
those integers is described in Section 6.1.3.

Let d = gcd(γ1, . . . , γn) and letI = Σm
i=1βibi. Note that

this means thatd|I and this fact should be output as a required
precondition. LetJ = I/d. We apply Bézout’s identity on numbers
γ1, . . . , γn and compute numbersv1, . . . , vn such thatd = v1γ1 +
· · · + vnγn. Multiplying this equality withJ results ind ∗ J =
v1 ∗ J ∗ γ1 + · · ·+ vn ∗ J ∗ γn. We definewi = −vi ∗J and form
vector ~w. It can easily be verified that vector~w belongs toK.
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In the last step we show thatK = SH+{~w}, i.e.~y ∈ K ⇔ ~y =
~yh+ ~w∧~yh ∈ SH . If ~y ∈ K, we need to show that~y− ~w ∈ SH . Let
zi = yi−wi. Applying few simple computation steps we show that
Σn

j=1γjzj = 0 and thus~z ∈ SH . The other direction is analogous.
In summary, the algorithmeqSyn returns three pieces of in-

formation: the preconditiond|Σm
i=1βibi, the list of termsti, and

the list of fresh variablesλi. Using the computed values for gen-
erators of setSH and a witness~w, terms ti are computed as:
ti = wi + λ1s1i + . . . + λkski.

6.1.2 Efficient Computation of Linear Sets

To complete handling of equalities in our linear integer arithmetic
synthesizer, the last hurdle we need to address is an efficient com-
putation of a set describing the set of solutions of an equation
Σn

i=1γiyi = 0. Following the Omega test [Pugh 1992], we know
the structure of this set. It is a linear set with~0 as the base vector
and at mostn−1 step vectors:{α1~s1+. . .+αn−1~sn−1 | αi ∈ Z}.
The Omega test is an algorithm which describes, among others, a
computation of those step vectors. However, we find it too complex
for our purposes, so here we propose direct computation of those
step vectors without applying the Omega test.

Let S = {~y | Σn
i=1γiyi = 0}. Note thatS is always a non-

empty set, since~0 ∈ S. We will show thatS is equal to the
following set:

SL =

8

>

<

>

:

α1

0

B

@

K11

...
Kn1

1

C

A
+ . . . + αn−1

0

B

@

K1(n−1)

...
Kn(n−1)

1

C

A

˛

˛

˛

˛

˛

˛

˛

αi ∈ Z

9

>

=

>

;

where integer valuesKij are computed as follows:

• if i < j, Kij = 0

• Kjj =
gcd((γk)k≥j+1)

gcd((γk)k≥j)

• remaining valuesKij are computed as follows: for each index
j, 1 ≤ j ≤ n − 1, consider the equation

γjKjj +
n
X

i=j+1

γiuij = 0

and find any solution. Letkij be a value of a variableuij in the
found solution. For all the remainingKij for this fixedj, output
Kij = kij . In Section 6.1.3 we describe how to find a solution
using only the Euclidean algorithm.

If one considers a matrix formed with coefficientsKij , it is a
lower triangular matrix. The reason for this is because vectors~sj

are forming a basis for the setS and we compute them in a way
that guarantees their mutual independence.

We next show the correctness of the construction by showing
that S = SL. First we show that each vector~sj belongs toS:
~sj ∈ S ⇔ Σn

i=1γiKij = 0 ⇔ γjKjj +
Pn

i=j+1 γiKij = 0
which trivially holds by construction. SetS is a homogeneous set
and therefore any linear combination of its elements is again an
element inS.

To prove that the converse also holds, we show that a vector~x ∈
S can be written as a linear combination of~sj vectors. LetG1 =
gcd((γk)k≥1): ~x ∈ S ⇔ Σn

i=1γixi = 0 ⇔ G1(Σ
n
i=1βixi) = 0,

whereβi = γi/G1. This implies thatβ1x1 + Σn
i=2βixi = 0

and allβi values are coprime, ie.gcd((βk)k≥1) = 1. Let G2 =
gcd((βk)k≥2). We can then further rewrite the fact~x ∈ S as:~x ∈

S ⇔ β1x1 + G2(Σ
n
i=2β

′

ixi) = 0 ⇔ x1 = −G2(Σ
n
i=2β

′

ixi)/β1.
Sinceβ1 andG2 are coprime, it means thatβ1|Σ

n
i=2β

′

ixi andx1

can be written asx1 = α1G2 for the integerα1 = −Σn
i=2β

′

ixi/β1.
Applying the definitions ofG2, βi andG1 results inx1 = α1K11.

Consider now a new vector~y = ~x − α1~s1. Since~x and~s1 are
elements ofS, vector~y is also an element ofS. However, vector
~y has a special structure: its first component is 0. We repeat the
described procedure on~y and~s2. This way we derive the value for
an integerα2 and a new vector~z who has the first two components
0.

We continue with the described procedure until we obtain a vec-
tor ~u that has all components 0 except for the last two components.
Since it is also an element ofS, it holdsγn−1un−1 + γnun = 0.
Using this, we conclude thatun−1 · gcd(γn−1, γn)/γn is an in-
teger. Our goal is to show that~u = αn−1~sn−1, for some inte-
ger valueαn−1. Next we observe that vector~sn−1 has a form
(0, . . . , 0, γn/ gcd(γn−1, γn),−γn−1/ gcd(γn−1, γn)). By defin-
ing αn−1 to beαn−1 = un−1 ·gcd(γn−1, γn)/γn, it can easily be
verified that~u = αn−1~sn−1.

The entire procedure shows that every element ofS can be
represented as a linear combination of the~sj vectors and this
finishes the proof of the correctness of the linear set construction.

6.1.3 Finding a Solution of an Equation

Finally, we describe a fast way of finding a solution for an equation
K + Σn

i=1γiui = 0. This equation has an integer solution only
if gcd((γk)k≥1)|K. For a purpose of constructing a linear set,
this requirement holds in every equation for which we aim to find
a solution. Therefore we are not addressing the case when the
equation does not have a solution. The basis for the computation
is again Bézout’s identity: given integersa1 anda2 with greatest
common divisord there exist integersw1 andw2 such thata1w1 +
a2w2 = d. The final solution of the equation will be constructed
by using induction.

We start with a base case when there are only two variables:
K + γ1u1 + γ2u2 = 0. BecauseK/ gcd(γ1, γ2) is an integer,
we introduce an integerα = K/ gcd(γ1, γ2). Following Bézout’s
identity there exist integersv1 andv2 such thatγ1v1 + γ2v2 =
gcd(γ1, γ2). We defineui = vi · (−α) and verify that such
computedu1 andu2 are correct solutions of the equation.

If there are more than two variables, we observe thatΣn
i=2γiui

will be a multiple ofgcd((γk)k≥2). We introduce the new variable
uN and find a solution of the equationK +γ1u1 +gcd((γk)k≥2) ·
uN = 0 as described above. This way we obtain values ofu1

and uN . To derive values ofu2, . . . , un we solve the equation
Σn

i=2γiui = gcd((γk)k≥2) · uN . It satisfies the requirements to
have a solution, has one variable less than the original equation and
thus we can apply induction.

Another algorithm for finding a solution of an equationK +
Σn

i=1γiui = 0 is presented in [Banerjee 1988]. It also runs in
polynomial time and allows bounded inequality constraintsas well.
However, we chose the algorithm presented here because it ofits
simplicity. It can be easily implemented. Moreover, we are only
interested in finding one solution of an equation. We have no
additional constraints nor we are interested in a characterization
of all solutions.

Here we did not describe an algorithm how to find integersw1

andw2 such thata1w1 + a2w2 = gcd(a1, a2), for given integers
a1 anda2. It is a well-know standard algorithm, present in most
of the textbooks on algorithms under the name Extended Euclidean
algorithm, for example [Cormen et al. 2001][Figure 31.1].

6.1.4 Example

We demonstrate the process of eliminating equations on an exam-
ple. Consider the translation

J(x, y, z), 2a − b + 3x + 4y + 8z = 0 ∧ 5x + 4z ≤ y − bK

To eliminate an equation from the formula and to reduce a number
of output variables, first we invokeeqSyn(2a−b+3x+4y+8z =
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0). It works in two phases. In the first phase, it computes the
linear set describing a set of solutions of homogeneous equality
3x + 4y + 8z = 0. Using the algorithm described in Section 6.1.2,
it returns:

SL =

8

<

:

α1

0

@

4
−3
0

1

A+ α2

0

@

0
2
−1

1

A

˛

˛

˛

˛

˛

˛

α1, α2 ∈ Z

9

=

;

The second phase computes a witness vector~w and a precondition
formula. Applying the procedure described in Section 6.1.1results
in vector~w = (2a−b, b−2a, 0) and formula1|2a−b. Finally, we
compute the output ofeqSyn applied on2a−b+3x+4y+8z = 0:
it is a triple consisting of

1. a precondition1|2a − b

2. a list of terms denoting witnesses for(x, y, z):

Ψ1 = 2a − b + 4α1

Ψ2 = b − 2a − 3α1 + 2α2

Ψ3 = −α2

3. a list of fresh variables(α1, α2).

Next we replace each occurrence ofx, y andz by the corresponding
terms in the rest of the formula. This results in a new formula
7a − 3b + 13α1 ≤ 4α2. It has the same input variables, but the
output variables are nowα1 andα2. To find a solution for the initial
problem, we let

(preX , (Ψ1, Ψ2) = J(α1, α2), 7a − 3b + 13α1 ≤ 4α2K

Since1|2a − b is a valid formula, we do not add it to the final
precondition. Therefore, the final result is of the form

(preX , (2a − b + 4Ψ1, b − 2a − 3Ψ1 + 2Ψ2,−Ψ2))

6.2 Processing Inequality Constraints

From now on, we assume that all equalities are already processed
and that a formula is a conjunction of inequalities. Dealingwith
inequalities in the integer case is somehow similar to the case
of rational arithmetic: we process variables one by one and then
proceed further with the resulting formula.

Let x be an output variable which we are processing. Every
conjunct can be rewritten in one of the two following forms:

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

As before,x should be a value which is greater than all lower
bounds and smaller than all upper bounds. However, this timewe
also need to take into an account thatx has to be an integer. For this
reason we definea = maxi ⌈Ai/αi⌉ andb = minj ⌊Bj/βj⌋. If b
is defined, we definex = b, otherwise we setx = a.

The corresponding formula using which we proceed further is
a conjunction stating that each lower bound is smaller than every
upper bound:

^

i,j

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ (2)

TermsAi andBj may contain input and output variables and thus
the obtained formula is not a linear arithmetic formula. In order to
invoke our synthesizer on that formula, we have to convert itinto
an equivalent linear arithmetic formula. For this purpose we need
to eliminate fractionals and floor and ceiling functions.

With lcm we denote the least common multiple. LetL =
lcmi,j(αi, βj). We introduce new termsA′

i = L
αi

Ai andB′
j =

L
βj

Bj . Those terms are linear integer arithmetic terms and using
them, we derive a new formula which is almost an integer linear
arithmetic formula:

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ ⇔
˚

A′
i/L
ˇ

≤
¨

B′
j/L

˝

⇔

A′
i

L
≤

B′
j − B′

j mod L

L
⇔ B′

j mod L ≤ B′
j − A′

i

⇔ B′
j = L · lj + kj ∧ kj ≤ B′

j − A′
i

The obtained formula is an integer linear arithmetic formula and
formula (2) is equivalent to

^

j

(B′
j = L · lj + kj ∧

^

i

(kj ≤ B′
j − A′

i))

Still we cannot simply apply the synthesizer on that formula.
Let {1, . . . , J} be a range ofj indices. The newly derived formula
containsJ equations and2 · J new variables. The process of
eliminating equalities as described in Section 6.1 will at the end
result in a new formula which containsJ new output variables
and this way we cannot assure termination. Therefore, this is not
a suitable approach.

However, we notice that the value ofkj is always bounded:
kj ∈ {0, . . . , L − 1}. Thus, if the value ofkj would be known,
we would have a formula with onlyJ new variables andJ addi-
tional equations. The equations elimination described before would
then result with a formula that has one variable less than theorig-
inal starting formula and that would guarantee terminationof the
approach.

Since the value of eachkj variable is always bounded, there are
finitely many (J · L) possible instantiations ofkj variables. There-
fore, we need to check for each instantiation of allkj variables
whether it leads to solution. As soon as a solution is found, we stop
and proceed with the obtained values of output variables. Ifno so-
lution is found, we raise an exception, because the originalformula
has no integer solution.

We finish the description of the synthesizer with an example
which illustrated the above algorithm.

Example Consider a formula2y − b ≤ 3x + a∧ 2x− a ≤ 4y + b
wherex and y are output variables anda and b are input vari-
ables. If the resulting formula⌈2y − b − a/3⌉ ≤ ⌊4y + a + b/2⌋
has a solution, then the synthesizer emits the value of x to be
⌊4y + a + b/2⌋. This newly derived formula has only one out-
put variabley, but it is not an integer linear arithmetic formula.
It is converted to an equivalent integer linear arithmetic formula
(4y + a + b) · 3 = 6l + k ∧ k ≤ 8y + 5a + 5b, which has
three output variables:y, k and l. The value ofk is bounded:
0 ≤ k ≤ 5. We start withk = 0: this leads to a formula
4y + a + b = 2l ∧ 0 ≤ 8y + 5a + 5b, with a and b as input
variables andl andy as output variables. Invoking the synthesizer
on this code results in the precondition formula2|a + b and the
code:

val alpha = ((−5 ∗ a − 5 ∗ b)/8).ceiling
val l = (a + b)/2 + 2 ∗ alpha
val y = alpha

Becausea andb are input variables, the validity of the precondition
formula can be checked. If it is valid, we stop further executions of
the algorithm and output the above code followed by the code com-
puting the value ofx. If the precondition formula is not valid, we
repeat the procedure for the remaining values ofk: k = 1, . . . , 5.
If none of those values returns the satisfying solution, we throw an
exception.

6.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesis for
arbitrary propositional combinations is to apply the method of
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Section 4.4. We also obtain complexity that is one exponential
higher than the complexity of synthesis from previous section. Ap-
proaches that avoid disjunctive normal form can be used in this case
as well [Ferrante and Rackoff 1979; Nipkow 2008; Weispfenning
1997], and we expect the lower and upper bounds on quantifier
elimination [Weispfenning 1997] to apply to the size of the synthe-
sized code.

6.4 Optimizations used in the Implementation

In this section we describe some optimizations and heuristics that
we utilize in implementation. Using some of them we obtaineda
speedup by several orders of magnitude.

Merging inequalities. Whenever two inequalitiest1 ≤ t2 and
t2 ≤ t1 appear in a conjunction, we substitute them with equality
t1 = t2. This makes the process of variable elimination more
efficient.

Heuristic for choosing the right equality for elimination. When
there are several equalities in a formula, we chose to eliminate an
equality for which the least common multiple of all the coefficients
is the smallest. We observed that this reduces the number of inte-
gers to iterate over.

Some optimizations on modulo operations.In processing in-
equalities, as described in Section 6.2, as soon as we introduce the
mod operator, we are immediately aware of potential longer pro-
cessing time. It is because finding the suitable value of the reminder
in equationB′

jmod L ≤ B′
j −A′

i, requires invoking a loop. While
searching for a witness, we might need to check for all possible L
values. Therefore, we try not to introduce themod operator in
the first place. This is possible in few cases. One of them is when
eitherαi = 1 or bj = 1. In that case, if for exampleαi = 1, an
equivalent integer arithmetic formula is easily derived:

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ ⇔ Ai ≤ ⌊Bj/βj⌋ ⇔ βjAi ≤ Bj

Another example for when we do not introduce themod
operator is the case whenA′

i − B′
j evaluates to a numberN , such

thatN > L. In that case, it is clear thatB′
jmod L ≤ B′

j −A′
i is a

valid formula and thus the returned formula is⊤.
Finally, we describe an optimization that leads to reducinga

number of a loop executions. This optimization is possible when
there exists an integerN such thatB′

j = N · Tj andL = N · L1.
(UnlessL = βj , this is almost always the case). In the case thatN
exists, thenkj also has to be a multiple ofN . Putting together all
that, an equivalent formula ofB′

jmod L ≤ B′
j − A′

i is formula
Tjmod L1 = kj ∧ N · kk ≤ B′

j − A′
i. This reduces the number

of loop iterations for at least a factorN .

6.5 Complexity

We next describe the complexity of our algorithms, for both the
synthesis process itself and the synthesized programs.

A conversion of the formula to Disjunctive Normal Form might
increase by an exponential factor both the running time and the
space of our synthesizer and also the size of the generated program
(see 6.5). The execution time would also be multiplied by an expo-
nential factor as we are checking the conditions in sequence.

In the sequel we analyze a conjunction of atomic equations.

Synthesizer Time ComplexityThe number of timesΩ(E, N, V )
given the number of equalitiesE, inequalitiesN and output vari-
ablesV , is bounded from above by:

Ω(E, N, V ) = O

 

2 +
N2V

22V +1−1
+ min(V, E)

!

This result is proved in appendix A.2.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | (K|T )

B ::= x | ∅ | U | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 1. A Logic of Sets and Size Constraints

Note that, the algorithm has again good efficiency in the ab-
sence of inequalities. In any case, it is also polynomial when V is
constant.

Generated Programs SizeEach recursive call to remove an
equality also means at least an assignment, so there can be atleast
doubly exponential assignments.

Generated programs Time ComplexityWithout inequalities, the
complexity is linear in the number of equations. Else, it canalso be
doubly exponential.

6.6 Generalization to Parametrized Presburger Arithmetic

It is possible generalize our synthesizer in the case when the coef-
ficients of the output variables are not only integers anymore, but
they can be any arithmetic expression over the input variables. This
extension allows us to write implicit programs like this one:

val (x, y) = choose((x: Int, y: Int) ⇒

x ∗ (k3+1) + y ∗ (2k2−k) == kˆ4 &&

x ∗ k > 3 ∗ k2+5
)

In that case, all the choices made during synthesis depending on the
sign of the coefficients have to be done at run-time. Each choice
on the sign generates two or more different solutions, so locally
multiplies by two or three the execution time and the size of the
generated program.

The coefficients of the Bezout function in this case become
known at run-time only, so we have to integrate the Bezout function
into the code as a library function. The situation is the samefor the
gcd function.

Furthermore, the running time of the programs is not constant
anymore, it depends on the value of the inputs. For example, the
upper bounds of the generated for loops in Section 6.2 might now
be arithmetic expressions.

7. Synthesis for Sets with Size Constraints
In this section we define a logic of sets with cardinality constraints
and describe a synthesis procedure for it. Our logic supports the
standard set operators union, intersection and complement, and the
subset and equality relations. In addition, it supports thesize opera-
tor on sets, as well as integer linear arithmetic constraints over these
sizes. Its syntax is given in Figure 1. This logic was considered in a
number of applications [Feferman and Vaught 1959; Kuncak etal.
2006; Zarba 2004, 2005].

As in the previous sections, we consider the problem (1)

~r = choose(~x ⇒ F (~x,~a))

where the components of vectors~a, ~x, ~r are either set or integer
variables.

Figure 2 describes a synthesis procedure that returns a precondi-
tion predicatepre(~a) and a solved formΨ. The procedure is based
on the quantifier elimination algorithm presented in [Kuncak et al.
2006] which reduces a formula in our logic to an equisatisfiable
Presburger arithmetic formula. The algorithm eliminates set vari-
ables in two phases. In the first phase all set expressions arerewrit-
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ten as disjunctive unions of corresponding Venn regions. The sec-
ond phase introduces for the cardinality of each Venn regiona fresh
integer variable, and thus reduces the whole formula to a Pres-
burger arithmetic formula. The input variables in this Presburger
arithmetic formula are the integer input variables from theoriginal
formula and fresh integer variables denoting cardinalities of Venn
regions of the input set variables. Note that all values of all those in-
put variables is known from the program. The output variables are
the original integer output variables and freshly introduced integer
variables denoting cardinalities of Venn regions that are contained
in the output set variables. We adapt this algorithm and conjoin
it with the synthesizer for Presburger arithmetic described in Sec-
tion 6. The synthesizer outputs the precondition predicatepre and
emits the code for computing values of the new output variables.
Based on those returned integer values we reconstruct a model for
the original formula and finally we emit the code that computes
values of the original output set variables. Notice that theprecondi-
tion predicatepre will be a Presburger arithmetic formula with the
terms built using the original integer input variables and the cardi-
nalities of Venn regions of the original input set variables. As an
example, ifi is an integer input variable anda andb are set input
variables then the precondition predicate might be the following
formulapre(i, a, b) = |a ∩ b| < i ∧ |a| ≤ |b|.

In the last step of the algorithm, while outputting code, we
use the commandsfresh andtake. The commandtake takes as
arguments an integerk and a setS, and returns a subset ofS of the
sizek. The commandfresh(k) is invoked whenk fresh elements
need to be generated. Those commands are used only in the code
that will compute output values of set variables, because the linear
integer arithmetic synthesizer produces code for computation of
integer output variables. The set output variables are computed one
by one. Given an output set variableYi, the code that effectively
computes the value ofYi is emitted in several steps. WithSi

we denote a set containing set variables occurring in the original
formula whose values are already known. InitiallySi contains only
the input set variables. Our goal is to describe the construction of
Yi in terms of sets that are already inSi. We start by computing
the Venn regions forYi and all the sets inSi in order to define
Yi as a union of those Venn regions. Therefore we are interested
only in those Venn regions that are subset ofYi. Let Tj be one
such a Venn region. It can be represented asTj = Yi ∩ Uj where
Uj has a formUj = ∩S∈Si

S(c) andS(c) denotes eitherS or Sc.
On the other hand,Tj can also be represented as a disjoint union
of the originalRu Venn regions. ThoseRu are Venn regions that
were constructed in the beginning of the algorithm for all input
and output set variables. As the linear integer arithmetic synthesizer
outputs the code that computes valueshu, wherehu = |Ru|, we
can effectively compute the size of eachTj . If Tj = Ru1 ∪ . . . ∪
Ruk

then the size ofTj is |Tj | = dj =
Pk

l=1 hul
. Note thatdj is

easily computed from the linear integer arithmetic synthesizer and
based on the value ofdj we define a setKj asKj = take(dj , Uj).
Finally, we emit the code that definesYi as a finite union ofKj ’s:
Yi = ∪jKj .

Based of the values ofdj , we can introduce further simplifica-
tions. If dj = 0, none of elements ofUj contributes toYi and thus
Kj = ∅. On the other hand, ifdj = |Uj |, applying a simple rule
S = take(|S|, S) results inKj = Uj . A special case is when
Uj = ∩S∈Si

Sc. If in this case also holds thatdj > 0, we need
to takedj elements that are not contained in any of already known
sets, i.e. we need to generate freshdj elements. For this purpose
we invoke the commandfresh.

Example run of the algorithm Consider the choose statement

val s1 = choose((s: Set) ⇒ a subsetOf s && s.size ≤ b.size)

INPUT: a formulaF ( ~X, ~Y ,~k,~l) in the logic defined in Figu-
re 1, input variablesX1, . . . , Xn, k1, . . . , km

and output variablesY1, . . . , Ys, l1, . . . , lt, where
Xi andYj are set variables,ki andlj are integer
variables

OUTPUT: code that computes values for the output variables
from the input variables

1. Apply the first steps towards a Presburger arithmetic formula:

(a) Replace each atomS1 = S2 with S1 ⊆ S2 ∧ S2 ⊆ S1

(b) Replace each atomS1 ⊆ S2 with |S1 ∩ Sc
2 | = 0

2. Introduce the Venn regions of setsXi’s and Yj ’s: let u be a
binary word of the lengthn+m. The set variableRu represents
a Venn region where each ’1’ stands for a set and ’0’ stands for
a complement. To illustrate, ifn = 2, m = 1 andu = 001,
thenR001 = Xc

1 ∩ Xc
2 ∩ Y1. Rewrite each set expression as a

disjoint union of corresponding Venn regions.

3. Create a Presburger arithmetic formula: an integer variable hu

denotes the cardinality of a Venn regionRu. Use the fact that
|S1 ∪ S2| = |S1| + |S2| iff S1 andS2 are disjoint to rewrite
the whole formula as the Presburger arithmetic formula. The
resulting formula we denote withF1( ~hu,~k,~l).

4. Create a Presburger arithmetic formula which corresponds to
quantifier elimination: letv be a binary word of lengthn. A
set variablePv denotes a Venn region of input set variables,
which means that|Pv | is a known value. Create a formula that
expresses each|Pv| as a sum of correspondinghu’s. Define the
formulaF2( ~hu, ~|Pv|) as the conjunction of all those formulas.

5. Create code that computes values of output vectors. Firstin-
voke the linear arithmetic synthesizer described in Section 6 to
generate the code corresponding to:

val ( ~hun, ~ln) = choose(( ~hu, ~l) ⇒ F1( ~hu, ~k, ~l) ∧F2( ~hu, ~|Pv|))

Invoking the synthesizer returns code that computes expres-
sions for the integer output variables~ln and for the variables
~hu. For each set output variableYi, do the following: letSi be
a set containing already known or defined set variables, letTj

be a Venn region ofSi ∪ Yi that is contained inYi. Now, for
eachTj do: take allRu that belong toTj and letdj be a sum of
all correspondinghun. Let Uj = Tj\Yi. Based on the value of
dj output the following code:

• if Uj = ∩S∈Si
Sc anddj > 0, output the assignmentKj =

fresh(dj )

• if dj = 0, output the assignmentKj = ∅

• if dj = |Uj |, output the assignmentKj = Uj

• otherwise output the assignmentKj = take(dj , Uj )

Finally, constructYi as a union of allKj sets:Yi = ∪jKj

Figure 2. Algorithm for synthesizing a functionΨ such that
F [~x := Ψ(~a)] holds, whereF has the syntax of Figure 1
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We apply the algorithm from Figure 2. After completing the third
step, we obtain the formula

F1(~hu) ≡ h100 = 0 ∧ h110 = 0 ∧ h101 ≤ h011 + h010

We simplify the formula obtained in the fourth step using the
constraints from the third step and obtain the formula

F2(~hu) ≡ h111 = |a∩b|∧h101 = |a∩bc|∧h011+h010 = |ac∩b|

We call the linear arithmetic synthesizer and the followingvalues
for hu variables

h100 = 0∗, h110 = 0∗, h111 = |a ∩ b|∗, h101 = |a ∩ bc|∗,
h010 = |a ∩ bc|, h011 = |ac ∩ b| − |a ∩ bc|, h001 = 0,

h000 = |ac ∩ bc|∗

where∗ denotes the deterministic values of variables. The linear
arithmetic synthesizer also outputs the precondition predicatepre:
pre(a, b) ≡ |ac∩b| ≥ |a∩bc|. Finally, we emit the following code,
written in the Scala-like syntax:

val k1 = a −− b
val k2 = a ∗∗ b
val k3 = take((b −− a).size − (a −− b).size, b −− a)
val S = k1 ++ k2 ++ k3

Herex ++ y, x ** y andx -- y denotex ∪ y, x∩ y andx∩ yc

respectively, andx.size the cardinality ofx.

Partitioning a set Consider the following invocation of the
choose function that generalizes the example in Section 2.

val (setA, setB) = choose((a: Set[String], b: Set[String]) ⇒
(−maxDiff ≤ a.size − b.size && a.size − b.size ≤ maxDiff

&& a ++ b == bigSet && a ∗∗ b == Set.empty
))

This example combines integer and set variables. Given a set
bigSet, the goal is to divide it into two partition. The previously
defined integer variablemaxDiff specifies the maximum amount
by which the sizes of the two partitions may differ. Our synthesizer
successfully generates the code for this example which computes
acceptable sizes for the Venn regions using the appropriateinteger
arithmetic expressions, selects elements into these Venn regions,
and computes the setsa andb by taking the union of non-empty
Venn regions in which these sets participate.

8. Implementation
We have implemented our synthesis procedures as a Scala compiler
extension (please consult the non-anonymous appendix for the im-
plementation URL). We chose Scala because it supports higher-
order functions that make the concept of a choose function natu-
ral, and extensible pattern matching in the form of extractors [Emir
et al. 2007]. Besides, the compiler supports plugins that can serve as
additional phases in the compilation process.2 We used an off-the-
shelf decision procedure [de Moura and Bjørner 2008] to handle
the compile-time checks.

Our plugin supports the synthesis of integer values throughthe
choose function constrained by linear arithmetic predicates, as
well as the synthesis of set values constrained by predicates of
the logic described in Section 7. Additionally, it can synthesize
code for pattern-matching expressions on integers such as the ones
presented in Section 2.

Figure 3 shows the compile times for a set of benchmarks, with
and without our plugin (in the latter case, the generated code is of
course of no use). The examplesSecondsToTime, FastExponentia-
tion were presented in Section 2 andSplitBalancedin Section 7.

2http://www.scala-lang.org/node/140

scalac w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.1 3.5 –
SplitBalanced 3.2 5.3 –
All 5.25 6.35 6.5

Figure 3. Measurement of compile times: without applying syn-
thesis (scalac), with synthesis but with no call to Z3 (w/ plu-
gin) and with both synthesis and compile-time checks activated
(w/ checks). All times are in seconds. There are no compile-time
checks for the synthesis of set values.

ScaleWeightscomputes solutions to a puzzle,PrimeHeuristiccon-
tains a long pattern-matching expression where every pattern is
checked for reachability, andSetConstraintsis a variant ofSplit-
Balanced. We also measured the times with all benchmarks placed
in a single file, as an attempt to balance out the time taken by the
Scala compiler to start up. Our numbers show that the additional
time required for the code synthesis is minimal. One should also
note that the code we tested contained almost exclusively calls to
the synthesizer, which is clearly not representative of what we ex-
pect will be the common practice of using a selective number of
invocations.

9. Related Work
Our work differs from the past ones in 1) using decision procedures
to guarantee the computation of synthesized functions whenever a
synthesized function exists, 2) bounds on the running timesof the
synthesis algorithm and the synthesis code size and runningtime,
and 3) deployment of synthesis in well-delimited pieces of code of
a general-purpose programming language.

Early work on synthesis [Manna and Waldinger 1980, 1971] fo-
cused on synthesis using expressive and undecidable logics, such as
first-order logic and logic containing the induction principle. Con-
sequently, while it can synthesize interesting programs containing
recursion, it cannot provide completeness and terminationguaran-
tees as synthesis based on decision procedures.

Recent work on synthesis [Srivastava et al. 2010] resolves some
of these difficulties by decoupling the problem of inferringprogram
control structure and the problem of synthesizing the computation
along the control edges. Furthermore, the work leverages verifica-
tion techniques that use both approximation and lattice theoretic
search along with decision procedures. This work is more ambi-
tious and aims to synthesize entire algorithms. By nature, it cannot
be both terminating and complete over the space of all programs
that satisfy an input/output specification (thus the approach of spec-
ifying program resource bounds). In contrast, we provide complete-
ness guarantees for a given specification, but focus on synthesis of
program fragments with very specific control structure dictated by
the nature of the decidable logical fragment.

Program sketching has demonstrated the practicality of program
synthesis by focusing its use on particular domains [Solar-Lezama
et al. 2006, 2007, 2008]. The algorithms employed in sketching are
typically focused on appropriately guided search over the syntax
tree of the synthesized program. In contrast, our synthesisuses
the mathematical structure of a decidable theory to explorespace
of all functions that satisfy the specification. This enables our
approaches to achieve completeness without putting any a priori
bound on the syntax tree size. Indeed, some of the algorithmswe
describe can generate fairly large and efficient programs. We expect
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that our techniques could be fruitfully integrated into sketching
frameworks.

Synthesis of reactive systems generates programs that run for-
ever and interact with the environment. However, known complete
algorithms for reactive synthesis work with finite-state systems
[Pnueli and Rosner 1989] or timed systems [Asarin et al. 1995].
Such techniques have applications to control the behavior of hard-
ware and embedded systems or concurrent programs [Vechev etal.
2009]. These techniques usually take specifications in a fragment of
temporal logic [Piterman et al. 2006] and have resulted in tools that
can synthesize useful hardware components [Jobstmann and Bloem
2006; Jobstmann et al. 2007]. Our work examines non-reactive pro-
grams, but supports infinite data without any approximation, and
incorporates the algorithms into a compiler for a general-purpose
programming language.

Automata-based decision procedures, such as those imple-
mented in the MONA tool [Klarlund and Møller 2001] could
be used to synthesize efficient (even if large) code from ex-
pressive specifications. The work on graph types [Klarlund and
Schwartzbach 1993] proposes to synthesize fields given by defini-
tions in monadic second-order logic. The subsequent work [Møller
and Schwartzbach 2001] has focused on verification as opposed to
synthesis.

Our approach can be viewed as sharing some of the goals of
partial evaluation [Jones et al. 1993]. However, we do not need to
employ general-purpose partial evaluation techniques (which typ-
ically provide linear speedup), because we have the knowledge of
a particular decision procedure. We use this knowledge to devise a
synthesis algorithm that, given formulaF , generates the code cor-
responding to the invocation of this particular decision procedure.
This synthesis process checks the uniqueness and the existence of
the solutions, emitting appropriate warnings. Moreover, the syn-
thesized code can have reduced complexity compared to invoking
the decision procedure at run time, especially when the number of
variables to synthesize is bounded.

A. Derivation of Complexities
This part contains proof complements about the complexities of our
synthesis algorithms.

A.1 Linear Rational complexity

We assumeA input variables (containing the constant coefficient),
V output variables,E equalities (E ≤ V ), andN inequalities.

We want the number of arithmetic operations during synthesis,
which we writeΩ(A, V, E,N).

We will prove that:

Ω(A, V, E, N) ≤ U(A, V, E, N)

where

U(A, V, E, N) = K5·

 

2V (A + V )

V
X

k=2

N2k−1

22k−1
+ f(A, V, E, N)

!

where

f(A, V, E, N) = V · (A + V )(E + N)

After bounding from above the sum, we get the expected result:

Ω(A, V, E, N) = O

 

2V (A + V ) · N2V

22V −1
+ V (A + V )(E + N)

!

A.1.1 Removing 1 equality

We take a variablexV , and we solve one of its equationsxV = t .
This takesO(A + V − 1) operations.

Then, for each other(E − 1 + N) equations, we replacexV

by its expression, this takesO(A + V − 1) per equation, so total
replacement takesO((E − 1 + N) · (A + V )) operations.

Therefore, we have the following relation:

Ω(A, V, E, N) = Ω(A, V −1, E−1, N)+O((E−1+N)(A+V −1))

A.1.2 RemovingE equalities

By summing up the terms while decreasing the number of equalties
and variables, we obtain:

Ω(A, V, E,N) = Ω(A, V − E, 0, N)

+ O
“

PE
i=1(E − i + N)(A + V − i)

”

Let us simplify the inner term:
PE

i=1(E − i + N)(A + V − i)

= (E + N)(A + V )
PE

i=1 1 − (A + V + E + N)
PE

i=1 i

+
PE

i=1 i2

= (E + N)(A + V )E − (A + V + E + N)E(E+1)
2

+E(E+1)(2E+1)
6

≤ E
6
(6(E + N)(A + V ) −3(A + V + E + N)(E + 1))

+(E + 1)(2E + 1))
. . .

≤ E
6

`

(A + V )(3E + 6I) − 3IE − E2 − 3IE + 1
´

≤ E
6

((A + V )(6E + 6I))
≤ E · (A + V )(E + N)

Therefore, we have the following relation:

Ω(A, V, E, N) = Ω(A, V − E, 0, N)
+ O (E · (A + V )(E + N))

A.1.3 Removing V variable whenE = 0, N = 0

Without equations nor inequations, we assign 0 to all remaining
variables.

Ω(A, V, 0, 0) = O(V )

A.1.4 Removing 1 variable whenE = 0, N = 1

With only one inequation, we treat it as an equality+1, solve it and
then assign 0 to all remaining variables.

Complexity :

Ω(A, V, 0, 1) = O(A) + O(V )

A.1.5 Removing 1 variable whenE = 0, N ≥ 2

Once all equalities are removed (E = 0), what is the complexity of
removing one variable if there are at least two inequalities?

First, we take a variable, split the inequations betweenL in-
equations on the left,R on the right, andU nothing. Assuming the
worst-case complexity,U = 0, andL + R = N

The split operation is done inO((A + V )(L + R)) operations,
soO((A + V ) · N) operations.

The expression(max(. . .) + min(. . .))/2 of section 5.1 is
constructed, not computed, so this counts asO(1).

After the split, we relaunch the same process withN −L−R+

L · R inequalities, which is less thanN
2

4
.

Each merge takesO(A+V ) operations, so there areO(N2

4
(A+

V )) operations, which is greater than the previousO(N ·(A+V )).
Therefore, we have the following relation:

Ω(A, V, 0, N) = Ω

„

A, V − 1, 0,
N2

4

«

+ O

„

N2

4
· (A + V )

«
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A.1.6 Merging and upper bound

So we have the following results, and we will now prove that the
upper boundsU onΩ holds by induction.

(1) Ω(A, V, 0, 0) ≤ K1 · V
(2) Ω(A, V, 0, 1) ≤ K2 · A + K3 · V

(3) Ω(A, V, 0, N) ≤ K4 ·
“

N2

4
· (A + V )

”

+Ω
“

A, V − 1, 0, N2

4

”

(4) Ω(A, V, E, N) ≤ K0 · (E · (A + V )(E + N))
+Ω(A, V − E, 0, N)

A.1.7 Proof by induction

Let us examine the base cases (1) and (2). They are all satisfied if
we chooseK5 ≥ max(K1, K2, K3) in the provided formula of
section A.1.

Now let us examine the cases (3) and (4) by induction to prove
that the given upper bound expressionU holds.

(4) The complete induction hypothesis let us assume that

∀v < V. Ω(A, v, E, N) ≤ U(A, v, E, N)

.
Therefore, forv = V − E:

Ω(A, v, 0, N) ≤ K5 · (2v(A + v)
Pv

k=2
N2k−1

22k−1

+f(A, v, 0, N))

≤ K5 ·

 

2V (A + V )

V −E
X

k=2

N2k−1

22k−1
+ f(A, V − E, 0, N)

!

Using this result in (4), we obtain:

Ω(A, V, E, N) ≤ K0 · (E · (A + V )(E + N))

+K5 · ( 2V (A + V )
PV −E

k=2
N2k−1

22k−1

+f(A, V − E, 0, N))

This is trivial for E = 0, so let us assumeE > 0. We regroup
terms to formU , and then examine the remaining terms.

Ω(A, V, E, N)
≤ U(A, V, E, N)

+K0 · (E · (A + V )(E + N))

+K5 · ( −2V (A + V )
PV

k=V −E+1
N2k−1

22k−1

+f(A, V − E, 0, N) − f(A, V, E, N))

Furthermore, if we assumeK5 ≥ K0 :

K0 · (E · (A + V )(E + N)) + K5(f(A,V − E, 0, N)
−f(A, V, E, N))

≤ K5 · (E · (A + V )(E + N)) + (V − E) · (A + V − E)(N)
−V · (A + V )(N + E))

≤ K5 · (E · (A + V )(E + N)) + (V − E) · (A + V )(N + E)
−V · (A + V )(N + E))

≤ 0

So by simplification, we obtain:

Ω(A, V, E, N) ≤ U(A, V, E, N)

(3) The complete induction hypothesis let us assume that

∀v < V. Ω(A, v, E, N) ≤ U(A, v, E, N)

Using this result in (3) forv = V − 1, we obtain:

Ω(A, V, 0, N)

≤ K4 · (N2

4
· (A + V )) + U(A, V − 1, 0, N2

4
)

≤ K4 · (N2

4
· (A + V ))+

K5 · ( 2(V − 1)(A + V − 1)
PV −1

k=2
(N2/4)2

k−1

22k−1
+

f(A, V − 1, 0, N2/4))

≤ K4 · (N2

4
· (A + V ))+

K5 · ( 2V (A + V )
PV −1

k=2
N2k+1−1

22k+1−1
+

f(A, V − 1, 0, N2/4))

≤ K4 · (N2

4
· (A + V ))+

K5 · ( 2V (A + V )
PV

k=2
N2k−1

22k−1
+

f(A, V − 1, 0, N2/4))
≤ U(A, V, 0, N)+

K4 · (N2

4
· (A + V ))+

K5 · ( −2V (A + V )N2

4
+

f(A, V − 1, 0, N2/4) − f(A, V, 0, N))

Assuming thatK5 ≥ K4 :

Ω(A, V, 0, N)
≤ U(A, V, 0, N)+

K5 · ( N2

4
· (A + V )

−2V (A + V )N2

4
+

f(A, V − 1, 0, N2/4) − f(A, V, 0, N))
≤ U(A, V, 0, N)+

K5 · ( −N2

4
· (A + V )

f(A, V − 1, 0, N2/4) − f(A, V, 0, N))

By bounding from above :

Ω(A, V, 0, N)
≤ U(A, V, 0, N)+

K5 · ( −V (A + V )N2

4

+(V − 1)(A + V − 1)N2

4
− V (A + V )N)

≤ U(A, V, 0, N)+

K5 · ( −V (A + V )N2

4

+V (A + V )N2

4
− V (A + V )N)

≤ U(A, V, 0, N) + K5 · (−V (A + V )N)
≤ U(A, V, 0, N)

QED.

A.1.8 Size and execution time

For each variable solved from an equality, the size of its assigned
expression will be bounded from above byP0 ·(A+V −1); where
V is the number of variables at this point andP0 a certain constant.
For each variable solved from an inequality, the size of its assigned
expression (the mean of the min of lower bounds and max of upper
bounds) will be inP1((A + V − 1) · N), whereN is the number
of inequaltiies at this point, knowing that the next time, there might
be up toN2/2 new inequalities.

Therefore, withE equalities, the size of the program is bounded
from above by:

P0 · (A + V − 1)+ . . . +P0 · (A + V − E)+

P1 · (A + V − 1)N+ . . . +P1 · (A + V − V )N2V −1

22V −2

This can be bounded from above by

P2 ·

 

(A + V )

 

E +
N2V +1−1

22V +1−2

!!
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whereP2 = max(P0, P1)
As we do not have any loops in the linear case, the execution

time is roughly linear to the size of the program, so it has thesame
complexity.

A.2 Linear Integer complexity

Let us examine the number of timesΩ(E, N, V ) given the number
of equalitiesE, inequalitiesN and output variablesV .

By induction on the number of output variablesV , we show that

Ω(E, N, V ) ≤ U(E, N, V )

where

U(E, N, V ) = 2 + 2
V
X

k=1

N2k−1

22k−1
+ min(V, E)

By arithmetic properties, it implies the following expected re-
sult

Ω(E, N, V ) ≤ 2 +
N2V

22V +1−1
+ min(V, E)

The base case isΩ(E, N, 0) = 1, so this holds. Indeed, without
output variables, all equations go directly to the precondition. We
suppose now thatV ≥ 1.

1. The first remark is that if there are equalities remaining (E ≥
1), we can remove one variable in one step.

Ω(E, N, V ) ≤ Ω(E − 1, N, V − 1) + 1

By induction hypothesis, we obtain:

Ω(E, N, V ) ≤ 1 + 2 + 2

V −1
X

k=1

N2k−1

22k−1
+ min(V − 1, E − 1)

Ω(E, N, V ) ≤ U(E, N, V ) − 2
N2V −1

22V −1
≤ U(E, N, V )

Now, equations are removed.

2. If a variable is bounded on one side only byM inequalities:

Ω(0, N, V ) ≤ Ω(0, N − L, V − 1)
≤ U(0, N − L, V − 1)
≤ U(0, N, V )

3. Partial modulo ending does not make the behavior of synthesis
or synthesized program worse, only better, so we can ignore it
for the purpose of complexity upper bound.

4. After handling equalities and inequalities of step 6, we can
assume thatN ≥ 2. If L is the number of lower bounds andR
the number of upper bounds, it generatesL ·R new inequalities
andR equalities, where1 ≤ L ≤ N − 1, 1 ≤ R ≤ N − 1
and of courseL + R ≤ N . If L < R, we would split on theL
equations, so by takingR we can assume thatR ≤ N/2.

Ω(0, N, V ) ≤ maxL,R Ω(R, N−L−R+L·R, V −1+R)+1

As the next steps will be consecrated to removing theR equal-
ities, we obtain that:

Ω(0, N, V ) ≤ maxL,R Ω(0, N−L−R+L·R, V −1)+1+R

Among the choices ofL, the highest complexity is given for
L = N − R.

Ω(0, N, V ) ≤ maxR Ω(0, (N − R) · R, V − 1) + 1 + R

As R ≤ N/2, we can maximize it withN/2

Ω(0, N, V ) ≤ Ω(0, N2/4, V − 1) + 1 + N/2

So by induction :

Ω(0, N, V ) ≤ 2 + 2
PV −1

k=1
(N2/4)2

k−1

22k−1
+ 1 + N/2

Ω(0, N, V ) ≤ 2 + 2
PV −1

k=1
N2k

22k+1−1
+ 1 + N/2

Ω(0, N, V ) ≤ 2 + 2
PV

k=2
N2k−1

22k−1
+ 1 + N/2

Ω(0, N, V ) ≤ 2 + 2
PV

k=1
N2k−1

22k−1
+ 1 + N/2 − 2(N/2)

Ω(0, N, V ) ≤ U(0, N, V )

QED.
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