
SMT-Based Checking of Predicate-Qualified Types for Scala

Georg Stefan Schmid Viktor Kuncak
EPFL, Switzerland

{firstname.lastname}@epfl.ch

Abstract
We present qualified types for Scala, a form of refinement
types adapted to the Scala language. Qualified types allow
users to refine base types and classes using predicate expres-
sions. We implemented a type checker for qualified types
that is embedded in Scala’s next-generation compiler Dotty
and delegates constraint checking to an SMT solver. Our
system supports many of Scala’s functional as well as its
object-oriented constructs. To propagate user-provided qual-
ifier ascriptions we utilize both Scala’s own type system and
an incomplete, but effective qualifier inference algorithm.
Our evaluation shows that for a series of examples exerting
various of Scala’s language features, the additional compile-
time overhead is manageable. By combining these features
we show that one can verify essential safety properties such
as static bounds-checks while retaining several of Scala’s ad-
vanced features.

Categories and Subject Descriptors D.2.4 [Software engi-
neering]: Software/Program Verification

General Terms Languages, Reliability, Verification

Keywords Scala, Refinement Types

1. Introduction
This paper explores the prospect of adding refinement types
to Scala to encode a larger class of specifications, prevent-
ing a broader class of run-time errors. Examples of run-time
errors we aim to prevent include array bounds check excep-
tions. The key idea is to introduce a new class of types which
refine existing Scala types (such as Int) using a predicate,
such as x:Int => 0 < x. Analogously to the situation with
sets in interactive proof assistants such as Isabelle [10], a
predicate refining type T is a terminating Scala function from
T to Boolean. We write such refined types as predicates in
curly braces, as in {x:Int => 0 < x}. Additionally, we

restrict the body of the function so that it can be encoded
into a decidable logic supported by the satisfiability-modulo-
theory (SMT) solvers we use. Our system aims to have a
low annotation overhead by avoiding the need to duplicate
a computation sub-language within the type language, and
by extracting path conditions automatically from program
control-flow to infer refined types for intermediate values.

To illustrate our system, consider the example of binary
search. In 2006 Joshua Bloch drew attention [3] to a problem
in the implementation of binary search for Java’s Array
class. Listing 1 shows a Scala implementation that suffers
from the same defect. The problem with this encoding lies
in the calculation of i on line #7.

Listing 1: A faulty implementation of binary search in Scala
1 abstract class IntArray(val length: Int, init: Int) {
2 def access(i: Int): Int }
3

4 def binarySearch(arr: IntArray, x: Int): Boolean = {
5 def rec(lo: Int, hi: Int): Boolean =
6 if (lo <= hi) {
7 val i = (lo + hi) / 2
8 val y = arr.access(i)
9 if (x == y) true

10 else if (x < y) rec(lo, i-1)
11 else rec(i+1, hi)
12 } else false
13 if (arr.length > 0) rec(0, arr.length - 1)
14 else false
15 }

Listing 2: The example in our system using qualifiers
1 type NonNeg = { v: Int => v >= 0 }
2 def range(lo: Int, x: Int, hi: Int) = lo <= x && x <= hi
3

4 abstract class IntArray(val length: NonNeg, init: Int) {
5 def access(i: {v: Int => range(0, v, this.length-1)}):

Int }
6

7 def binarySearch(arr: IntArray, x: Int): Boolean = {
8 def rec(lo: NonNeg)(hi: {v: Int => range(lo-1, v,

arr.length-1)}): Boolean =
9 if (lo <= hi) {

10 val i = (lo + hi) / 2
11 val y = arr.access(i)
12 if (x == y) true
13 else if (x < y) rec(lo)(i-1)
14 else rec(i+1)(hi)
15 } else false
16 if (arr.length > 0) rec(0)(arr.length - 1)
17 else false }

While the expression (lo + hi)/2 correctly computes
the desired middle index when the integer sum of lo and
hi is up to 231 − 1, values above cause a negative result
due to the bitvector semantics of Scala’s Int, which follows
the semantics of Java [7, Section 4.2.2. Integer Operations].
The halved value remains negative, and once we execute the
array access on the subsequent line an ArrayIndexOutOf-
BoundsException is thrown, indicating the real problem.

In our system we can rewrite the example as shown in
Listing 2. We add a type alias NonNeg (line #1) referring
to non-negative integers. (The meaning of arithmetic oper-
ations inside qualifiers is given by bitvector arithmetic (just
like in the executable code), avoiding unnecessary prolifera-
tion of concepts.) We use the type alias to constrain the per-
missible values of the IntArray class’ length parameter
(line #4), but also the lo parameter of the recursive search
function rec (line #8). To statically prove the absence of
ArrayIndexOutOfBoundsExceptions, we also strengthen
the parameter type on the access method (line #5): Index
i is required to be within the bounds of the array, expressed
by the qualifier range(0, v, this.length-1), a Scala
expression which can be extracted precisely and expands
to 0 <= v && v <= this.length-1. Note how we allow
the qualifier to refer to (stable) members of the IntArray
class, making our access method dependent on the object
instance. Finally, we change the signature of rec (line #8)
to constrain the range of the hi parameter. Since hi must not
only be within the array’s bounds, but is also lower bounded
by lo-1, we would like to mention lo in its qualifier. Scala
only allows such dependently typed parameters when they
refer to a preceding parameter group, so we split the signa-
ture of rec in two.

Given these bounds, we can be confident that our program
only compiles if no ArrayIndexOutOfBoundsException
can occur at runtime. Upon type checking the program in
listing 2 we are presented with the following error message:

IntArray.scala:11: error: constraint violation
Counterexample:

hi: 2113929997
lo: 2113929295
i: -33554002
x: 0

val y = arr.access(i)
^

Qualified type check failed!

We can see that a subtyping constraint among two quali-
fied types was violated on line #11. The system provides
us with additional information on the violated constraint
and a concrete counterexample for the involved variables,
leading to an out-of-bounds argument for i on line #11.
At this point we hopefully realize our mistake and cor-
rect the offending computation on line #10, e.g. by setting
i:=lo+(hi-lo)/2. We then re-run the compiler, which will

not report any more errors, and thereby assure us that the ar-
ray accesses will succeed in all program executions.

1.1 Contributions
This paper presents a prototype implementation of a refine-
ment type system for the Scala language. We make the case
that qualified types are not only an effective tool for improv-
ing code correctness in Scala, but that they can also be gain-
fully applied in existing codebases.
Our concrete contributions can be summarized as follows:

• We introduce qualified types to Scala’s next-generation
compiler, Dotty1. Qualified types allow programmers to
introduce base types and classes whose values are con-
strained by appropriate constraint expressions. Our mod-
ifications allow these qualified types to benefit from the
usual local type inference of Scala.
• We implement a type checker for qualified types in

Dotty. Our implementation is largely independent of
Scala’s own type checker and demonstrates how qual-
ified types can be retrofitted to support both object-
oriented and functional features. In particular, we support
qualified base types and classes, class-invariants on sta-
ble constructor fields, higher-order functions and simple
cases of genericity.
• We provide a simple strategy to infer qualifiers in a

limited, but useful subset of situations. We argue that id-
iomatic Scala in fact lends itself to this kind of inference.
• We present an initial evaluation of our system in terms of

compile-time and annotation overhead. We conclude
that for our benchmark covering a range of Scala’s lan-
guage features, the additional overhead is manageable.

Our implementation and the examples are in a fork of Dotty:
https://github.com/gsps/dotty/tree/liquidtyper .

2. Qualified Type Checking in Scala
This section gives a high-level overview of our qualified
types solution for Scala. We begin by defining the notion of
a subtyping constraint among qualified types. Using several
examples we then illustrate how such subtyping constraints
come to be and how our system either resolves them via
inference or by checking their validity in an SMT solver.

2.1 Qualified Types and Subtyping Constraints
The basic building blocks of our type system are constraint
expressions and qualified types. We first extract constraint
expressions from Scala expressions and then encode them
as SMT queries in the logic of bitvectors and uninterpreted
function symbols. The following grammar captures the syn-

1 https://github.com/lampepfl/dotty

https://github.com/gsps/dotty/tree/liquidtyper
https://github.com/lampepfl/dotty

tax of constraint expressions:

param ::= IDENT := term
op1 ::= − | !
op2 ::= + | − | ∗ | / | % | & | ‘|‘ | ˆ |�|�|≫
term ::= Int-LITERAL | IDENT

| op1 term | (term op2 term)
| (new IDENT [〈 param 〈 , param 〉∗ 〉])
| term . IDENT

cmp ::= = | < | ≤
expr ::= > | ⊥ | IDENT | term cmp term

| (expr ∧ expr) | (expr ∨ expr) | ¬expr

These expressions encode propositions about boolean alge-
bra, bitvector arithmetic and the stable fields of the corre-
sponding integral types in Scala objects.

Definition 2.1. A qualified type Q is given by a triple
(B, v,R), where B is a base type or a class, v is the sub-
ject variable and R is either a constraint expression P or
some σκ, i.e. a qualifier variable κ under substitution σ. We
typically write {v : B ⇒ R(v)} and call R(v) the qualifier
of Q.

For example, we refer to the non-negative integers between
0 and 231 − 1 by the qualified type {v : Int ⇒ v ≥ 0}
featuring the constraint expression v ≥ 0 in its qualifier.
A corresponding type alias in our system may be written
NonNeg in Listing 2 and can then be used as a shorthand in
function and method signatures, as usual. We call a qualifier
that has been introduced explicitly by the user ascribed, resp.
a qualifier ascription. We consider a standard Scala type T
a shorthand for the trivially qualified type {v : T ⇒ >}.
When it is clear from the context, we may also abbreviate a
qualified type {v : B ⇒ R(v)} by omitting the unqualified
typeB and just writing {R(v)}. To talk about qualified types
whose concrete qualifier is unknown, we introduce qualifier
variables which are placeholders for later inferred constraint
expressions. A qualified type {v : B ⇒ R(v)} is called
abstract if R is a qualifier variable and ground otherwise.

We also extend the standard notion of a typing environ-
ment to allow for dependent types and path-sensitivity:

Definition 2.2. A typing environment Γ; Φ consists of a
sequence of bindings Γ and a constraint expression Φ which
we call the path condition. Each binding in Γ is of the form
xi : Qi, where xi is a (term) variable and Qi a qualified
type. A qualifier Qi may depend on preceding bindings xj
where j < i, while the path condition Φ may depend on any
of the bindings. We omit the path condition if it is trivial, i.e.
equivalent to >.

The sequence of bindings, that is, the scope available to a
qualifier is established following Scala’s (path-dependent)
type system. In particular, qualifiers in a method’s parameter
group can access parameters in the preceding groups and
the result type’s qualifier can access all parameters. Putting
all of these concepts together, we can define the subtyping
constraints among qualified types.

J Γ; Φ ` {v : B1 ⇒ P1(v)} <: {v : B2 ⇒ P2(v)} K
:= JΓ; v′ : {v : B1 ⇒ P1(v)}; ΦK =⇒ P2(v′)

JΓ; ΦK := JΓK ∧Φ

J()K := >
JΓ′; x : {v : B ⇒ P (v)}K := JΓ′K ∧ P (x)

Figure 1: The rules for encoding subtyping constraints

Definition 2.3. A subtyping constraint Γ; Φ ` Q1 <: Q2

relates qualified types Q1 and Q2 in the context of typing
environment Γ; Φ. Let Q1 = {v : B1 ⇒ P1(v)} and
Q2 = {v : B2 ⇒ P2(v)}. Then the subtyping constraint
is valid iff (a) B1 is a subtype of B2 w.r.t. Scala’s standard
subtyping relation, and (b) J Γ; Φ ` Q1 <: Q2 K is valid,
where the encoding J·K into first-order logic is given by
Figure 1.

2.2 Verifying a Simple Function
How does our system prove that the qualifications on each
type hold? In general, we proceed in four steps: qualifier
assignment, constraint generation, qualifier inference and
constraint checking. Let us examine these four steps by
verifying a simple function:

Listing 3: An implementation of a maximum function

def max(x: Int, y: Int): { v: Int =>
v >= x && v >= y } =

if (x > y) x else y

Listing 3 implements a maximum function max(x, y)
whose result is guaranteed to be lower bounded by both of
the two parameters x and y.

2.2.1 Qualifier Assignment
In order to formulate the constraints governing a program,
we first need to pick a qualified type for each expression
in the program. The unqualified base and class types are
already given by Scala’s standard type system, therefore we
only need to determine appropriate qualifiers.

Using qualifier ascriptions the user typically provides
ground qualifiers for a subset of expressions. The remain-
ing qualifiers may be either ground or abstract: Wherever
possible, we assign ground qualifiers; primitives, such as lit-
erals and arithmetic operations, but also variable identifiers
fall into this category. Others, such as if-expressions, are
first assigned qualifier variables. Once we have gathered rel-
evant constraints (step two), we either infer adequate ground
qualifiers or fall back to the trivial qualifier {>} (step three).

Ground qualifiers are generally formed by extraction, i.e.
by mapping Scala expressions into constraint expressions.
Ideally, extractions are precise, accurately representing the
Scala expression as a constraint expression. We only allow

qualifier ascriptions that we can extract precisely, but permit
weak extractions, i.e. sound approximations, for branching
conditions and function arguments. If, during a weak ex-
traction, we cannot represent a Scala expression as part of
a constraint expression, we instead introduce a fresh, uncon-
strained variable of the same sort. We do allow function calls
in qualifier ascriptions, if the function itself can be extracted
precisely (which implies that it is pure, side-effectless and
can be encoded in our logic).

Let us look at some of the qualified types that have been
assigned in our example program of listing 3:

x 7→ {v : Int⇒ v = x}
y 7→ {v : Int⇒ v = y}

if (x > y) 7→ {v : Int⇒ κif}x else y

max 7→ {v : Int⇒ >} ⇒ {v : Int⇒ >} ⇒
{v : Int⇒ v ≥ x ∧ v ≥ y}

Identifiers A lone identifier such as the x in the then-
branch is represented precisely by qualified type {v = x}.
We can recover qualifications on the referenced variable
x from the typing environment.

If expressions The result of an if-expression is assigned a
fresh qualifier variable, which will later be inferred. In
our example we assign κif, allowing us to capture the
consequences of both branches.

Function definitions Users are expected to ascribe quali-
fiers to parameters occurring in a function type, other-
wise the trivial qualifier is assumed. The result type, i.e.
the right-most base type or class, may be either given ex-
plicitly by an ascription or inferred, again by introducing
a qualifier variable. The (unqualified) type Scala reports
for max is Int => Int => Int. Since we only ascribed
a qualifier to the return type of max, the two parameters
end up trivially qualified.

In later subsections we will see examples of more involved
programs, some of which require yet different ways of ex-
tracting qualifiers.

2.2.2 Constraint Generation
Wherever information flows from an expression typed {κA}
to another typed {κB}, we need to ensure that qualifier
κB subsumes qualifier κA. Our system therefore establishes
subtyping constraints among the two. In the case of listing 3,
our system produces the following constraints:

x : Int; y : Int;x > y ` {v = x}<: {κif} (1)

x : Int; y : Int;x ≤ y ` {v = y} <: {κif} (2)

x : Int; y : Int ` {κif} <: {v ≥ x ∧ v ≥ y}
(3)

In total, we get three constraints: (1) requires the then-
branch to return a subtype of the if’s overall type, (2) is the

analogous constraint for the else-branch, and (3) requires
the if’s type to be a subtype of the our function’s result type.

Note that in addition to extracting qualifiers, we also ex-
tract branching conditions, which allows our analysis to be
path-sensitive. Whenever we enter a block of code that is
guarded by a test, such as an if’s then-branch, we strengthen
the current path condition by the respective branching condi-
tion. In the example above this is reflected in constraints (1)
and (2), which gained the condition x > y for the then-
branch, and its negation for the else-branch.

As with extraction, we will see more situations in which
constraints arise in the examples below, whereas section 3.1
covers implementation details.

2.2.3 Qualifier Inference
Before we can check the generated constraints we need to
make sure all involved qualifiers are ground, meaning that
we need to eliminate qualifier variables. We first try to infer
a (ground) qualifier for each qualifier variable. Our system
does so by taking the disjunction of all qualifiers that a qual-
ifier variable needs to accomodate, which essentially cor-
responds to computing the strongest postcondition. While
this is precise and practical for intermediate expressions in a
function’s body, the approach is not always suitable for qual-
ifiers at abstraction boundaries. In the presence of recursion,
for result types of functions that involve local variables, but
also for method parameters we fall back to the trivial quali-
fier. That is, we eliminate the concerned qualifier variable κ
by assigning κ := >. Section 3.2 goes into the details of our
inference algorithm.

In the example above we can eliminate the single qualifier
variable κif. Recall the two constraints (1) and (2). In order
for these constraints to be valid, κif needs to be implied by
either of v = x and v = y when taken in conjunction with
their respective typing environments, x : Int; y : Int;x > y
and x : Int; y : Int;x ≤ y. Keeping in mind the embedding
given by figure 1, we can precisely satisfy the two constraints
by setting

κif := (x > y ∧ v = x) ∨ (x ≤ y ∧ v = y).

Since all the other qualified types are ground, we can now
proceed to checking the constraints.

2.2.4 Constraint Checking
In a final step, we put the constraints to the test. To do so, we
translate them to the logic of bitvectors and uninterpreted
function symbols. Several modern SMT solvers can then be
used to prove the validity of the underlying constraint. Note
that we only need to check constraints whose right-hand side
was a ground qualified type before inference. Constraints
whose rhs qualifier was (successfully) inferred are valid by
construction, whereas cases in which we introduced > as a
qualifier are trivially satisfied.

In our example above this only leaves the grounded ver-
sion of constraint (3) to be checked. We thus arrive at

x : Int; y : Int ` {(x > y ∧ v = x)∨ (x ≤ y ∧ v = y)} <:
{v ≥ x ∧ v ≥ y}

which in turn is translated to the formula

(x > y ∧ v = x) ∨ (x ≤ y ∧ v = y) =⇒ v ≥ x ∧ v ≥ y.

At this point the formula will be sent to the SMT solver,
which will then report it to be valid. This brings our verifi-
cation of the max function to a successful conclusion.

2.3 Primitives
We already mentioned in subsection 2.2.1 that we also ex-
tract ground qualifiers for primitive Scala expressions. A
primitive is a constant or a built-in method whose meaning
can be captured precisely by our constraint expressions. Ex-
amples include arithmetic operations on Ints, such as ad-
dition, multiplication, but also comparisons, as well as the
usual logical operators on Boolean. We also consider inte-
gral and boolean literals primitive, as well as fresh objects
and selectors of their fields. A fresh object represents a new
instance of some user-defined class and features expressions
that constrain the arguments passed to the constructor. Since
we do not keep track of stores, our reasoning about equality
among objects is currently very conservative.

Primitives define the cornerstones of our translation to
SMT formulae, since the resulting constraint expressions
can be translated to SMT queries either directly (booleans
and integers) or encoded using uninterpreted function sym-
bols (objects and field selectors).

2.4 Handling of Integral Types
For Scala’s Ints we translate operations such as (+), (∗),
(>) and (≥) to their corresponding counterparts in the the-
ory of signed bitvectors. For instance, the branching condi-
tion x > y from listing 3 is translated to x >s y in the theory
of bitvectors, where x and y are bitvectors of width 32. We
thus make use of the fact that bitvector theory in the stan-
dardized SMT-LIB format2 naturally captures the semantics
of integral types in Scala (except possibly for division and
modulo by zero). More generally, this mapping of primitive
types is only limited by the repertoire of the SMT solver,
so our system could be easily extended to support Scala’s
BigInts, which correspond to unbounded integers (see [2]
for a discussion of supporting verification of both modular
and unbounded integer arithmetic in Scala programs; our
system makes use of this infrastructure).

2.5 Function Applications
Function applications3 directly affect the first two of the four
steps we discussed before: 1) We assign the qualifier of
the function’s result type. If we are applying a dependently

2 http://www.smt-lib.org
3 Scala ultimately also handles functions as methods and invocations
thereof, which is why we mostly disregard the distinction.

typed function, however, we also need to substitute the ar-
guments for the function’s parameters in the result type. As
with branching conditions, we extract argument expressions
weakly. 2) To guarantee that an application is safe, we need
to establish that each argument to the application is a subtype
of the function’s corresponding formal parameter.

To illustrate, let us consider the next listing, which takes
our previous example and extends it with a sqrt function
that requires its single argument to be non-negative.

Listing 4: A square-root function with a restricted domain

def max(x: Int, y: Int): { v: Int =>
v >= x && v >= y } =

if (x > y) x else y

def sqrt(z: NonNeg): Double =
scala.math.sqrt(z.toDouble)

val u: Int = ???
sqrt(max(0,u))

The example features two function applications on its last
line: We first call max to determine the maximum of 0 and
an arbitrary Int u and then apply sqrt to that result. The
question of interest here is how we make sure that sqrt
actually receives a non-negative argument. Let us first see
the qualified types assigned to each application:

sqrt(max(0,u)) 7→Double
max(0,u) 7→ {v : Int⇒ [u/y][0/x] v ≥ x ∧ v ≥ y}

For the application of sqrt we simply adopt sqrt’s return
type Double with a trivial qualifier. The application of max,
on the other hand, requires that we substitute argument ex-
pressions for parameters x and y. To construct this type, we
introduce substitutions that replace x by 0 and y by u. In
the second step we then generate the subtyping constraint
u : Int ` {[u/y][0/x] v ≥ x ∧ v ≥ y} <: {v ≥ 0} which
holds thanks to the substitutions.

2.6 Recursive Functions
Using all the functionality presented so far, we are already
able to reason about recursive functions. Note that our qual-
ifier inference algorithm will fall back to trivial qualifiers
when it encounters substitutions or cyclic dependencies and
also does not eliminate intermediate variables. This means
that, as for the usual Scala types, we explicitly ascribe qual-
ifiers to the return types of recursive functions.

2.7 Object Support
Our system supports some reasoning over objects by extract-
ing object instantiations and selections of object fields. In
particular, we allow qualifications wrt. stable fields of an
object. Roughly speaking, Dotty considers a field stable if
its value does not change after initialization. During con-
straint checking, we introduce an uninterpreted function for

http://www.smt-lib.org

each stable field and assert the corresponding qualifier, uni-
versally quantified over object instances. As we will show
below, this limited functionality can be used to great effect,
giving us class invariants wrt. stable constructor fields.

2.7.1 Lifting Objects to the Qualifier Level
We gain significant expressive power by allowing qualifiers
to refer to the enclosing object instance. To illustrate this
point, consider class IntArray from the motivating exam-
ple, which provided static array-bounds checks on primitive
Scala Arrays.

Listing 5: A minimal example of static array bounds checks

class IntArray(val length: NonNeg, init: Int) {
def access(i: { v: Int =>

0 <= v && v < this.length }): Int = ??? }

Crucially, the qualifier of access’ parameter i refers back
to the object instance using this.length. If we instantiate
IntArray with some argument expression for length, that
expression will flow into all the references to this.length
by way of substitution. For instance, we might instantiate an
IntArray of length 3 and then commit an off-by-one error,
accessing the third element:

new IntArray(3, 0).access(3)

The qualified type of new IntArray(3, 0) then reflects
the actual values, i.e. the qualifier features a fresh object

{v = (new IntArray [length := 3, init := 0])}.
Moreover, this fresh object propagates into method selec-
tions, such as (new ...).access. In our example, the con-
straint generated for .access(3) includes the exact values
the object was instantiated with, i.e.

` {v = 3} <:
{

[(new IntArray [length := 3,

init := 0])/<this>] 0 ≤ v ∧ v < (<this>.length)
}
,

which we then prove invalid during constraint checking.

2.7.2 Class Invariants for Stable Constructor Fields
Given dependent function types and the above extraction
support for objects, we can encode class invariants over
stable constructor fields. Listing 6 contains class PosTuple,
which represents a tuple of two Ints a and b with the notable
constraint that their sum must be strictly positive.

Listing 6: An Int-tuple whose sum is guaranteed positive

class PosTuple(val a: Int, val b: Int)(
ev: { v: Unit => a + b > 0 } = ())

We use an evidence parameter ev whose value is trivial,
but that carries a constraint in its qualified type. This en-
forces the invariant when instantiating new PosTuple ob-
jects. Instantiations such as new PosTuple(1,-1)() there-
fore result in a compile-time error, as desired. More gener-

ally, we make such evidence invariants/preconditions avail-
able to function and class bodies, by adding them to the path
condition. We do so whenever a function or constructor con-
tains a parameter whose qualifier ascription does not men-
tion its subject variable (see definitions of mergeSort and
copy in listing 10 for an example).

2.8 Interaction with Generic Types
Scala programs make heavy use of generic data types.
To support the common use-case of collections, we allow
generic data structures to be instantiated with qualified types.
For instance, consider the following listing.

val nnList = List[NonNeg](1,2,3)
val x: NonNeg = nnList.head
val nnListRev: List[NonNeg] = nnList.reverse

We first instantiate a new list of non-negative Ints. Note
that in lines #2 and #3 we access a single element and
manipulate the entire list, respectively, while maintaining the
precise qualifier NonNeg. The next listing demonstrates that
we cannot arbitrarily reinterpret the element type of lists.

Listing 7: Invalid attempt to reinterpret a list’s element type

type Neg = { v: Int => v < 0 }
// compile-time error:
val negList: List[Neg] = nnList

While type checking the above snippet we generate a con-
straint ` {v ≥ 0} <: {v < 0} , which is obviously invalid.

2.9 Higher-Order Functions (HOFs)
We also maintain the qualifiers of functions passed as argu-
ments, including those of closures. This allows HOFs to ben-
efit from qualified types, as well. As with unqualified HOFs,
subtyping constraints are subject to the contravariance of pa-
rameter types. Below we see a HOF manipulating integers:

Listing 8: Passing an incompatible closure to a HOF

def h(f: Int => Int): Int = f(-1)
h((x: NonNeg) => x) // compile-time error

The critical subtyping constraint in listing 8 is the one be-
tween the closure argument and parameter f:

` {v ≥ 0} ⇒ Int <: Int⇒ Int

Our system unfolds this constraint among function types into
simple constraints over qualified types. The contravariance
of parameter types then gives rise to the simple constraint
` Int <: {v ≥ 0} , which is clearly invalid.

2.10 Combining Advanced Scala Features
Our final example illustrates that programmers can benefit
from the additional safety afforded by qualified types, with-
out having to give up on Scala code that uses a combina-
tion of the previously demonstrated features. We consider

the IntArray class from above and extend it with methods
sum, max and contains, all of which have their usual se-
mantics. Recall that IntArray ensured that any access to the
underlying array was statically verified to be within bounds.
We can maintain this property, while concisely implement-
ing the new functionality.

Listing 9: A statically bounds-checked wrapper for integer
arrays, providing methods for sum, max and contains
type NonNeg = { v: Int => v >= 0 }

def max2(x: Int, y: Int): {v: Int => v >= x && v >= y } =
if (x > y) x else y

abstract class IntArray(val length: NonNeg, init: Int) {
def access(i: {v: Int => 0 <= v && v < this.length}): Int

def fold[A](f: (A, Int) => A, z: A): A = {
def rec(i: NonNeg, acc: A): A =

if (i < this.length)
rec(i+1, f(acc, this.access(i)))

else acc
rec(0, z)

}

def sum: Int = this.fold[Int](_ + _, 0)
def max: NonNeg = this.fold[NonNeg](max2, 0)

def contains(x: Int): Boolean = {
def check(res: Boolean, y: Int) =

if (res) true else x == y
this.fold[Boolean](check, false)

}
}

The example’s code can be found in listing 9. To begin
with, all of the new functionality IntArray gained was im-
plemented in a modular fashion using a fold over the array.
We also provide the implementation of the corresponding
higher-order method fold. Note that fold itself is both re-
cursive and polymorphic. Among the three methods men-
tioned before, max is notable: It uses the guarantees of helper
function max2 to prove the result of a maximum over all ar-
ray elements and zero to be non-negative.

3. Implementation
Our system is implemented in the context of Dotty, the next-
generation compiler of Scala. It extends the Scala language
by qualifiers that act as refinements of base and class types.
These extensions go hand-in-hand with a new type checking
procedure for qualified types.

Figure 2 gives an overview of the combined architecture
and the intermediate steps of our type checking procedure.
Only minor changes were made to the parser and the typer
of Dotty itself. The bulk of qualified type checking is per-
formed thereafter in a dedicated compiler phase, which can
be divided into four distinct steps, closely following those
outlined in section 2.2:

1) Qualifier assignment is handled in two traversals over
the AST: We first index symbols and extract qualifier
ascriptions along with the typing environment that each
Scala expression lives in (SymbolIndexer). In a second

Pa
rs

er

In
de

xe
r

Ty
pe

r

O
ur

 p
ha

se

Co
de

 g
en

Source

JVM bytecode
/ JavaScript
/ LLVM bitcode

Dotty compiler pipeline

Our phase

Sy
m

bo
l I

nd
ex

er

Ty
pe

r

Co
ns

tr
ai

nt
 G

en implicit

explicit

Q
ua

lif
ie

r i
nf

er
en

ce

Co
ns

tr
ai

nt
 s

ol
ve

r

Constraint
violated?

No Continue
compilation.

Yes
Report
error.

Figure 2: Our system’s architecture. Shaded components we
added (solid) or slightly modified (striped).

traversal we assign qualifiers to the remaining expres-
sions (Typer).

2) We gather subtyping constraints among the previously
established qualified types.

3) We then apply our qualifier inference algorithm, hope-
fully discovering strong-enough qualifiers.

4) Finally, we translate all non-trivial subtyping constr-
aints to logical formulae which are tested for validity
by an SMT solver.

In the remainder of the section we will focus on the proce-
dures we employed in steps two and three.

3.1 Constraint Generation
Constraints are created in one of two ways: Either explicitly
during a traversal of the AST or implicitly after we recover
the subtyping constraints that the Dotty typer relied on.

3.1.1 Explicit Constraint Generation
The majority of subtyping constraints are established by vis-
iting each AST node and following the explicit rules of es-
tablishing subtyping constraints for that kind of node. For
instance, in case of an application we require that the types
of the arguments are subtypes of the respective formal pa-
rameters. The general rule here is that wherever information
flows from one typed expression to another, we need to make
sure that the former’s type is a subtype of the latter’s.

3.1.2 Implicit Constraint Generation
Our phase comes into play after Dotty’s typer has done its
job and has assigned (unqualified) types to all AST nodes.
While this design allowed us to keep the qualified type
checker simple and largely independent from the Scala typer,
it also brings some challenges with it. As the Dotty typer
performs its checks and infers missing unqualified types, it
assumes that various subtyping relations hold. Since none of
the qualified type checking has taken place at that point, we
initially ignore the qualifiers and thereby defer the decision.

Without further handling, this would give rise to unsound-
ness, since programs such as listing 7 would erroneously
pass qualified type checking. In order to recover implic-
itly relied upon subtyping constraints, we utilize Dotty’s so-
called ReTyper, which reruns typing on an already typed
program. This allows us to intercept the essential subtyping
checks that we would have otherwise missed, such as those
concerning type parameters of collections.

3.2 Qualifier Inference
In order to save the programmer the effort of explicitly anno-
tating many intermediate expressions we provide a simple,
yet effective way of inferring qualifiers. Below we describe
our algorithm and situations in which it falls back to trivial
qualifiers.

3.2.1 Intuition
At the heart of our inference algorithm lies the idea that
when we know all subtyping constraints in which a cer-
tain qualifier Q appears on the right-hand side, then we can
(usually) replace that qualifier by the disjunction of all left-
hand sides (along with potential path-conditions specific to
each left-hand side). The intuition is simple: If we let the
qualifier contain the exact union of all those values that
should be included according to the subtyping constraints,
then those constraints must trivially hold. This approach es-
sentially corresponds to computing the strongest postcondi-
tion of all “incoming” qualifiers. Note that it also comes with
certain limitations:

Recursive methods: Due to recursive calls the qualifier of
a method’s result type may depend on a version of itself
with some substitutions. We then face the non-trivial task
of unifying these qualifiers. Instead, we simply abort and
require the user to provide a qualifier ascription.

Intermediate variables: If the inferred qualifier contains
term-level variables that are out of scope at the position
of the corresponding qualified type, we simply fall back
to the trivial qualifier.

While our current algorithm only works on the basis of
forward-propagation, one could also do the converse and
compute the weakest precondition. Combining both forward
and backward-propagation would yield a procedure analo-
gous to bidirectional type inference [11]. This approach also
naturally extends to inference using Horn clauses [13].

3.2.2 Our Qualifier Inference Algorithm
We consider qualifier inference as a problem on the con-
straint graph, i.e. the directed graph that is induced by all
the non-trivial constraints we generated. For the treatment
below, we choose to represent subtyping constraints as five-
tuples. That is, if we have a subtyping constraint Γ; Φ `
{σaκa} <: {σbκb} then we represent it using the tuple
(a, b, σa, σb, φ). Occurrences of ground qualifiers are han-
dled analogously except with σa, σb set to equal the empty

Algorithm 1: Our qualifier inference algorithm.
Data: Constraint graph G = (V ∪G,C), Qualifier variable

map qvar, Scopes Σ
Result: ∀v ∈ V. ∃(v, g) ∈ qvar. g is ground qualifier
if G contains a cycle of qualifier vars then

Abort and print error report affected Scala expressions
unassigned := λv. (¬∃g. (v, g) ∈ qvar)
∀v ∈

{
b | b ∈ V ∧ unassigned(b) ∧ (a, b, σa, σb, φ) ∈ C ∧

σb 6= ε
}
. qvar(v) := >

incoming := λv.
{

(a, σa, φ) | (a, v, σa, σv, φ) ∈ C
}

numPreds := λv.
∣∣{(a, v, σa, σv, φ) ∈ C | unassigned(a)

}∣∣
frontier := {v ∈ V | unassigned(v) ∧ numPreds(v) = 0}
while frontier is non-empty do

pick and remove some v from frontier
qvar(v) :=

∨
(w,σw,φ)∈incoming(v) (φ ∧ σww)

if term-level variables in qvar(v) 6⊆ Σ(v) then
qvar(v) := >

frontier := {v ∈ V | unassigned(v) ∧ numPreds(v) = 0}
∀v ∈ V \ {w | (w, g) ∈ qvar} . qvar(v) := >

substitution ε, since substitutions on ground qualifiers can be
applied right away.

Definition 3.1. A constraint graph G is a tuple (V ∪G,C)
where V and G are disjoint sets of qualifiers, V being
qualifier variables and G being ground qualifiers; C is
a set of non-trivial subtyping constraints, represented as
tuples (a, b, σa, σb, φ) ∈ C where a, b are qualifiers in
V ∪ G, σa, σb are substitutions and φ is a path condition.
We consider elements in V ∪ G the nodes of G and each
(a, b, σa, σb, φ) ∈ C an edge from a to b, annotated by sub-
stitutions σa, σb and path condition φ.

Algorithm 1 contains pseudo-code implementing our
qualifier inference. The central idea is to traverse yet unas-
signed qualifier variables in topological order and compute
the strongest postconditions for each. Before the topologi-
cal traversal we check for cycles of qualifier variables in the
constraint graph and abort if one is found — the user must
provide more qualifier ascriptions in this case. We also as-
sign the trivial qualifier to all qualifier variables that occur
under a non-trivial substitution on the right-hand side of a
constraint, thus side-stepping the unification problem. After
this we perform the actual inference. Note that whenever
we find that the inferred qualifier would violate the scope
of the qualified type it belongs to, we fall back to the trivial
qualifier. Finally, we also assign the trivial qualifier to all re-
maining unassigned qualifier variables — these correspond
to unconstrained qualifier variables.

Our algorithm is called with a constraint graph satisfying
the above two definitions. In addition, it takes a map qvar
which relates qualifier variables to ground qualifiers, and
a map of scopes Σ which relates each qualifier variable to
the set of available term-level variables (iow., the scope of
the qualifier). Upon completion, qvar is guaranteed to map
every qualifier variable in V to some ground qualifier.

Lst. Example +/- # Lines AST size Time

#2 binsearch - 22 (2) 192 (61) 0.35
#3 max + 4 (0) 55 (19) 0.11
#4 sqrt + 11 (2) 87 (34) 0.17
#5 intarray + 11 (2) 117 (35) 0.10
#6 postuple + 3 (0) 95 (50) 0.20

list1 + 7 (2) 60 (17) 0.07
#7 list2 - 7 (3) 70 (32) 0.11

hofsafety1 + 6 (2) 60 (15) 0.13
#8 hofsafety2 - 6 (2) 60 (15) 0.08
#9 arrfold + 31 (2) 261 (54) 0.27

sumnat + 10 (2) 77 (15) 0.23
rational + 6 (0) 73 (13) 0.05
insertionsort + 29 (5) 277 (117) 0.26

#10 mergesort + 51 (10) 582 (303) 1.28

Figure 3: The results of our benchmarks. Column 1 refers
to the corresponding listings. Columns 3-5 state whether it
constitutes a valid or buggy program, the number of lines
and and the size of the abstract syntax tree in the example.
In parentheses we show how much larger qualified examples
are when compared to their unqualified counterparts. The
last column shows time spent checking qualified types in
seconds averaged over 10 runs.

4. Evaluation
We evaluated our system based on a suite of benchmarks
including examples presented in the preceding chapters. Be-
low we report both annotation overhead and the additional
time incurred checking qualified types. We argue that our re-
sults show the viability of qualified types in idiomatic Scala
code.

4.1 Setup
We performed our benchmarks on a Lenovo ThinkPad X230
(2012) running Ubuntu 14.04 LTS. The laptop is powered by
a dual-core Intel Core i5-3320M CPU @ 2.60GHz featuring
32KB L1 data and instruction caches, as well as 2x256KB
on L2 and 3MB on shared L3. The laptop contains 16GB
of DDR3 RAM clocked at 1600MHz, out of which we ded-
icated 4GB to the JVM instance running the benchmarks.
Furthermore, the tests were performed on a warmed up JVM
instance to avoid the high startup cost of JIT compilation. We
consider this a realistic scenario, as it is common for Scala
users to run the compiler in a long-lived JVM instance. As
SMT solvers we used CVC4 (version 1.5-prerelease, 2016-
07-31), falling back to Z3 (version 4.4.1) when CVC4 could
not determine whether a query was satisfiable.

4.2 Benchmarks
The metrics we considered were: a) Type checking runtime,
which is the additional time spent checking qualified types
during compilation. We measured this by instrumenting the
running time of our compiler phase. b) Annotation overhead,

measured in terms of line count and size of the abstract
syntax tree. Figure 3 below presents our results, reporting
one example per line. In addition to the examples from
section 2 we included several more programs which can be
found in our code repository mentioned at the beginning.

We see that our system completes type checking for all
but one of the examples in less than a second and requires
only modest amounts of annotations. In our opinion this
overhead is acceptable for the additional safety benefits qual-
ified types provide. We note that among our benchmarks the
mergesort example in listing 10 is the only one that incurs
significant constraint solving overhead, i.e. CVC4 takes up
almost 70% of the 1.28s needed to check mergesort.

With our system being mostly a prototype at the moment,
no significant profiling has been done. While SMT solving
time might become a bottleneck for more complex qualifiers
as in mergesort, simple qualified type checking could ben-
efit from optimizing the indexing and typing traversals.

5. Related Work
Our work is most closely related to refinement types and
LiquidTypes in particular. Refinement types were introduced
by Freeman and Pfenning in [6]. Their specific type system
handles algebraic data types in ML and provides a way
of referring to more precise subsets, i.e. refinements, of
algebraic data types. They also contribute a decidable type
inference mechanism by using predicate abstraction over the
lattice of refinements.

More recently, Rondon, Kawaguchi and Jhala presented
LiquidTypes [12], which allows refinements in the form of
logically qualified base- and function types in functional lan-
guages. Their system takes qualifier templates and then in-
fers refinements using predicate abstraction; it was subse-
quently extended with support for qualifier parametricity in
abstract refinement types [15].

Our system is inspired by Rondon et al.’s work, sharing
not only a similar syntax for qualified types, but also the
ideas surrounding constraint generation, in particular that
of qualifiers variables. The most striking difference between
LiquidTypes and our system is that we do not provide predi-
cate abstraction as a means of type inference, but rely on the
algorithm of section 3.2 and qualifier ascriptions instead.

These projects are instances of the bigger area of depen-
dent typing [16]. Dependently typed programs in their most
general form allow types to be indexed by term-level expres-
sions, fulfilling a purpose comparable to that of our quali-
fiers. In their initial paper Xi and Pfenning considered in-
dices drawn from a decidable logic, Presburger arithmetic.
There is a notable body of work on proof assistants and
higher-order logics for verification, that can be character-
ized as or are founded upon dependently-typed languages
[1, 4, 5, 9].

Leon [8] is a verification tool for Scala. Our system re-
lies on Leon infrastructure for representing constraint ex-
pressions and interfacing with SMT solvers.

During development we also learned about a project sim-
ilar to ours in the Scala space. So-called refined [14] is im-
plemented entirely as a library and relies on Scala’s already
powerful type system, in particular its implicit resolution
mechanism, to introduce refinement types. Their approach
is quite different from ours: Rather than outsourcing proof
obligations to an SMT solver, refined only allows a select
subset of qualifiers for which decision procedures have been
encoded by means of Scala’s implicit resolution. This re-
sults in a rather compact and self-contained implementa-
tion of refinement types for Scala. It is unclear to us how
well implicit-based encodings can scale to verifying large
Scala programs. Similarly, there is the question of how user-
friendly error and counterexample-reporting can be made.

Acknowledgments
We would like to thank our reviewers for their helpful feed-
back, Nicolas Voirol and Mikaël Mayer for the insightful
discussions we had with them during the development of our
system, and Régis Blanc in particular for his advice on us-
ing Leon’s solver infrastructure. We thank Martin Odersky
for many discussions and for helpful suggestions on using
Dotty’s ReTyper.

References
[1] Y. Bertot and P. Castran. Interactive Theorem Proving

and Program Development: Coq’Art The Calculus of In-
ductive Constructions. Springer, 1st edition, 2010. ISBN
3642058809, 9783642058806.

[2] R. Blanc and V. Kuncak. Sound reasoning about integral
data types with a reusable SMT solver interface. In Scala
Symposium, 2015.

[3] J. Bloch. Extra, Extra - Read All About It: Nearly
All Binary Searches and Mergesorts are Broken.
https://research.googleblog.com/2006/06/
extra-extra-read-all-about-it-nearly.html,
2006. Accessed: 2016-06-23.

[4] E. Brady. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of
Functional Programming, 23(05):552–593, 2013.

[5] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., 1986. ISBN 0-13-451832-2.

[6] T. Freeman and F. Pfenning. Refinement Types for ML. In
PLDI, pages 268–277, 1991.

[7] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
Java R© Language Specification (Java SE 8 Edition). Oracle,
2015. URL https://docs.oracle.com/javase/specs/
jls/se8/html/index.html. 2015-02-13.

[8] E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. Synthesis
modulo recursive functions. In OOPSLA, 2013.

[9] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007.

[10] L. C. Paulson. Isabelle: A generic theorem prover, volume
828. Springer, 1994.

[11] B. C. Pierce and D. N. Turner. Local type inference. In POPL,
pages 252–265, 1998.

[12] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In
POPL, pages 159–169, 2008.

[13] P. Rümmer, H. Hojjat, and V. Kuncak. On recursion-free Horn
clauses and Craig interpolation. Formal Methods in System
Design, 47(1):1–25, 2015.

[14] F. S. Thomas. Refined – Simple refinement types for Scala.
http://refined.timepit.eu, 2016. Accessed: 2016-06-
23.

[15] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-
Jones. Refinement types for Haskell. In ICFP, pages 269–282,
2014.

[16] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. In PLDI, pages 249–257, 1998.

Listing 10: The mergesort example
abstract class CheckedIArray(val length: NonNeg, init: Int) {

def apply(i: {v: Int => range(0, v, this.length-1)}): Int
def update(i: {v: Int => range(0, v, this.length-1)}, x:

Int): Unit }

def mergeSort(arr: CheckedIArray, aux: CheckedIArray)(
ev: {v: Unit => arr.length == aux.length } = ()): TUnit = {

def merge(lo: NonNeg)(
mid: {v: Int => range(lo+1, v, arr.length-1) },
hi: {v: Int => range(lo+1, v, arr.length) })(
i: {v: Int => range(lo, v, mid) },
j: { v: Int => range(mid, v, hi) },
k: {v: Int => range(lo, v, aux.length) }): TUnit =

if (k < hi) {
if (i == mid) copy(arr)(aux, j)(hi)
else if (j == hi) copy(arr)(aux, i)(mid)
else if (arr(i) <= arr(j)) {

aux(k) = arr(i)
merge(lo)(mid, hi)(i+1, j, k+1)

} else {
aux(k) = arr(j)
merge(lo)(mid, hi)(i, j+1, k+1)

}
}

def copy(from: CheckedIArray)(to: CheckedIArray, i: NonNeg)(
hi: { v: Int => range(i, v, from.length) },
ev: { v: Unit => from.length == to.length } = ()): TUnit=

if (i < hi) {
to(i) = from(i)
copy(from)(to, i+1)(hi)

}

def partial(lo: NonNeg)(hi: { v: Int => lo < v && v <=
arr.length }): TUnit =

if (hi - lo > 2) {
val mid = lo + (hi - lo) / 2
partial(lo)(mid)
partial(mid)(hi)
merge(lo)(mid, hi)(lo, mid, lo)
copy(aux)(arr, lo)(hi)

}

if (arr.length > 1) partial(0)(arr.length)
}

https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
http://refined.timepit.eu

	Introduction
	Contributions

	Qualified Type Checking in Scala
	Qualified Types and Subtyping Constraints
	Verifying a Simple Function
	Qualifier Assignment
	Constraint Generation
	Qualifier Inference
	Constraint Checking

	Primitives
	Handling of Integral Types
	Function Applications
	Recursive Functions
	Object Support
	Lifting Objects to the Qualifier Level
	Class Invariants for Stable Constructor Fields

	Interaction with Generic Types
	Higher-Order Functions (HOFs)
	Combining Advanced Scala Features

	Implementation
	Constraint Generation
	Explicit Constraint Generation
	Implicit Constraint Generation

	Qualifier Inference
	Intuition
	Our Qualifier Inference Algorithm

	Evaluation
	Setup
	Benchmarks

	Related Work

