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Abstract. We consider an extension of integer linear arithmetic with
a star operator that takes closure under vector addition of the set of
solutions of linear arithmetic subformula. We show that the satisfiability
problem for this language is in NP (and therefore NP-complete). Our
proof uses a generalization of a recent result on sparse solutions of integer
linear programming problems. We present two consequences of our result.
The first one is an optimal decision procedure for a logic of sets, multisets,
and cardinalities that has applications in verification, interactive theorem
proving, and description logics. The second is NP-completeness of the
reachability problem for a class of “homogeneous” transition systems
whose transitions are defined using integer linear arithmetic formulas.

1 Introduction

Decision procedures and automated theorem provers [7, 3, 19, 12, 9] are among
key techniques that enable automated verification of infinite state systems, as,
for example, in software model checkers [4, 14, 18]. These techniques are also
increasingly used to raise the level of automation in interactive theorem provers
[27,10,8,20,2]. We believe that an important step towards making such theorem
provers even more effective is the development of decision procedures for new
classes of formulas that go beyond the traditionally considered uninterpreted
function symbols, arrays, free data structures, and linear arithmetic. In this
paper we present a decision procedure for one such class, which introduces certain
unbounded sums into linear arithmetic. Specifically, our decision procedure solves
the satisfiability problem

∃~v, ~u. P (~v, ~u) ∧ ∃N ≥ 0.∃~x1, . . . , ~xN .~u =
N∑

i=1

~xi ∧
∧

F (~xi) (1)

where P and F are arbitrary quantifier-free Presburger arithmetic formulas
(QFPA) and ~v, ~u, ~xi denote vectors of non-negative integers. The fact that N
is not known means that (1) is not immediately in Presburger arithmetic. We
denote (1) by P (~v, ~u) ∧ ~u ∈ {~x | F (~x)}∗, using notation A∗ = {~a1 + . . . + ~an |
~a1, . . . ,~an ∈ A} for closure of a set of vectors under addition. The class of for-
mulas that contain such ∗ operator is a natural extension of the QFPA, and our
results show that it preserves NP-completeness of the satisfiability problem.

Our decision procedure enables reasoning about collections of objects (sets
and multisets) and their cardinalities, which was our original motivation for
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Our class of formulas: F ∧ ~u ∈ {~x | F}∗
QFPA formulas:

F ::= A | F ∧ F | ¬F
A ::= T ≤ T | T = T
T ::= k | C | T + T | C · T | ite(F, T, T )

terminals:
k - integer variable; C - integer constant

Fig. 1. QFPA and Our Class of Formulas

introducing it in [24], where we showed that it can be solved in PSPACE, but
left the exact complexity open. This paper settles the question of the exact
complexity by presenting a polynomial-time satisfiability-preserving reduction
of (1) to QFPA, which is known to be in NP [23].

Moreover, in this paper we identify another application of our constraints. We
consider infinite-state transitions systems whose state consists of finite control
and a finite number of integer counters, and whose transitions increment counters
by a solution vector of a linear arithmetic formula given by the finite control.
We show that the reachability problem for a class of such systems reduces to (1)
and is therefore solvable in NP in the size of system description.
Contributions. We summarize the contributions of our paper as follows:

– We present a polynomial-time algorithm (Section 3) for reducing (1) to
satisfiability of quantifier-free Presburger arithmetic formulas, showing NP-
completeness of (1);

– We present a new application of this satisfiability problem to reachability of
a class of symbolically represented transition systems (Section 4).

2 From Multisets to Linear Arithmetic with Star

We have identified constraints (1) when considering the satisfiability problem
for constraints on multisets in the presence of a cardinality operator. We here
summarize briefly the relevance of such constraints as well as the basic idea of
their reduction to (1). For more details, see [24].
Uses of multiset constraints. Many modern programs perform extensive
manipulation of collections of objects implemented either as built in data struc-
tures or as collection libraries. Languages such as SETL [26] directly support
sets as primitives, whereas the Gamma parallel programming paradigm [6, Page
103] is based on multiset transformations. Sets and multisets would directly arise
in verification conditions for proving properties of such programs. In program-
ming languages such as Java, data abstraction can be used to show that data
structures satisfy set specifications, and then techniques based on sets become
applicable for verifying data structure clients [16,15,21]. Multisets and sets also
arise in other domains, as witnessed by their use in libraries of interactive provers
Isabelle [22] and KIV [5], and their presence in the Sparql query language for
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semantic web [1]. Decision procedures for sets and multisets are therefore useful
for automated reasoning about such domains.

Our notions of multisets and sets. We represent sets multisets (also called
bags) with their characteristic functions. A multiset m is a function E → N,
where E is the universe and N is the set of non-negative integers. The value
m(e) is multiplicity (number of occurrences) of element e in multiset m. We
assume that the domain E is fixed and finite but of unknown size. We represent
sets within our formulas as special multisets m for which m(e) = 0 ∨m(e) = 1
for all elements e.

Operations on multisets. We consider a natural class of operations and rela-
tions on multisets that are given pointwise by linear arithmetic formulas. Given
a relation R(x1, . . . , xk) on non-negative integers, we define the corresponding
relation on multisets m1, . . . ,mk by ∀e.R(m1(e), . . . ,mk(e)). For example, we
define subset m1 ⊆ m2 by ∀e.m1(e) ≤ m2, union m1 = m2 ∪m3 by ∀e.m1(e) =
max(m2(e),m3(e)), multiset sum m1 = m2 ]m3 by ∀e.m1(e) = m2(e) + m3(e).
We permit the use of if-then-else operator ite(F, t1, t2) in QFPA, which denotes
t1 when F holds and t2 otherwise. For example, we can define multiset difference
m1 = m2 \m3 by ∀e.m1(e) = ite(m2(e) ≤ m3(e), 0,m3(e)−m2(e)).

Cardinality operator and sums. We also permit the cardinality operator
|m| on multisets, given by |m| =

∑
e∈E m(e). This operator turns a multiset ex-

pression into an integer expression, so we allow arbitrary QFPA operators on it.
Because we can define multiset m pointwise in terms of other multisets, we obtain
the ability to express conditions such as

∑
e∈E t(e) where t(e) is any QFPA term

containing addition, multiplication by constants, and ite(F, t1, t2) expressions for
F arbitrary QFPA formula. It turns out to be convenient to generalize the sum-
mation operator and admit in our language summations

∑
e∈E(t1(e), . . . , tk(e))

over vectors of QFPA terms.

Reduction to QFPA with star. Not only is the cardinality operator express-
ible in terms of

∑
e∈E t(e), but any pointwise relation ∀e.F (m1(e), . . . ,mk(e)

where F is a QFPA formula is expressible by 0 =
∑

e∈E ite(F, 0, 1). Moreover,
conjunction of two summations ~a =

∑
e∈E

~t(e) and ~b =
∑

e∈E ~s(e) is equivalent
to one (~a,~b) =

∑
e∈E(~t(e), ~s(e)). We thus obtained [24, Theorem 1] that for-

mulas in a natural and expressive language on sets, multisets, and cardinality
constraints can be reduced to normal form

P (~a,~b) ∧~b =
∑
e∈E

~t(~m(e)) (2)

where P is a QFPA formula, ~t is a vector of QFPA terms, and ~m(e) is the vector
of multiset variables occurring in the original problem. Because E is of arbitrary
finite size and because the terms are evaluated using same rule ~t for each e ∈ E,
it is immediate to show [24, Theorem 2] that (2) is equisatisfiable with (1).
Moreover, this reduction is polynomial-time, so the main difficulty in a decision
procedure for multisets and cardinalities is in solving (1).



4

3 Linear Arithmetic with Star Operator is in NP

In this section we show that the problem P∧u ∈ {~v | F (v)}∗, stated as (1), is NP-
complete. Because P is a QFPA formula containing arbitrary propositional oper-
ators, the problem is clearly NP-hard. The non-trivial part of NP-completeness
is therefore showing membership in NP. Figure 2 shows our NP-algorithm. The
algorithm takes as input P, F, ~u. It produces, in polynomial time, a QFPA for-
mula φ whose satisfiability is equivalent to (1), and then tests the satisfiability
of φ.

The idea behind the construction of φ is the following. Because F is a QFPA
formula, its solution set {~v | F (~v)} is semilinear set [13]. This implies the ex-
istence of finitely many generating vectors ~ai, ~bij whose linear combination is
{~v | F (~v)}. However, in worst case the number of generating vectors is exponen-
tial, so we avoid explicitly constructing them. We instead apply [25] to compute
an upper bound on the size of generating vectors. This gives us bounds on coef-
ficients in an exponentially large QFPA formula equisatisfiable with (1). We then
combine two constructions to find a polynomially large equisatisfiable formula.

1. We apply a small model theorem for QFPA that follows from [23]. Because
the exponential QFPA formula has only polynomially many atomic formulas,
we obtain a polynomial bound on the number of bits needed for ~u in the
smallest solution of (1).

2. We apply twice a theorem on the size of minimal generator of integer cone [11]
to prove that only polynomially many generating vectors are sufficient.

Finally, we show that we can group linear combinations of generating vectors into
linear combination of polynomially many variables denoting solution vectors of
F . Despite the multiplication of variables, we can express such linear combination
as a QFPA formula because coefficients in linear combination are bounded by
the bound on ~u.

We proceed to describe our construction in more detail, including concrete
bounds needed to implement our algorithm.

3.1 Estimating Coefficient Bounds of Disjunctive Form

The results on which we rely are usually expressed for integer linear programming
problems, so we review in Figure 3 how to compute dimensions and coefficient
bounds for integer linear programming problems arising from QFPA formula.

Definition 1. Let F be a QFPA formula and let F be converted into the dis-
junction of systems

∨l
i=1 Ai~x = ~bi such that F (~v) ⇔

∨l
i=1 Ai~v = ~bi. Let mi

be a number of rows in Ai and let ni be a number of columns in Ai. Let
ak = max{|ak

ij |, |bk
j |}. For the given F with mF , nF and aF we denote an upper

bound for mi, ni and ai respectively.
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INPUT: A QFPA formula P with free variables u1, . . . , up, a vector ~u ∈ Nd, whose
components are ui variables and a QFPA formula F which does not share
any variable with P and ~u

OUTPUT: true iff P ∧ ~u ∈ {~v | F (~v)}∗ is satisfiable

procedure checkSat(F, P : QFPA; ~u: vector)
// procedures for estimating values m, n and a are given in Figure 3
mF := EstimateM(F); nF := EstimateN(F); aF := EstimateA(F);
k := 4d(log(4d) + 2mF log(2 + (nF + 1)aF ));
// procedure for estimating the value ||u||∞ is given in Figure 4
r′ := upperBound(u, P, F );
r = dlog r′e;
let ~x1, . . . , ~xk ∈ Nd be fresh vector variables, let λ1, . . . , λk ∈ N be fresh variables

of the size r and let λi =
Pr

j=0 λi
j2

j be a binary representation of λi;
form a new formula φ:

φ ≡ P ∧ ~u = λ1 ⊗ ~x1 + . . . + λk ⊗ ~xk ∧
k̂

i=1

F (~xi),

where λi ⊗ ~xi =
Pr

j=0 2j ite(λi
j , ~xi, 0)

φ is a QFPA formula and equisatisfiable to P ∧ ~u ∈ {~v | F (~v)}∗
return true iff φ is satisfiable

Fig. 2. NP Algorithm for testing whether P ∧ ~u ∈ {~v | F (~v)}∗ is satisfiable

INPUT: A QFPA formula F
OUTPUT: mF , nF and aF

let s = # simple subformulas of F
let i = #ite operator in F
let ine = # inequations in F
let e = #ite operator in F , where equality appears as a boolean condition

procedure EstimateM(F : QFPA)
return s + 2 ∗ i

procedure EstimateN(F : QFPA)
return = # variables that occur in F + ine + e

procedure EstimateA(F : QFPA)
return maximal absolute value of all integers occurring in F + 1

Fig. 3. Upper Bounds on Value of m, n and a

Lemma 1. Let F be a QFPA formula and let F be converted into the disjunction
of systems

∨l
i=1 Ai~x = ~bi such that F (v) ⇔

∨l
i=1 Ai~v = ~bi. The values returned

by the algorithm shown in Figure 3 are correct, i.e. they are upper bounds for the
number of rows and columns and a maximal value appearing in every individual
matrix Ai.



6

Proof. While constructing a matrix A, we can assume that every simple formula
will occur in A. However, if there is a subformula in F containing ite expression,
for example ~z = ite(C, ~x, ~y), the matrix A can get two new rows: either C and
~z = ~x, or ¬C and ~z = ~y. If booelan condition C is an equality t1 = t2, then its
negation will produce further disjunctions, but however the matrix A will still
get at most two new rows: either t1 < t2 and z = y, or t2 < t1 and ~z = ~y. This
shows that a matrix A can have at most s + 2 ∗ i rows.

The number of columns in a matrix A is the number of variables that will
occur in the system A~x = ~b. Evidently, it depends on the number of variables
occurring in F . Moreover there might be some fresh variables that will appear
while converting inequations into equations. Therefore, one also needs to count
the number of inequations. As shown before, every equation appearing as a
boolean condition within ite operator will arise in some disjunct as an inequation.
This proves an upper bound on the number of columns of a matrix A.

To derive an upper bound on a maximal value that might occur in a matrix
A, it it sufficient to inspect absolute values of all integers that are present in
F . However, there might also be strict inequations. Given a a strict inequation
~x < c, it is equivalent to the equation: ~x + ~ε = ~c−~1, where ~ε is a fresh variable,
~ε ≥ 0. Therefore, for integers occurring in inequations, we consider their maximal
absolute value increased for 1. To the same group of integers belong integers
appearing in conditional expressions within the ite operator.

3.2 Existence and Size of Solution Set Generators

This section describes the solution of a QFPA formula F using generating vectors
and provides bounds on these vectors.

Definition 2. Given a finite set of vectors of non-negative integers S ⊆ Nn

and a vector of non-negative integers ~a ∈ Nn, a linear set L(a;S) is defined as
L(a;S) = {~a + ~x1 + . . . + ~xn | ~xi ∈ S ∧ n ≥ 0}. A vector ~a is called base vector,
while elements of S are called step vectors.

A semilinear set is defined as a finite union of linear sets. Formally, a semi-
linear set Z is defined as Z = ∪n

i=1LS(ai;Si).
We call elements of S(Z) =

⋃n
i=1({~ai} ∪ Si) generators of the semilinear set

Z; there are always finitely many generators of a semilinear set.
[13] shows that a solution of a Presburger arithmetic formula is a semilinear

set. Furthermore, [25] computes bounds on generators of this semilinear set.
Combining these results with Lemma 1 and the definition of a semilinear set, we
obtain the following Lemma 2.

Lemma 2. Given a quantifier-free Presburger arithmetic formula F , there exists
a semilinear set Z defined with vectors ai and bij such that the folowing formula
holds:

~u ∈ {~v | F (~v)} ⇔ ∃νij .

q∨
i=1

(~u = ~ai +
qi∑

j=1

νij
~bij) (3)
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Moreover, ||~u||∞ ≤ (2+(n+1)a)2m, for every generator ~u ∈ S(Z), and previously
introduced m,n and a.

Given generators ~ai,~bij ∈ S(Z) we can express membership in the set {~v | F (~v)}∗
in Presburger arithmetic.

Lemma 3. Let F by a QFPA formula with ~ai,~bij its generators. The condition
~u ∈ {~v | F (~v)}∗ is then equivalent to

∃µi, νij . ~u =
q∑

i=1

(µi~ai +
qi∑

j=1

νij
~bij) ∧

q∧
i=1

(µi = 0 =⇒
qi∑

j=1

νij = 0) (4)

3.3 Selecting Polynomially Many Generators

In this section we establish bounds on the number of generators needed to gen-
erate any particular solution vector ~u: if ~u is a linear combination of generators,
then it is also a linear combination of a polynomial subset of generators that
form a smaller semilinear set. We prove this fact using a theorem about sparse
solutions of integer linear programming problems. Given a set of vectors X and
a vector ~b ∈ X∗, the following theorem determines the bound on the number of
vectors sufficient for representing ~b as a linear combination of vectors from X.

Theorem 1 (Theorem 1 (ii) in [11]). Let X ⊆ Zd be a finite set of integer
vectors and let ~b ∈ X∗. Then there exists a subset X̃ such that ~b ∈ X̃∗ and
|X̃| ≤ 2d log(4dM), where M = maxx∈X ||x||∞.

Theorem 1 has been applied in [17] in order to establishing membership in NP
for quantifier-free Boolean algebra with Presburger arithmetic. However, in the
case of linear arithmetic with stars, it is not sufficient to apply the theorem, as
we need to maintain semilinearity of a set. Therefore, we apply the theorem two
times in particular order and we maintain semilinearity.

Theorem 2. Let F be QFPA formula, Z = {~v | F (~v)} ⊆ Nd its solution set,
Z = ∪q

i=1L(~ai; {~bi1, . . . ,~biqi}) the semilinear set representation of the solution
set, and ~u ∈ Z∗. Then there exists a semilinear set Z̃ with S(Z̃) ⊆ S(Z), ~u ∈ Z̃
and

|S(Z̃)| ≤ 6d(log 4d + 2m log(2 + (n + 1)a))

and m,n, a are computed according to Figure 3.

Proof. Let ~u ∈ Z∗. Then there exist vectors ~ai,~bij ∈ S(Z) and non-negative
integers µi and νij such that ~u =

∑q
i=1(µi~ai+

∑qi

j=1 νij
~bij) and

∧q
i=1(µi = 0 =⇒∑qi

j=1 νij = 0). Let vectors ~a and ~b be defined by ~a =
∑

i µi~ai and ~b =
∑

ij νij
~bij .

Then ~u = ~a +~b. Let A be a multiset containing all the base vectors, A = ]{~ai}
and let B be a multiset containing all the step vectors, B = ]{~bij}.

Note that ~b ∈ B∗. According to Theorem 1, there exists B1 ⊆ B such that
~b ∈ B1

∗ and |B1| ≤ 2d log(4dM) for M = maxb∈B ||~v||∞. Using Lemma 2 to
estimate M , we conclude |B1| ≤ 2d(log(4d) + 2m log(2 + (n + 1)a)).
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To construct a smaller semilinear set, every step vector needs the correspond-
ing base vector. Let A1 denote corresponding base vectors, A1 = {~ai | ∃~b ∈
B1.~b ∈ Si}. Then |A1| ≤ |B1| so also |A1| ≤ 2d(log(4d) + 2m log(2 + (n + 1)a)).
The base vectors A1 and the steps vectors B1 define the new semilinear set Z1.

Let ~a1 =
∑

a∈A1
µi~ai. If vector ~ai occurs multiple times in A1, it is also

added multiple times to the sum. Note that ~a1 +~b ∈ Z∗
1 and |Z1| ≤ 4d(log 4d +

2m log(2 + (n + 1)a)).
Let us now consider the remaining base vectors and let A2 = A \A1 (where

\ is the multiset difference) and let ~a2 = ~a − ~a1. Then ~a2 ∈ A2
∗. By applying

Theorem 1 once again to A2 and a2 we conclude that there exists a set A3

such that ~a2 ∈ A3
∗ and |A3| ≤ 2d(log(4d) + 2m log(2 + (n + 1)a)). This way

we construct another semilinear set Z2, which contains only base vectors, and
Z2 = A3. Note that the vector ~a2 ∈ Z∗

2 .
We finally let Z̃ = Z1 ∪ Z2. By construction, Z̃ is a semilinear set. Because

~a2 ∈ Z∗
2 and ~a1 +~b ∈ Z∗

1 , and ~u = ~a2 + ~a1 +~b, we conclude ~u ∈ Z̃∗. By bounds
on |S(Z1)| and |S(Z2)|, we have |S(Z̃)| ≤ 6d(log 4d + 2m log(2 + (n + 1)a)).

3.4 Grouping Generators into Solutions

In previous two sections we have shown that if ~u ∈ {~v | F (~v)}∗, then ~u is a
particular linear combination of polynomially many generating vectors ~ai, ~bij

that are themselves polynomially bounded. This suggests the idea of guessing
polynomially many bounded vectors, checking whether they are generators, and
then checking whether ~u is their linear combination. We next show that we can
avoid the problem of checking whether a vector is a generator and reduce the
problem to checking whether a vector is solution of F .

Theorem 3. Let F be a QFPA formula and ~u ∈ {~v | F (~v)}∗. Then there exist
k vectors ~c1, . . . , ck such that ∧k

i=1F (~ci), u =
∑k

i=1 λi~ci for some non-negative
integers λi, where k ≤ 8d(log(4d) + 2m log(2 + (n + 1)a)).

Proof. Let Z = {~v | F (~v)} and ~u ∈ Z∗. By Theorem 2 there are polynomially
many vectors ~ai and ~bij that generate Z such that ~u =

∑q
i=1(µi~ai +

∑qi

j=1 νij
~bij)

and if µi = 0 then νij = 0 for all j. We can therefore assume that µi ≥ 1 and
rewrite the sum as

~u =
q∑

i=1

((µi − 1)~ai + ~ai +
qi∑

j=1

νij
~bij)

Let ~vi = ~ai +
∑qi

j=1 νij
~bij . Clearly ~ai ∈ Z and ~vi ∈ Z because they are a

linear combination of generators for Z. Therefore F (ai) and F (vi). We conclude
~u =

∑k
i=1 λi~ci and

∧k
i=1 F (~ci) where k = 2q and q is bounded by the number of

ai vectors, which by the proof of Theorem 2 is 4d(log(4d)+2m log(2+(n+1)a)).
We thus obtain the desired bound.
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3.5 Multiplication by Bounded Bit Vectors

To express terms λi~ci from Theorem 3 as QFPA term, we use the fact that the
smallest solution ~u, if exists, is bounded. Figure 4 describes an algorithm that
calculates an upper bound on ~u. Theorem 4 proves its correctness.

Theorem 4. Given a QFPA formula P with free variables u1, . . . , up, a vector
~u ∈ Nd, whose components are ui variables and a QFPA formula F which does
not share any variable with P and ~u, if P ∧ u ∈ {v | F (v)}∗ is satisfiable, then
there exist a non-negative vector ~u such that ||~u||∞ ≤ r′ and r′ is defined as in
Figure 4.

Proof. Theorem 2 implies that for some polynomially many polynomially
bounded ai, bij the original problem (1) is equisatisfiable with

P ∧ ~u =
q∑
i

(µi~ai +
∑

j

νij
~bij) ∧

∧
i

(µi = 0 =⇒
∧
j

νij = 0)

By doing case analysis on which µi = 0, we can rewrite this formula as

P ∧
∨

I⊆{1,...,q}

~u =
∑
i∈I

((1 + µi)~ai +
∑

j

νij
~bij)

The disjunctive normal form of this formula represented as disjunction of integer
linear programming problems has variables ~v, ~u, µi, νij , where the number of
µi, νij follows from Theorem 2. This determines the number of columns of the
matrix. The number of rows is the sum of the number of rows in P and the
dimension d. The estimate in Figure 4 then follows from [23].

From ||~u||≤r′ we conclude that λi ≤ r′ in ~u =
∑

i λici. Each λi can
therefore be represented as a bit-vector of the size r, where r = dlog r′e. Let
λi = λi

r . . . λi
1λ

i
0 =

∑r
j=0 λi

j2
j . Then

λi~ci = (
r∑

j=0

λi
j2

j)~ci =
r∑

j=0

2j(λi
j~ci) =

r∑
j=0

2j ite(λi
j ,~ci, 0) =

ite(λi
0,~ci, 0) + 2(ite(λi

1,~ci, 0) + 2(ite(λi
2,~ci, 0) + . . .))

This completes the proof of correctness of the algorithm in Figure 2.

4 Reachability in a Class of Transition Systems

We next consider a problem of reachability in certain transition systems given
by vector addition where sets of vectors are determined by QFPA formulas.

Let Fd be the set of all QFPA formulas with the set of free variables v1, . . . , vd.
If F ∈ Fd is such a formula and a1, . . . , ad ∈ Z, we write (a1, . . . , ad) |= F to
denote the fact that F is true when vi has value ai for 1 ≤ i ≤ d.

Consider a transition system described by a tuple (d, Q, E, T ) where
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INPUT: A QFPA formula P with free variables u1, . . . , up, a vector ~u ∈ Nd, whose
components are ui variables and a QFPA formula F which does not share
any variable with P and ~u

OUTPUT: non-negative integer r′ such that, assuming that P ∧ u ∈ {v | F (v)}∗ is
satisfiable, ||u||∞ ≤ r′

procedure upperBound(~u : vector; F, P : QFPA)
// procedures for estimating values m, n and a are given in Figure 3
mP := EstimateM(P); nP := EstimateN(P); aP := EstimateA(P);
mF := EstimateM(F); nF := EstimateN(F); aF := EstimateA(F);
m := d + mP ;
n := nP + 6d(log(4d) + 2mF log(2 + (nF + 1)aF ));
a := max{aP , (2 + (n + 1)aF )2mF };
return n(ma)2m+1

Fig. 4. Algorithm that applies [23] to estimate bound on ~u

1. d is a non-negative integer, denoting the number of integer variables in the
state;

2. Q is a finite set, denoting program counter values;
3. E ⊆ Q×Q, denoting control-flow graph edges;
4. T : E → Fd, specifies possible changes of counters for each control-flow

graph edge.

Given (d, Q, E, T ) we consider the set of states S ⊆ Q × Zd and define the
transition relation R ⊆ S × S such that

(q,~a), (q′,~a′) ∈ R ⇐⇒ (q, q′) ∈ E ∧ (~a′ − ~a) |= T (q, q′) (5)

Note that, unlike in Turing-complete transition systems with integer counters,
the set of possible counter changes is given by formula T (q, q′) and does not
depend on the values of integer counters, but only on control-flow edge (q, q′),
whose number is bounded.

We are interested in the question of reachability in the transition systems
given by relation R. Consider first the case Q = {q}, E = {(q, q)}, T (q, q) = F .
Our definitions then imply that (q,~a) reaches (q,~a′) precisely when the condition
(~a′ − ~a) ∈ {~v | F}∗ holds, where ∗ denotes our vector addition closure operator.
Therefore, the reachability problems that test QFPA relationship between initial
~a and final ~a′ state in such systems reduces to (1).

We note that the assumption that variables denote non-negative integers
in (1) is not a restriction because we can express arbitrary integer variables as
differences of non-negative integer variables.

Now consider arbitrary (d, Q, E, T ) and two states q, q′ ∈ Q. Let r be a
regular expression over the alphabet E describing the set of all paths from q
to q′ in graph (Q,E). We can assume that r exists and is polynomial in the
number of elements of Q. Define set addition by A + B = {~a +~b | ~a ∈ A,~b ∈
B}. We map r into a simpler regular expression with set addition acting as
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commutative concatenation operator and Kleene star with vector set closure,
using the following function h:

h((q1, q2)) = {x | T (q1, q2)}
h(r1r2) = h(r1) + h(r2)

h(r1 ∪ r2) = h(r1) ∪ h(r2)
h(r∗) = h(r)∗

Due to commutativity of set addition and its consequence A∗ + B∗ = (A ∪
B)∗, we can rewrite r in polynomial time to normal form stratified according
to star height (the number of nested applications of ∗ operator). We call {v |
T (q1, q2)} atomic expressions and denote them akij . Then each commutative
regular expression of star height k > 0 has the form rk = ∪p

i=1(aki1 + ...+akini +
r∗i,k−1) where ri,k−1 are expressions of star height k − 1. If r = r1 i.e. r has no
nested stars, then the reachability problem immediately reduces to (1) and is
solvable in NP using our algorithm.

More generally, we show that linear arithmetic with regular expressions over
solution sets of linear arithmetic formulas is in NP. Namely, it is not difficult to
see that condition ~u ∈ rk is equivalent to

∃(~vkij ∈ akij)kij .∃(λkij)kij .

~x =
∑

k,i,j

λkij~vkij ∧
∧

k>1
i,j

(λkij = 0 ⇒
∧

i′,j′
λ(k−1)i′j′ = 0)

As in Section 3 our goal is then to show that we can elect a subset of vectors in
this linear combination and still generate vector ~u.

The following notion of “star modulo vector dependencies” captures condi-
tions on coefficients of linear combinations that arise from repeatedly applying
star to semilinear sets. If X = {~x1, . . . , ~xN} ⊆ Nd is a finite set of vectors and
W ⊆ X ×X a dependency graph on X, define

X∗(W ) = {
N∑

i=1

λi~xi | ∀i, j ≤ N. λi > 0 ∧ (~xi, ~xj) ∈ W ⇒ λj > 0}

The dependency graph in Theorem 2 would have an edge from each ~bij to ~ai.
The generalization of Theorem 1 to the class of graphs W sufficient for the more
general result is the following.

Theorem 5. Let X ⊆ Zd be a finite set of integer vectors with acyclic de-
pendency graph W ⊆ X × X such that for each node ~x ∈ X the number of
nodes reachable from ~x in W is bounded by a constant C. If ~b ∈ X∗(W ) then
there exists X̃ ⊆ X such that ~b ∈ X̃∗(W ) and |X̃| ≤ 2C2d log(4dM), where
M = maxx∈X ||x||∞.

Proof sketch. The idea of the proof of the theorem is to start from the source
nodes of W (nodes with no incoming edges) and apply C times Theorem 1.
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Let B = 2C2d log(4dM) from Theorem 1. Consider a linear combination
~u =

∑
i λi~vi of vectors from X that satisfies the dependencies in W . Our goal is

to find a small number of vectors that generate ~u. In the first step we consider
the source nodes of W , that is, vectors Y0 ⊆ X with no incoming edges in the
graph. Applying Theorem 1 to u0 =

∑
~vi∈Y0

λi~vi we obtain a subset Z0 ⊆ Y0,
with |Z0| ≤ B, such that u0 =

∑
~vi∈Z0

λ′i~vi. To enforce the constraints in the
graph W , we then take closure of Z0 under reachability in W and obtain the set
Q0 of size at most CB such that u0 ∈ Q0

∗(W ).
Having obtained an efficient representation of ~u0, we continue to represent

~u − ~u0. In the next step we therefore eliminate the sources Y0 from the graph
and consider the vectors that are sources in the subgraph of W induced by the
remaining vectors Y1 = X \ Y0. We repeat this procedure as long as there are
nodes in the graph. The number of times we need to repeat it is bounded by
the longest path in W , which, by assumption, is bounded by C. At each step
we select CB vectors, so the total number of nodes that we need in the linear
combination is bounded by C2B.

Using Theorem 5 we obtain a polynomial subset of vectors that satisfy given
QFPA formulas and whose linear combination is the given vector ~u. We then use
results from previous sections to show that a linear combination of solutions of a
QFPA formula can be represented as a sum of a polynomial number of solutions
of this QFPA formula. This allows us to generalize results of Section 3 to formulas
that contain not just one star operator but any regular expression over solution
sets of QFPA formulas, which in turn proves that the reachability problem for
transition systems described in this section is also in NP.

5 Conclusions

We showed that the satisfiability problem for an extensions of QFPA with star
operators is decidable by polynomial-time reduction to QFPA. The result uses
bounds on solutions of large QFPA formulas, as well as bounds on number of
vectors needed to generate a solution. Our results yield optimal worst-case com-
plexity for deductive verification of invariants that contain sets, multisets, and
cardinality constraints, as well as reachability checking for certain counter sys-
tems.
Acknowledgements. We thank Nikolaj Bjørner for useful comments on a draft
of this paper.
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