
Decision Procedures for Multisets with
Cardinality Constraints

Ruzica Piskac and Viktor Kuncak

School of Computer and Communication Science
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. Applications in software verification and interactive theorem
proving often involve reasoning about sets of objects. Cardinality con-
straints on such collections also arise in these scenarios. Multisets arise for
analogous reasons as sets: abstracting the content of linked data structure
with duplicate elements leads to multisets. Interactive theorem provers
such as Isabelle specify theories of multisets and prove a number of theo-
rems about them to enable their use in interactive verification. However,
the decidability and complexity of constraints on multisets is much less
understood than for constraints on sets.
The first contribution of this paper is a polynomial-space algorithm for
deciding expressive quantifier-free constraints on multisets with cardinal-
ity operators. Our decision procedure reduces in polynomial time con-
straints on multisets to constraints in an extension of quantifier-free Pres-
burger arithmetic with certain “unbounded sum” expressions. We prove
bounds on solutions of resulting constraints and describe a polynomial-
space decision procedure for these constraints.
The second contribution of this paper is a proof that adding quantifiers to
a constraint language containing subset and cardinality operators yields
undecidable constraints. The result follows by reduction from Hilbert’s
10th problem.

This version differs from the published one in correcting the statement of the in-

termediate result, Theorem 3, which was originally stated in an unnecessarily general

form. The final statement of the paper (Corollary 1) remains unaffected.

1 Introduction

Collections of objects are fundamental and ubiquitous concepts in computer
science and mathematics. It is therefore not surprising that they often arise in
software analysis and verification [1], as well as in interactive theorem proving
[19]. Moreover, such constraints often involve cardinality bounds on collections.
Recent work describes decision procedures for constraints that involve sets and
their cardinalities [10, 12], characterizing the complexity of both quantified and
quantifier-free constraints.

In many applications it is more appropriate to use multisets (bags) rather
than sets as a way of representing collections of objects. It is therefore interesting

2

to consider constraints on multisets along with cardinality bounds. There is a
range of useful operations and relations on multisets, beyond the traditional
disjoint union and difference. These operations are all definable using quantifier-
free Presburger arithmetic (QFPA) formulas on the number of occurrences of
each element in the multiset. This paper describes such a language that admits
reasoning about integers, sets and multisets, supports standard set and multiset
operations as well as any QFPA-definable operation on multisets (including the
conversion of a multiset into a set), and supports a cardinality operator that
counts the total number of elements. We present a decision procedure for this
language, provide a PSPACE upper bound on the decision problem, and show
that its extension with quantifiers is undecidable.

Our language can express sets as a special kind of multisets, so our new de-
cision procedure is also a decision procedure for constraints in [12]. However,
multisets introduce considerable additional difficulty compared to the original
problem. For example, while the number of non-equivalent set terms is finite
(they are unions of Venn regions), the number of non-equivalent multiset terms
is infinite due to non-idempotent operators such as multiset sum]. Instead of
considering Venn regions, our new algorithm reduces multiset constraints to an
extension of Presburger arithmetic with a particular sum expression. To decide
this extension, we rely on the fact that solutions of formulas of Presburger arith-
metic are semilinear sets [8] and use bounds on generators of such sets [23] to
establish small model property for this extension.

Previously, Zarba [25] considered decision procedures for quantifier-free mul-
tisets but without the cardinality operator, showing that it reduces to quantifier-
free pointwise reasoning. However, the cardinality operator makes that reduction
impossible. More recently Lugiez [13] showed (in the context of a more general
result on multitree automata) the decidability of quantified constraints with a
weaker form of cardinality operator that counts only distinct elements in a multi-
set, and shows decidability of certain quantifier-free expressible constraints with
cardinality operator. Regarding quantified constraints with the general cardi-
nality operator, [13, Section 3.4] states “the status of the complete logic is still
an open problem”. We resolve this question, showing that the quantified con-
straints with cardinality are undecidable (Section 6). The decidable quantified
constraints in [13] allow quantifiers that can be eliminated to obtain quantifier-
free constraints, which can then be expressed using the decidable constraints in
the present paper. We analyze the complexity of the decision problem for our
quantifier-free constraints, and show that it belongs to PSPACE, which is the
first complexity bound for constraints on multisets with a cardinality operator.
Contributions. We summarize our contributions as follows.

1. We show how to decide expressive quantifier-free constraints on multisets
and cardinality operators in polynomial space, and

2. We show that adding quantifiers to a constraint language containing subset
and cardinality operators yields undecidable constraints.

Overview. We continue by presenting examples that motivate the constraints
we consider in this paper. We then outline our decision procedure through an

3

example. The main part of the paper describes the decision procedure and its
correctness. We then show that an extension of our constraints with quantifiers
is undecidable.

1.1 Multisets in Interactive Verification

As an example of using multisets with cardinalities in interactive verification,
consider the Multiset library [20] of the interactive theorem prover Isabelle [19].
This library represents a multiset as a function f from some (parameter) type
to the set of natural numbers, such that the set S of elements x with f(x) > 0 is
finite. It defines the size function on multisets as the sum of f(x) over all x ∈ S.
Several lemmas proved in the library itself mention both multisets and the size
function, such as the size union lemma (size(M + N) = size M + size N),
where + on the left-hand side is resolved as the disjoint multiset union. Other
Isabelle theories build on the Multiset library, including the Permutation library
for reasoning about permutations, formalization [22] of the UNITY parallel pro-
gramming approach [17], and example specifications of sorting algorithms.

This paper considers such a theory of multisets with size constraints. For
simplicity, we fix the set E from which multiset elements are drawn. We assume
E to be finite, but of unknown cardinality. If m is a multiset, we call size(m) the
cardinality of m, and denote it |m| in this paper. As an example, the size union
lemma in our notation becomes |M]N | = |M |+ |N |.

1.2 Multisets in Software Analysis and Verification

It is often desirable to abstract the content of mutable and immutable data
structures into collections to raise the level of abstraction when reasoning about
programs. Abstracting linked structures as sets and relations enables high-level
reasoning in verification systems such as Jahob [9]. For collections that may
contain duplicates, abstraction using multisets is more precise than abstraction
using sets. The decision procedure described in this paper would therefore en-
able reasoning about such precise abstractions, analogously to the way current
decision procedures enable reasoning with set abstraction.

To illustrate the role of the cardinality operator, note that data structure
implementations often contains integer size fields. If s is a data structure size field
and L an abstract multiset field denoting data structure content, data structure
operations need to preserve the invariant s = |L|. When verifying an insertion of
an element x into a container, we therefore obtain verification conditions such as
|L|=s → |L] x|=s+1. When verifying deletion of an element from a container
we obtain verification conditions such as

x ⊆ L ∧ |x| = 1 → |L\x| = |L| − 1 (1)

The decision procedure described in this paper can prove such verification con-
ditions.

4

To describe data structure operations it is useful to have not only operations
such as disjoint union] and set difference, but also an operation that, given
multisets m1 and m2 produces a multiset m0 which is the result of removing from
m1 all occurrences of elements that occur in m2. Let mi(e) denote the number of
occurrences of an element e in multiset mi. Then we can specify such a removal
operation with ∀e.(m2(e) = 0 =⇒ m0(e) = m1(e))∧ (m2(e) > 0 → m0(e) = 0).
We introduce a shorthand m0 = m1 \\m2 for this formula. Our constraints
support any such operation definable pointwise by QFPA formula.

Multisets have already been used in the verification system for data structures
with bag and size properties [18], which invokes Isabelle to prove the generated
multiset constraints. Our paper describes a decision procedure for a language of
multisets with cardinalities, which could be used both within program verifica-
tion systems and within interactive theorem provers, obtaining completeness and
improved efficiency for a well-defined class of formulas. In addition to reasoning
about abstractions of data structures, our constraints can be used directly to
specify properties in programming languages such as SETL [24], which has built
in set data type, and in the Gamma parallel programming paradigm [2, Page
103] based on multiset transformations.

2 Decision Procedure through an Example

We next outline our decision procedure by applying it informally to the con-
straint (1) from the previous section. This section demonstrates only the main
idea of the algorithm; Sections 4 and 5 give the detailed description (the reader
may wish to revisit this example after reading those details). To prove validity
of (1), we show that its negation,

x ⊆ L ∧ |x| = 1 ∧ |L\x| 6= |L| − 1, (2)

is unsatisfiable. Our algorithm expresses a given formula through quantifier-free
Presburger arithmetic (QFPA) extended with sum expressions

∑
t over other

QFPA terms t. In such sum expressions, the number of occurrences of an element
e in a multiset m is denoted by m(e). Every sum ranges over all elements e of
some fixed domain E of unknown size. For example, our algorithm converts
|x| = 1 into

∑
x(e) = 1.

We also allow conditional expressions ite in our formulas. If c is a QFPA for-
mula and t1 and t2 two QFPA terms, then ite(c, t1, t2) has value t1 when c holds,
and t2 otherwise. A multiset inclusion x ⊆ L becomes ∀e. x(e) ≤ L(e) which
in turn is transformed into the sum

∑
ite(x(e) ≤ L(e), 0, 1) = 0. By introducing

fresh variables x1 for L\x, we obtain formula x1 = L\x. The formula x1 = L\x
becomes the sum

∑
ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e)− x(e)), 0, 1) = 0. For-

mula (2) therefore becomes∑
ite(x(e) ≤ L(e), 0, 1) = 0 ∧

∑
x(e) = 1 ∧

∑
x1(e) 6=

∑
L(e)− 1 ∧∑

ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e)− x(e)), 0, 1) = 0 (3)

5

Because every sum ranges over the same set of elements e ∈ E, we can combine
all sums into one sum with vector summands. Introducing k1 for |x1|, and k2 for
|L|, we obtain the formula

k1 6= k2 − 1 ∧ (k1, k2, 1, 0, 0) =
∑ (

x1(e), L(e), x(e),

ite(x1(e) = ite(L(e) ≤ x(e), 0, L(e)− x(e)), 0, 1), ite(x(e) ≤ L(e), 0, 1)
)

(4)

Because the set of index elements E is of arbitrary size and each summand
satisfies the same QFPA formula, formula (4) is equisatisfiable with the following
formula (5), which uses a different sum operator that computes the set of all
sums of solution vectors of the given QFPA formula F :

k1 6= k2 − 1 ∧ (k1, k2, 1, 0, 0) ∈
∑
F

(x1, L, x, z1, z2), (5)

Here F is z1 = ite(x1 = ite(L ≤ x, 0, L− x), 0, 1) ∧ z2 = ite(x ≤ L, 0, 1). We next
show that (u1, . . . , un) ∈

∑
F (x1, . . . , xc) can be replaced with the equisatisfiable

QFPA formula. This will reduce the entire problem to QFPA satisfiability.
We first characterize satisfying assignments for F using semilinear sets [8].

This construction is always possible, as described in Section 5. The satisfying

assignments for our formula F are given by
7⋃

i=1

(Ai + B∗
i) where

A1 = {(0, 0, 0, 0, 0)}, B1 = {(0, 1, 1, 0, 0)}
A2 = {(1, 0, 0, 1, 0)}, B2 = {(0, 1, 1, 0, 0), (1, 0, 0, 0, 0)}
A3 = {(0, 0, 1, 0, 1)}, B3 = {(0, 1, 1, 0, 0), (0, 0, 1, 0, 0)}
A4 = {(1, 0, 1, 1, 1)}, B4 = {(0, 1, 1, 0, 0), (0, 0, 1, 0, 0)}
A5 = {(1, 1, 0, 0, 0)}, B5 = {(1, 1, 0, 0, 0), (0, 1, 1, 0, 0)}
A6 = {(2, 1, 0, 1, 0)}, B6 = {(1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 0, 0, 0)}
A7 = {(0, 0, 1, 1, 0)}, B7 = {(1, 1, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 1, 0)}

Here A + B∗ denotes the set of sums with exactly one element from A and any
number of elements from B.

The meaning of the sum expression then reduces to the condition
(k1, k2, 1, 0, 0) ∈ (

⋃7
i=1(Ai +B∗

i))∗. In general, this condition is definable using a
QFPA formula that uses the finite vectors from Ai and Bi. In our particular case,
(k1, k2, 1, 0, 0) can only be a linear combination of elements from A1 + B∗

1 and
A5 + B∗

5 . Such considerations ultimately result in formula (k1, k2) = (λ, λ + 1),
so the overall constraint becomes

k1 6= k2 − 1 ∧ (k1, k2) = (λ, λ + 1) (6)

Because (2) and (6) are equisatisfiable and (6) is unsatisfiable, we conclude that
(1) is a valid formula.

6

3 Multiset Constraints

Figure 1 defines constraints whose satisfiability we study in this paper. Our
constraints combine multiset expressions and two kinds of QFPA formulas: outer
linear arithmetic formulas, denoting relationship between top-level integer values
in the constraint, and inner linear arithmetic formulas, denoting constraints
specific to a given index element e ∈ E. Note that the syntax is not minimal; we
subsequently show how many of the constructs are reducible to others.

top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= M=M | M ⊆ M | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
P
Fin

(tin, . . . , tin)

tout ::= k | |M| | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | C | tin + tin | C · tin | ite(Fin, tin, tin)
multiset expressions:

M ::= m | ∅ | M ∩M | M ∪M | M]M | M \M | M \\M | setof(M)
terminals:

m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant

Fig. 1. Quantifier-Free Multiset Constraints with Cardinality Operator

Formulas (F) are propositional combinations of atomic formulas (A). Atomic
formulas can be multiset equality and subset, pointwise linear arithmetic con-
straint ∀e.Fin, or atomic outer linear arithmetic formulas (Aout). Outer linear
arithmetic formulas are equalities and inequalities between outer linear arith-
metic terms (tout), as well as summation constraints of the form (u1, . . . , un) =∑

F (t1, . . . , tn), which compute the sum of the vector expression (t1, . . . , tn) over
all indices e ∈ E that satisfy the formula F . Outer linear arithmetic terms (tout)
are built using standard linear arithmetic operations starting from: 1) integer
variables (k), 2) cardinality expressions applied to multisets (|M |), and 3) integer
constants (C). The ite(F, t1, t2) expression is the standard if-then-else construct,
whose value is t1 when F is true and t2 otherwise. Inner linear arithmetic formu-
las are linear arithmetic formulas built starting from constants (C) and values
m(e) of multiset variables at the current index e.

Multiset constraints contain some common multiset operations such as dis-
joint union, intersection, and difference, as well as the setof operation that com-
putes the largest set contained in a given multiset. Additionally, using the con-
straints ∀e.Fin it is possible to specify any multiset operation defined pointwise

7

using a QFPA formula. Note also that it is easy to reason about individual el-
ements of sets at the top level by representing them as multisets s such that
|s| = 1. If s is such a multiset representing an element and m is a multiset, we
can count the number of occurrences of s in m with, for example, the expression∑

ite(s(e)=0, 0,m(e)).

4 Reducing Multiset Operations to Sums

We next show that all operations and relations on multisets as a whole can
be eliminated from the language of Figure 1. To treat operations as relations,
we flatten formulas by introducing fresh variables for subterms and using the
equality operator. Figure 2 summarizes this process.

Definition 1 (Sum normal form). A multiset formula is in sum normal form
iff it is of the form P ∧ (u1, . . . , un) =

∑
true

(t1, . . . , tn), where P is a quantifier-free

Presburger arithmetic formula without any multiset variables, and the variables
in t1, . . . , tn occur only as expressions of the form m(e) for m a multiset variable
and e the fixed index variable.

Theorem 1 (Reduction to sum normal form). Algorithm in Figure 2 re-
duces in polynomial time any formula in the language of Figure 1 to a formula
in sum normal form.

4.1 From Multisets to Sum Constraints

We next argue that formulas in sum normal form (Definition 1) are equisatisfi-
able with formulas of linear arithmetic extended with sum constraints (Figure 3).
Sum constraints are of the form (u1, . . . , un)∈

∑
F (t1, . . . , tn) and they test mem-

bership in the set of vectors generated using vector addition starting from the set
{(t1, . . . , tn) | ∃k1, . . . , kn.F} where k1, . . . , kn is the set of all variables occurring
in F but not occurring in t1, . . . , tn.

Theorem 2 (Multiset elimination). Consider a sum normal form formula
F of the form

P ∧ (u1, . . . , un) =
∑
true

(t1, . . . , tn)

where free variables of t1, . . . , tn are multiset variables m1, . . . ,mq. Let k1, . . . , kq

be fresh integer variables. Then F is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈
∑
true

(t′1, . . . , t
′
n) (7)

where t′i = ti[m1(e) := k1, . . . ,mq(e) := kq] (t′i results from ti by replacing
multiset variables with fresh integer variables).

The equisatisfiability follows by bijection between the satisfying assignments
where ki is interpreted as mi(e) and E has as many elements as there are sum-
mands under the sum in (7).

8

INPUT: multiset formula in the syntax of Figure 1
OUTPUT: formula in sum-normal form (Definition 1)

1. Flatten expressions that we wish to eliminate:
C[e] ; (x = e ∧ C[x])

where e is one of the expressions ∅, m1∪m2, m1∪m2, m1]m2, m1\m2, setof(m1),
|m1|, and where the occurrence of e is not already in a top-level conjunct of the
form x = e or e = x for some variable x.

2. Reduce multiset relations to pointwise linear arithmetic conditions:
C[m0 = ∅] ; C[∀e. m0(e) = 0]
C[m0 = m1 ∩m2] ; C[∀e. m0(e) = ite(m1(e) ≤ m2(e), m1(e), m2(e))]
C[m0 = m1 ∪m2] ; C[∀e. m0(e) = ite(m1(e) ≤ m2(e), m2(e), m1(e))]
C[m0 = m1]m2] ; C[∀e. m0(e) = m1(e) + m2(e)]
C[m0 = m1 \m2] ; C[∀e. m0(e) = ite(m1(e) ≤ m2(e), 0, m1(e)−m2(e))]
C[m0 = m1 \\m2] ; C[∀e. m0(e) = ite(m2(e) = 0, m1(e), 0)]
C[m0 = setof(m1)] ; C[∀e. m0(e) = ite(1 ≤ m1(e), 1, 0)]
C[m1 ⊆ m2] ; C[∀e. (m1(e) ≤ m2(e))]
C[m1 = m2] ; C[∀e. (m1(e) = m2(e))]

3. Express each pointwise constraint using a sum:
C[∀e.F] ; C[

P
¬F

1 = 0]

4. Express each cardinality operator using a sum:
C[|m|] ; C[

P
true

m(e)]

5. Flatten any sums that are not already top-level conjuncts:

C[(u1, . . . , un)=
P
F

(t1, . . . , tn)] ; (w1, . . . , wn)=
P
F

(t1, . . . , tn) ∧ C[
nV

i=1

ui=wi]

6. Eliminate conditions from sums:
C[

P
F

(t1, . . . , tn)] ; C[
P
true

(ite(F, t1, 0), . . . , ite(F, tn, 0))]

7. Group all sums into one:

P∧
qV

i=1

(ui
1, . . . , u

i
ni

) =
P
true

(ti
1, . . . , t

i
ni

) ;

P∧ (u1
1, . . . , u

1
n1 , . . . , uq

1, . . . , u
q
nq

) =
P
true

(t11, . . . , t
1
n1 , . . . , tq

1, . . . , t
q
nq

)

Fig. 2. Algorithm for reducing multiset formulas to sum normal form

5 Deciding Linear Arithmetic with Sum Constraints

Having reduced in polynomial time multiset constraint satisfiability to satis-
fiability for linear arithmetic with sum constraints, this section examines the
decidability and the complexity of the resulting satisfiability problem.

5.1 Preliminary Transformations

We assume that the constraint whose satisfiability we wish to check is in the
form given by Theorem 2. This is sufficient for deciding multiset constraints. We

9

top-level, outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)∈
P
Fin

(tin, . . . , tin)

tout ::= kout | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= kin | C | tin + tin | C · tin | ite(Fin, tin, tin)
terminals:

kin, kout - integer variable (two disjoint sets); C - integer constants

Fig. 3. Syntax of Linear Arithmetic with Sum Constraints

therefore consider a formula of the form

P ∧ (u1, . . . , un) ∈
∑
true

(m1, . . . ,mn) (8)

Let x1, . . . , xq be the set of variables in m1, . . . ,mn and let y1, . . . , yq and
z1, . . . , zn be fresh variables. We then represent (8) as the formula P ∧ S where
S is the formula

(u1, . . . , un, y1, . . . , yq) ∈
∑
F

(z1, . . . , zn, x1, . . . , xq) (9)

Here F is the formula
q∧

i=1

mi = zi. (The values y1, . . . , yq are not used in P ;

their purpose is to ensure proper dimensionality of the resulting vector, so that
we can assume that all variables of F appear in vector (z1, . . . , zn, x1, . . . , xq).)
Note that the formula S says that some number of solutions of QFPA formula F
sums up to a given vector. We next show that S is equisatisfiable with a QFPA
formula.

5.2 Formula Solutions as Semilinear Sets and their Bounds

To show that QFPA formulas are closed under unbounded sum constraints, we
use representations of solutions of QFPA formulas as semilinear sets. We first
review some relevant results from [23]. For an integer vector x = (x1, . . . , xn) let
||x||1 denote

∑n
i=1 |xi|. For a matrix A = [aij] let ||A||1,∞ denote supi(

∑
j aij).

Definition 2 (Sum and Iteration of Sets of Vectors). Let C1, C2 ⊆ Nk be
sets of vectors of non-negative integers. We define

C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {0} ∪ {x1 + . . . + xn | x1, . . . , xn ∈ C1}

When x ∈ Nn and C2 ⊆ Nn is finite, we call {x}+C∗
2 a linear set. A semilinear

set is a union of some finite number of linear sets.

10

If C1, C2 ⊆ Nn are finite, then C1 + C∗
2 is a particular kind of a semilinear set.

Such semilinear sets are solutions of systems of linear equations, which follows
from the proof of [23, Corollary 1] and [23, Theorem 1]:

Fact 1 (Pottier 1991) Consider a system of equations Ax = b where A ∈
Nm,n and b ∈ Nm. Let A1 = [A;−b], let r be the rank of A1, and let B0 =
(1 + ||A1||1,∞)r. Then there exist two finite sets C1, C2 ⊆ Nn such that

1. for all x ∈ Nn, Ax = b iff x ∈ C1 + C∗
2 , and

2. ∀h ∈ C1 ∪ C2, ||h||1 ≤ B0.

Consequently, |C1| ≤ B0 and |C2| ≤ B0. Moreover, if in Ax = b we replace some
of the equations with inequations, the statement still holds if B0 is weakened to
(2 + ||A1||1,∞)m.

Note that each QFPA formula F can be converted into an equivalent dis-
junction of systems of equations and inequations. The number of such systems
is singly exponential in the number of atomic formulas in F . Moreover, the el-
ements of A and b in the resulting systems are polynomially bounded by the
coefficients and constants in the original QFPA formula. Consequently, the B0

bound for each of these systems is at most singly exponential in the size s of
the formula F . We denote this bound by 2p(s), where p is some polynomial that
follows from details of the algorithm for generating all systems of equations and
inequations whose disjunction is equivalent to F . We thus obtain the following
lemma.

Lemma 1. Let F be a QFPA formula of size s with n free variables. Then there
exist finite sets Ai, Bi ⊆ Nn for 1 ≤ i ≤ d for some d ≤ 2p1(s) such that the set
of satisfying assignments for F is given as

d⋃
i=1

(Ai + B∗
i)

and such that ||h||1 ≤ 2p(s) for each h ∈
d⋃

i=1

(Ai ∪Bi).

If A = {a1, . . . , aq} and B = {b1, . . . , br} for ai, bj ∈ Nn, then the condition
u ∈ A+B∗ is given by the formula

∨q
i=1(u = ai+

∑r
j=1 λjbj) where λ1, . . . , λr are

existentially quantified variables ranging over N. This view leads to the following
formulation of Lemma 1.

Lemma 2 (Semilinear normal form for linear arithmetic). Let F be a
QFPA formula of size s with n free variables. Then there exist vectors ai and bij,
1 ≤ j ≤ qi, 1 ≤ i ≤ d for d ≤ 2p1(s), with ||ai||1, ||bij ||1 ≤ 2p(s) such that F is
equivalent to

∃λ1, . . . , λq.

d∨
i=1

(u = ai +
qi∑

j=1

λjbij) (10)

where u = (u1, . . . , un) are the free variables in F and q is the maximum of all
qi.

11

5.3 Formulas Representing Unbounded Sums

Having obtained semilinear normal form for QFPA formulas, we can characterize
the set of all sums of solutions of a formula. This corresponds to taking the set of
solutions C and computing a representation of C∗. We next give a QFPA formula
for C∗ (this was also obtained in [14, Section 3.2]).

Lemma 3. Given a formula F in normal form (10), if x denotes vector of
variables (x1, . . . , xn) then the condition x ∈

∑
F

(u1, . . . , un) is equivalent to

∃µi, λij . x =
d∑

i=1

(µiai +
qi∑

j=1

λijbij) ∧
d∧

i=1

(µi = 0 =⇒
qi∑

j=1

λij = 0) (11)

The existentially quantified variables µi, λij become free variables in the satis-
fiability problem. We have therefore reduced the original formula P ∧ S where
S is given by (8) to conjunction of P and (11), which is a QFPA formula. Along
with the algorithm in Figure 2, this shows the decidability of the satisfiability
problem for multiset constraints in Figure 1.

5.4 Bounds on Solutions for Formulas with Sums

The algorithm described so far produces exponentially large QFPA formulas,
so it would only give a non-deterministic exponential bound on the satisfiability
problem. To improve this complexity upper bound, we establish bounds on values
of variables (u1, . . . , un) in (8). As the first step, we rewrite (11) by applying case
analysis, for each i, on whether µi = 0 or µi ≥ 1. We obtain the formula

∃µi, λij .
∨

I⊆{1,...,d}

x =
∑
i∈I

((1 + µi)ai +
qi∑

j=1

λijbij) (12)

The key property of (12) is that, although it can still have exponentially large
number of variables in the size of the original formula S, each of the disjuncts
in disjunctive normal form of (12) has a polynomial number of atomic formu-
las. In other words, the formula can be represented as a disjunction of systems
of equations whose matrices A have polynomially many rows (and potentially
exponentially many columns). Consequently, the same property holds for the
conjunction P∧(12). This allows us to proceed similarly as in [15, Section 3]. We
apply the well-known bound on integer linear programming problems.

Fact 2 (Papadimitriou [21]) Let A be an m× n integer matrix and b an m-
vector, both with entries from [−a..a]. Then the system Ax = b has a solution in
Nm if and only if it has a solution in [0..M]m where M = n(ma)2m+1.

Given that all coefficients appearing in (12) are bounded by 2p(s) and that m is
polynomial in s as well, we obtain the desired bound.

12

Theorem 3. There exists a polynomial p(s) such that for every formula F of
Figure 3 of the form (8) and of size s, F has a solution iff F has a solution in
which the number of bits needed to represent the values of outer integer variables
is bounded by p(s).

By Theorem 3 there is a non-deterministic polynomial time algorithm that

1. guesses the values c1, . . . , cn+q of variables u1, . . . , un, y1, . . . , yq in (9) such
that P holds, and then

2. checks whether the constraint (c1, . . . , cn+q) ∈
∑

F (z1, . . . , zn, x1, . . . , xq) has
a solution.

We have therefore reduced the satisfiability problem to testing whether a given
vector of non-negative integers is a sum of some number of solutions of F . This
test is the subject of the next section.

5.5 PSPACE Algorithm for Sum Membership

This section examines the problem of checking for a given constant vector c ∈ N
and a given QFPA formula F , whether c ∈ {v | F (v)}∗ holds, that is, whether
there exists some number q ≥ 0 of vectors v1, . . . ,vq ∈ Nn such that

∑q
i=1 vi = c

and F (c) holds forall 1 ≤ i ≤ q. In principle, this problem could be solved by
checking the satisfiability of formula (11). However, the number and size of
vectors ai and bij is exponential. The techniques that we know for constructing
them are based on computing Hilbert basis of homogeneous systems of equations
over natural numbers (Ax = 0) [23,4]. In [5] the authors show that counting the
number of solutions of Hilbert basis of a system of equations is complete for the
counting class #coNP.

We therefore adopt a more direct approach to checking c ∈ {v | F (v)}∗,
which does not attempt to compute semilinear sets for F . A simple non-
deterministic polynomial-space algorithm would guess non-zero solutions of the
formula F that are bounded by c and subtract them from c until it reaches the
zero vector. Figure 4 we presents a refinement of this algorithm that uses divide
and conquer approach and can easily be implemented deterministically in poly-
nomial space. Note that in invocations of depth up to t the algorithm will find
sums v1 + . . . + vq = c for all q ≤ 2t. Because the coordinates of solutions are
non-negative integers, it suffices to consider sums of length up to ||c||1, which is
bounded by 2p(s). Therefore, the bound p(s) on the depth of recursion suffices.

The algorithm in Figure 4 also gives a natural encoding of the problem
into Presburger arithmetic with bounded quantifiers, which is PSPACE com-
plete. Namely, we can rewrite the two recursive calls in generated(c1, t− 1) ∧
generated(c2, t− 1) as

∀a. (a = c1 ∨ a = c2) =⇒ generated(a, t− 1) (13)

Given a formula F of size s, we then unroll the recursion p(s) times, which
eliminates all recursive calls and the parameter t. Because (13) contains only

13

INPUT: A vector c ∈ Nn, and a QFPA formula F of size s with free variables
k = (k1, . . . , kn).

OUTPUT: true iff c ∈ {v | F (v)}∗

TOP LEVEL: return generated(c, p(s));

proc generated(c, t) :
if(c = 0) then return true;
if(F (c) = true) then return true;
if(t = 0) then return false;
non-deterministically guess c1, c2 ∈ Nn \ {0} such that c1 + c2 = c;
return (generated(c1, t− 1) ∧ generated(c2, t− 1));

Fig. 4. PSPACE Algorithm for testing whether a vector is a sum of solutions of
a QFPA formula

one recursive call, the resulting unrolling is polynomially large and it can be
encoded as a QFPA formula. This formula contains universal quantification over
the a vectors and existential quantifiers over the c1, c2 vectors in each step of
the recursion. It has polynomial size and p(s) quantifier alternations.

Theorem 4 (Membership test). The algorithm in Figure 4 is correct and
runs in polynomial space.

From Theorem 1, Theorem 2, and Theorem 4, we obtain our main result.

Corollary 1. The satisfiability problem for the language in Figure 1 is decidable
and belongs to PSPACE.

6 Undecidability of Quantified Constraints

We next show that adding quantifiers to the language of Figure 1 (and to many
of its fragments) results in undecidable constraints.

The language in Figure 1 can be seen as a generalization of quantifier-free
Boolean algebra with Presburger arithmetic (QFBAPA) [12]. Given that QF-
BAPA admits quantifier elimination [7,10], it is interesting to ask whether mul-
tiset quantifiers can be eliminated from constraints of the present paper. Note
that a multiset structure without cardinality operator can be viewed as a prod-
uct of Presburger arithmetic structures. Therefore, Feferman-Vaught theorem [7]
(see also [3], [11, Section 3.3]) gives a way to decide the first-order theory of mul-
tiset operations extended with the ability to state cardinality of sets of the form
|{e | F (e)}|. This corresponds to multiset theory with counting distinct elements
of multisets, which is denoted FO#D

M in [13]. However, this language is strictly
less expressive than a quantified extension of the language in Figure 1 that con-
tains summation expressions

∑
F (e) t(e) and that corresponds to FO#

M in [13].

The decidability of FO#
M was stated as open in [13]. We next show that this

language is undecidable.

14

The undecidability follows by reduction from Hilbert’s 10th problem [16], be-
cause quantified multiset constraints can define not only addition (using disjoint
union]) but also multiplication. To define x · y = z, we introduce a new set p
that contains x distinct elements, each of which occurs y times. The following
formula encodes this property.

x · y = z ⇔ ∃p. z = |p| ∧ x = |setof(p)| ∧
(∀m. |m| = z ∧ |setof(m)| = 1 ∧ setof(m) ⊆ p =⇒ |m ∩ p| = y)

Because we can define multiplication, we can express satisfiability of Diophan-
tine equations, so by [16] we conclude that satisfiability of multiset constraints
with quantifiers and cardinality is undecidable. Similarly, we obtain undecidable
constraints if in the quantified expressions ∀e.F we admit the use of outer in-
teger variables as parameters. This justifies the current “stratified” syntax that
distinguishes inner and outer integer variables.

The reader may wonder whether the presence of the built-in setof operator is
needed for undecidability of quantified constraints. However, the setof operator
is itself definable using quantifiers. For example, a = setof(b) iff a is the smallest
set that behaves the same as b with respect to simple set membership. Behaving
same with respect to simple set membership is given by

memSame(a, b) ⇐⇒ (∀x. |x| = 1 =⇒ (x ⊆ a ⇐⇒ x ⊆ b))

so a = setof(b) ⇐⇒ (memSame(a, b) ∧ (∀a1. memSame(a1, b) =⇒ a ⊆ a1)).
Moreover, note that, as in any lattice, ∩ and ⊆ are inter-expressible using quan-
tifiers. Therefore, adding quantifiers to a multiset language that contains ⊆ and
cardinality constructs already gives undecidable constraints. This answers neg-
atively the question on decidability of FO#D

M posed in [13, Section 3.4].

7 Conclusions

Motivated by applications in verification, we introduced an expressive class of
constraints on multisets. Our constraints support arbitrary multiset operations
defined pointwise using QFPA as well as the cardinality operator. We presented
a decision procedure for the satisfiability of these constraints, showing that they
efficiently reduce to an extension of QFPA with unbounded sum expressions.
For the later problem we presented a decision procedure based on semilinear set
representation of quantifier-free Presburger arithmetic formulas. We established
small bounds on solutions of such formulas and then showed that the overall
problem can be solved in polynomial space. The satisfiability problem for our
constraints is therefore NP-hard and belongs to PSPACE.1 Finally, we showed
that adding quantifiers to these constraints makes them undecidable by defining
multiplication in the language.

1 We recently established NP-completeness of these constraints by generalizing [6].

15

References

1. Alexander Aiken. Introduction to set constraint-based program analysis. Science
of Computer Programming, 35:79–111, 1999.

2. Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset transfor-
mation. Commun. ACM, 36(1):98–111, 1993.

3. Alexis Bès. Definability and decidability results related to the elementary theory
of ordinal multiplication. Fund.Math, 171:197–211, 2002.

4. Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic
approach. In MFCS, pages 141–150, 1991.

5. Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive reductions
and complete problems for counting complexity classes. Theor. Comput. Sci.,
340(3):496–513, 2005.

6. Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer
cones. Operations Research Letters, 34(5):564–568, September 2006.

7. S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

8. S. Ginsburg and E. Spanier. Semigroups, Pressburger formulas and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

9. Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS Depart-
ment, Massachusetts Institute of Technology, February 2007.

10. Viktor Kuncak, Hai Huu Nguyen, and Martin Rinard. Deciding Boolean Algebra
with Presburger Arithmetic. J. of Automated Reasoning, 2006.

11. Viktor Kuncak and Martin Rinard. On the theory of structural subtyping. Tech-
nical Report 879, LCS, Massachusetts Institute of Technology, 2003.

12. Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for
Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.

13. D. Lugiez. Multitree automata that count. Theor. Comput. Sci., 333(1-2):225–263,
2005.

14. Denis Lugiez and Silvano Dal Zilio. Multitrees Automata, Presburger’s Constraints
and Tree Logics. Research report 08-2002, LIF, Marseille, France, June 2002.
http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html.

15. Bruno Marnette, Viktor Kuncak, and Martin Rinard. On algorithms and complex-
ity for sets with cardinality constraints. Technical report, MIT CSAIL, August
2005.

16. Yuri V. Matiyasevich. Enumerable sets are Diophantine. Soviet Math. Doklady,
11(2):354–357, 1970.

17. Jayadev Misra. A logic for concurrent programming (in two parts): Safety and
progress. Journal of Computer and Software Engineering, 3(2):239–300, 1995.

18. Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated
verification of shape, size and bag properties via separation logic. In VMCAI, 2007.

19. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

20. Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, and Norbert Voelker. Multi-
set theory version 1.30 (Isabelle distribution). http://isabelle.in.tum.de/dist/
library/HOL/Library/Multiset.html, 2005.

21. Christos H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765–768, 1981.

22. Lawrence C. Paulson. Mechanizing a theory of program composition for UNITY.
ACM Trans. Program. Lang. Syst., 23(5):626–656, 2001.

http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html
http://isabelle.in.tum.de/dist/library/HOL/Library/Multiset.html

16

23. Löıc Pottier. Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In RTA, volume 488 of LNCS, 1991.

24. J. T. Schwartz. On programming: An interim report on the SETL project. Tech-
nical report, Courant Institute, New York, 1973.

25. Calogero G. Zarba. Combining multisets with integers. In CADE-18, 2002.

	Decision Procedures for Multisets with Cardinality Constraints
	Ruzica Piskac and Viktor Kuncak

