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Abstract

Typestate systems ensure many desirable properties ofatiyee
programs, including initialization of object fields and k@t use of
stateful library interfaces. Abstract sets with cardityationstraints
naturally generalize typestate properties: relatiorshigtween the
typestates of objects can be expressed as subset and tdisgsin
relations on sets, and elements of sets can be represensetsas
of cardinality one. In addition, sets with cardinality ctmants
provide a natural language for specifying operations andriants
of data structures.

Motivated by these program analysis applications, thisepap
presents new algorithms and new complexity results fortcaimss
on sets and their cardinalities. We study several classepmf
straints and demonstrate a trade-off between their expegsewer
and their complexity.

Our first result concerns a quantifier-free fragment of Baole
Algebra with Presburger Arithmetic. We give a nondeterstini
polynomial-time algorithm for reducing the satisfiability sets
with symbolic cardinalities to constraints on constantaaalities,
and give a polynomial-space algorithm for the resultingopem.
The best previously existing algorithm runs in exponerghce
and nondeterministic exponential time.

In a quest for more efficient fragments, we identify several
subclasses of sets with cardinality constraints whosesfeiil-
ity is NP-hard. Finally, we identify a class of constraintsit has
polynomial-time satisfiability and entailment problemsdacaen
serve as a foundation for efficient program analysis. We gisgs-
tem of rewriting rules for enforcing certain consistencpperties
of these constraints and show how to extract complete irdtom
from constraints in normal form. This result implies the isdoess
and completeness of our algorithms.

1. Introduction

Program analyses that reason about deep semantic preediof
great value for software development; the value of suchyagal
is growing with the adoption of language constructs thahiglate
low-level program errors. Many deep semantic propertiesatu-
rally expressible in fragments of set theory, so constsahting for
such fragments is of interest. This paper presents newitiges
and improved complexity bounds for fragments of set thebhg
starting point of our constraints is the boolean algebranitifi(but
unbounded) sets.

Sets in program analysis. The boolean algebra of finite sets
is a fragment of set theory that allows the basic set opemtio
of intersection, union, and complement on sets of uninétegr
elements. Although simple, it turns out that this fragmean c
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express many properties of interest in program analysiarpkes
include typestate properties and public interfaces of siatetures.

Set specifications generalize typestate propertiels/ 2P 26
fact that an objecb is in the typestate is represented as the set
membership ofo in ¢t. Through inclusion and disjointness con-
straints, sets can also express relationships (such emdtigror
orthogonality) between different typestates. Objects lsarrep-
resented as sets of cardinality one using a cardinality tcaing
lo| = 1, so set membership reduces to subset. Multiple set member-
ships can then encode constraints sucltlas & for any constant
k.

Sets can also provide natural abstractions of containea dat
structures. When a content of a data structure is represeastan
abstract set, an operation such as insertion can be characterized
by a postconditions’ = s U e wheree is the set corresponding
to the element being inserted. By expressing both typestaid
data structure abstractions, sets can be used to combinesthies
of different analyses operating on the same program. Such an
approach allows us to combine the scalability of typestatdyais
with the precision of shape analysis and theorem provingZ80
27,[46].

Sets with cardinality constraints. The use of the cardinality op-
erator on sets leads to a connection between set algebra-oper
tions and integer linear arithmetic, as evidenced, for gtain
the condition|a U b| = |a| + |b| for disjoint setsa andb. It is
therefore natural to consider constraints that combiregitlinear
arithmetic with set algebra operations. These constraonistitute
the Quantifier-Free Boolean Algebra with Presburger Artim

or QFBAPA for short — they are the quantifier-free fragment of
BAPA constraints whose decision procedure and complexity we
have studied in[23, 22QFBAPA constraints can be used to ver-
ify an invariant such ak:| = |b| which allows us to conclude that
if a is nonempty, so i$, and therefore it is possible to call an op-
eration that removes an element frénSimilarly, if 7 is an integer
variable ands is a set, it is possible to verify an invariap{ = 7
stating that an integer correctly maintains the size of the set

In our experience, specialized decision procedures sufthare
the only automated technique for deciding with non-tridaldi-
nality constraints. Currently, however, the complexitytiuése de-
cision procedures limits their applicability. In this papee give
new algorithms for solving set cardinality constraintsgé algo-
rithms provide exponential improvements over existingrapphes
and make the checking of cardinality constraints in largemiulas
more feasible.

Our paper provides a systematic study of constraints onirsets
the presence of cardinalities. We study both more expressid
less expressive fragments and demonstrate a trade-ofebetthe
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Figure 1. Quantifier-Free Formulas of Boolean Algebra with Pres-
burger Arithmetic QFBAPA)

expressive power and the efficiency of the algorithms. Thenma
contributions of our paper are the following:

e PSPACE algorithm for QFBAPA. The best previously
known algorithms forQFBAPA [23,[22,[45] execute in non-
deterministic exponential time, and involve searchingafoex-
ponentially large object. In this paper we first give a form of
bounded model property that shows that it is possible taoepl
reasoning about symbolic cardinalities suctisds= i A |b| = 4
wherei is an integer variable, with guessing sufficiently large
constant cardinalities, such pg = 1000 A |b| = 1000. More-
over, we give a space-efficient algorithm for solving theutes
ing constraints on sets with large constant cardinalifiégs
gives a PSPACE decision procedure fQFBAPA and is the
first contribution of this paper.

A Polynomial-Time Class. Given thatQFBAPA constraints
are NP-hard, the question remains whether there are itteres
ing fragments of sets with cardinalities which can be readon
about in polynomial time. In a quest for such fragments, we
identify several features of constraints, each of whichidet®
NP-hardness. By eliminating these features we have disedve
a class (called+treeg that has a polynomial-time satisfiability
and entailment (subsumption) problems, while still sugpgr
subset, union, disjointness, and arbitrarily large cadityncon-
straints. This class can therefore express generalizesstiyie
constraints such as multiple orthogonal classificatiottsiide-
pendent or disjoint sets. The identification of this polymaim
time class, and the development of algorithms for testirg th
satisfiability and subsumption of constraints in this cliashe
second contribution of this paper. While the resulting algo
rithms are efficient, the proof of their completeness is some
what lengthy, and involves characterizations of normainfer
of i-trees and the construction of models for i-trees in rarm
form. We therefore only summarize the main ideas; we refer
the reader to the full version of the paperl[32] for detailddA
tional proofs are also included in the Appendix.

We proceed by defining the fragmeQFBAPA in Sectior 2. We
present a PSPACE algorithm fQFBAPA in Sectior[B, defining
the simplerCBAC constraints and identifying their NP-complete
fragment,CBASC constraints.

2. Constraints on Sets with Cardinalities

Boolean Algebra with Presburger Arithmetic. Figure[d presents
the syntax of the constraints studied in this paper, we loaie: for-
mulas Quantifier-Free Boolean Algebra with Presburgehfmtic
(QFBAPA). QFBAPA constraints contain two kinds of values: in-
tegers and sets, each with corresponding applicable opesalhe
sets are interpreted as subsets of some arbitrarily large §et.s
denotes a set variablé,denotes an integer variable. The symbol
| B| denotes the cardinality of the sBtand establishes the connec-
tion between set and integer ter$AXC is a special free variable
denoting the size of the universal setblfs a set,b denotes its
complementX dvd T denotes thaf dividesT'. K denotes con-
stants, encoded in binary: a constaris encoded usin@(log k)
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bits. The symboM in Figure[1 denotes atomic formulas; a literal is
an atomic formula or its negation.

A quantified versionof this language BAPA) is studied in
[23,122]; where we give an algorithm that establishes a doeki
ponential space upper bound on the complexity. Becausetiquan
fied BAPA subsumes Presburger arithmetic, the doubly exponential
nondeterministic time lower bound_[[15] appliesBAPA as well.

Preliminaries. If S is a finite set,|S| denotes the number of
elements inS. A literal is an atomic formula or its negatiof. =
{...,=1,0,1,...} is the set of integersNy = {0,1,...} is the
set of natural numberga..b] denotes the set of intege{s, a +
1,...,b}. If f : A — B s a function andS C A, we define
18] =1{f(a) |a € S}.

If Ais a set, the notatioml¥ has several potential meanings;
the specific meaning should be clear from the conteit. for
n € {1,2,...,} is the set of vector§a1, ..., a,) wherea; € A
for1 < j < n,and A™" is the set of matricegu,,] with m
rows andn columns with elements,, for 1 < p < m and
1 < g < n. The expressiom® denotes the complement of the
setA. If a € {0,1}, then A~ denotesA for « = 1 and A€ for
a=0.

The relation= denotes the equality of the values of metavari-
ables denoting syntactic objects, sg¢fifand f> are formulas, then
f1 = f2 means that they are the same formula. In the context of
inclusion diagrams (Sectiéh 4% will denote the semantic equiva-
lence of diagrams (we use to denote the equality of diagrams).

3. A PSPACE Algorithm for QFBAPA

Verification conditions arising in program verification caften
be expressed using quantifier-free formulas, so it is natarex-
amine whether more efficient algorithms exist QFBAPA con-
straints. When applied tQFBAPA formulas, existing algorithms
run in non-deterministic exponential time (NEXPTIME): thé
gorithm [45] requires nondeterministically guessing apanen-
tially large object, whereas the algorithmfrom [22] produces an
exponentially large quantifier-free Presburger arithméirmula.
The question arises whether there exist algorithms thad anan-
deterministically guessingxponentially large objects. We show
that this is indeed the case. Namely, we first show that Prgebu
arithmetic formulas generated by the algorithnfrom [2Z] can in
fact be solved imleterministicexponential time. Our result reduces
QFBAPA to a simpler system dBAC constraints (shown in Fig-
ure[d), then applies a theorem by Papadimitriod [36] in a hove
way. This leads to a deterministic EXPTIME decision procedu
for QFBAPA satisfiability, which is an improvement on previously
existing algorithms. Nevertheless, the question arisestiven it is
possible to avoid the construction of a non-determinifitidarge
system of equations. It turns out that this is indeed possilte
present an alternating polynomial-time (and thereforePATE)
algorithm forQFBAPA. Therefore, itis possible to solNgFBAPA
using solvers for quantified boolean formulas(19,[48, 37].

Figured® an@4 present our PSPACE algorithmQ&BAPA.
The algorithm has two phases.

In the first phase, the non-deterministic polynomial-tinigoa
rithm in Figurel® reduceQFBAPA constraints to a simpler class
of constraints. We call these simpler constrai@njunctions of
Boolean Algebra expressions with Cardinaliti@SBAC). CBAC
constraints have a very simple syntactic structure (seer€ig),
but capture the key difficulty in solvin@FBAPA: the need to con-
sider exponentially large cardinalities on exponentiafigny set
partitions.

In the second phase, the algorithm in Figdre 4 checks the- sati
fiability of CBAC in alternating polynomial time and therefore in
polynomial space. The key insight behind our algorithm &t th
is possible to use a divide and conquer approach to avoidtékpl
representing all possible regions in the Venn diagram.
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Let f be the inpuQFBAPA formula.
1. Replace eact¥Z-variable with a difference of twdN-

variables:
Cliv,... in] — C[it — i, ... i, —i]
1,44, . .., 1,1 are fresiN-variables

2. Ensure that all set algebra expressions appear within
cardinality constraints by hormalizing with the following
rules:

C[br = ba] = C[b1 C ba A b2 C by]
Clbr € b2] = Cllbr Nb3[ = 0]
3. Eliminate divisibility constraints:
Clkdvdt] — Clki = t], i is freshN-variable
4. Move all cardinality constraints to top level:

C[|bl|7"'7|bw|] = fiAfa

where f1 déf C[z‘l, ey ]
f2 = |1|7MAXC A /\ |bj|=1;

andiy, . .., i, are freshN- vanables letn; = w+1;

5.Let p be a propositional formula such that
plai,...,am,) = fi for atomic formulaszy, . . ., am,.
Nondeterministically select the truth valug € {0,1}
for each atomic formula;, so thatp(a,...,am,) is

d mo .
true. Letfy, = A aj’
j=1

6. For each conjunct —(t1=t2) in  fi1, non-
deterministically replace the conjunct with one of
the conjunctst, + 1 < tz) or (t2 + 1 < t1).

7. Transform linear integer constraints to normal form:

Cl(t1 < t2)] = Clt2 + 1 < t4]
Clth <ta] —C[t1 —t2+i=0]
Clti=ta] —CR27_, cji; =K

8. Let ng be the number oN-variables in the entire for-
mula. The resulting system is of the form:

Av =d A N2 [bj| = ip,

whereA € Z™0"0, d € Z™°, andv = (i1,...,%n)
where eachi; is anN-variable andl < p1,...,pm;, <
my are variables denoting cardinalities of sets. 1Set
be the total number of set variablestin .. ., b.,, . Let
m = mo + m1, n = max(no, 23),

a =max({1} U{|ape| |1 <p<no,1 < g <mo}

U{ldg| [1<q<mo})

where A = [apqlpq, andd = (di,...,dm,

M = n(ma)*™ T,

9. Non-deterministically select a vectbr= (ki, ...
wherek; € {0,1,...
Ak =d.

), and let

7kn0)
,M} for 1 < j < no, such that

10. Call CBAC decision procedure ory\ [bj| = kp,. If

there exists a solution, then report the formula satisfiable

Figure 2. An NP Algorithm for ReducingQFBAPA Constraints
to CBAC constraints of FigurEl3
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Figure 3. Conjunctions of Boolean Algebra expressions with Car-
dinalities CBAC)

Given aCBAC constraint

m1

> Ikl = k;

j=1
where the free set variables &f, .. ., b,,, are amongu, ..., ss,
run CBAC-check([],d) withd = (k1, ..., km,).

procCBAC-check([v1, . . ., vn], d) returnsresult
wherev, ..., v, result € {0,1}; d € N™
if (n < S)then
existentially choosdy, di € N™* such thatly + di = d;
universally do

r1 = CBAC-check([v1, ..., vn,0],do) and
ro = CBAC-check([v1, ..., Vn, 1], d1);
returnry A rg;
else
let p; =eval(bj, [s1 — v1,...,85 — vs])

forall (1 <j <mi);
Jo={d; | p; = 0};
={d; | p; =1}
returno C {0} A |/1] < 1.

proceval(b, ) returnsresult
where b : Boolean Algebra formula
a:{s1,...,ss} — {0,1}
result € {0,1}
treatingb as a propositional formula,
return the value ob under assignmernt.

Figure 4. An Alternating Polynomial-Time (and PSPACE) Algo-
rithm for Checking the Satisfiability dEBAC Constraints

We next discuss our algorithm in more detail and argue that it
correct. We begin with the description of the steps of therillgm
in Figurel2, which reduces symbolic cardinalities to largastant
cardinalities.

1. Non-negative integers. To simplify the later steps, the first step
makes all integer variables range over non-negative irgégeby
replacing each integer variablavith a differencei; — i of fresh
non-negative integer variablés, i-.

2,3. Eliminating set equality and subset, and integer dibitity.
The next step converts set equality and set subset intoncaitgli
constraints. This step helps the later separation betviredonlean
algebra part and the integer linear arithmetic part. We #iani-
nate any divisibility relations using multiplication andrash vari-
able.

4. Flattening. The next step separates the formula into the
boolean algebra part, denotgd and the integer linear arithmetic
part, denotedf,. This step simply amounts to nhaming the cardinal-
ity of each set by a fresh integer variable.

5,6. From quantifier-free formulas to conjunctions. An obvious
source of NP-completeness@QFBAPA is the presence of arbitrary
propositional combinations of atomic formulas. An effeetivay
of dealing with propositional combinations is to enumertite
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satisfying assignments of the propositional formula usAin§AT
solver, and then solve the conjunctions of literfld [16, Stgps 5
and 6 of the non-deterministic algorithm in Figllie 2 are astralot
description of such procedure. The goal of step 6 is to ekiain
disequalities, which involve non-deterministic choicevieen the
two inequalities.

7. Normal form for integer constraints. The algorithm elimi-
nates the remaining negations of atomic formulas and twamsf
linear constraints into normal forv = d.

8,9,10. Estimating sizes of integer variablesThe resulting sys-
tem contains linear integer equations of the forjj_, c;i; = k,
and set cardinality constraints of the fotti = i. The algorithm
computes an upper bount on integer variables in any poten-
tial solution of the system, using several parameters: theber

of conjunctsn, the number of integer variables and the number
of set variablesS. The computation of the upper bound is based
on an observation that the satisfiability of the conjunctiérton-
straints|b| = 4 can be reduced to the satisfiability of equations
of the form3_"_, I; = 4, where variables; denote sizes of set
partitions (regions in Venn diagram) whose union is thebs#tis

is a specialization of the idea ih-]22] to the case of quamiffiee
formulas.

Let s1,...,ss be all set variables appearing in formula and
consider a constraind| = i. Consider all partition§17_, s?j
for a; € {0,1}. For each such partitiot,, introduce a fresiN-
variablel,,, which denotes the cardinality of cubg Then consider
a constraint of the fornb| = . Each set is a union of regions in the
Venn diagram (by the disjunctive normal form theorem) sqsgp
thatb = b,, U... U by,,. Then replace the terip| = ¢ with the

=1 lp, = i. We use the termCBAC linear equations” to denote
a system of linear equations resulting from the constrabfts-
as described above.

As a result, we obtain a system of, + m; linear equations
over non-negative integers, wherg equations have a polynomial
number of variables, anth; equations CBAC linear equations)
have exponentially many variables. It is easy to see that #ndsts
a surjective mapping of solutions of the original consttsian
sets onto solutions of the resulting linear equations (th@png
computes the cardinality of each Venn diagram). Thereftire,
original system is satisfiable if and only if the resultingiations
are satisfiable. Moreover, we have the following fact.

FACT 1 (Papadimitrioull36])Let A be anm x n integer matrix
andb anm-vector, both with entries frof-a..a]. Then the system
Az = b has a solution inN™ if and only if it has a solution in
[0..M]™ whereM = n(ma)*™Tt.

Factd implies that the estimald computed in step 8 of the algo-
rithm in Figurd2 is a correct upper bound. Using this estanstep
9 of the algorithm non-deterministically guesses the \aloieall
integer variables such that the original linear equatidrs= d are
satisfied. All this computation can be performed in nonaeteis-
tic polynomial time, and (unlike 122]), does not involve sbruct-
ing explicitly a system with exponentially many equatioHaving
picked the values of integer variables, including the \@€és: on
the right hand side of constrainfl§ = ¢, we obtain a conjunction
of constraints of the formb| = k wherek is a constant whose
binary representation has polynomially many bits—thesepae-
cisely theCBAC constraints in FigurEl3. We have therefore shown
the following.

LEMMA 1. The algorithm in Figur€R reduces in non-deterministic
polynomial time the satisfiability of QFBAPA formula to the
satisfiability of CBAC formulas.

It remains to find an algorithm fa€BAC constraints.
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A PSPACE algorithm for CBAC. One correct way to solve
CBAC constraints is to solve the associateBAC linear equa-
tions. This system has exponentially many variables, etalnich
can take any value frorfd.. M]. Therefore, guessing the values of
each of these variables can be done in non-deterministiocrnexp
tial time; similar approaches not based on equations alsoine
guessing exponentially large objedis|[45]. Note, howeteat, there
are only polynomially manZBAC linear equations. Using the idea
of the proof[36, Corollary 1], we can therefore show that aaiyic
programming algorithm can be used to solve the system impely
mial time. In fact, we can use the dynamic programming atbori
from the proof of [36, Corollary 1]. Instead of fixing the siakthe
equationsn; to be constant, we simply observe that is poly-
nomial in the size of the input, whereas the number of vaembl
is singly exponential. The bound/ therefore yields a singly ex-
ponential deterministic time dynamic programming aldoritfor
CBAC. While this is better than existing results, we show that an
even better result is achievable.

Clearly, any algorithm that explicitly construcBAC equa-
tions will require at least exponential time and space. @lut®n
is therefore to adapt the dynamic programming algorithm ¢ a
vide and conquer approach that always represents the eqsiati
terms of their original, polynomially sized, boolean algebxpres-
sion. Such an algorithm runs in alternating polynomial tiwen-
suming polynomial space, and is presented in Fiflire 4. Toheee
idea of our PSPACE algorithm, consider tiBAC linear system
of equations written in the vector for@fil ajl; = d whered,
a; are vectors and; are the variables for < j < 2P. The algo-
rithm guesses the vectadls, d; € N™ such thatdy + d1 = d, and
recursively solves two equations:

2P
A Z ajlj =di

j=2pr—1

Pl _q

Z ajlj = do
j=1

This algorithm creates an OR-AND tree whose search gives the
answer to the original problem. A position in the tree is gity the
propositional assignmerjt, . ..,v,] to boolean variables. Each
leaf in the tree is given by a complete assignmgnt ..., vs]

to set variables. Note that we never need to explicitly naémt
the system during the divide phase of the algorithm, it seffito
determine in the leaf cage = 0 whether the coefficient; is 0

or 1. The algorithm does this by simply evaluating each Baole
algebra expressionfor the assignmerjvs, . . ., vs].

THEOREM 1. The algorithm in Figurél4 checks the satisfiability of
CBAC constraints in PSPACE. The algorithm given by Figutks 2
and[@ checks the satisfiability @ BAPA constraints in PSPACE.

TheoremdL improves the existing algorithms fQFBAPA from
both a complexity theoretic and an implementation viewpoin
deterministic realization of previous NEXPTIME algoritermuns
in doubly exponential worst-case time and requires expialen
space; a deterministic realization of our new algorithmsrim
singly exponential time and consumes polynomial spaceiéus
algorithms would require running a constraint solver such SAT
solver [47] on an exponentially large constraint; the negogthm
can be solved by running a quantified boolean algebra si&3r [
on a polynomially large constraint.

NP fragments of CBAC. We have seen that botéBAC and
QFBAPA constraints are in PSPACE. Both of these classes of con-
straints are NP-hard, because the constiajnt 1 is satisfiable iff

b is corresponds to a satisfiable propositional formula. Meee,
Lemmd shows th& FBAPA constraints are in NP iffBAC con-
straints are in NP. For some subclasse6BAC constraints we can
indeed show membership in NP. Define conjunctions of bodiéan
gebra expressions wigmall cardinalities, denote@BASC, to be

the same a€£BAC but with constant integers encoded unary
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notation, where an integer is represented in spac®(x) as op-
posed toO(log x); such encoding can therefore be exponentially
less compact.

LEMMA 2. The satisfiability of CBASC constraints is NP-
complete.

CBASC solutions are NP-hard becaulg¢ = 1 is aCBASC con-

straint. One way to prove membership in NP is to observe that

CBASC is subsumed by the language of set-valued fields which
was proven to be in NP 24, P5] by reduction to the universadl
of first-order logic formulas, which has the small model pxp
[7, Page 258]. Another way is to consider the notiosdirse solu-
tionsof CBAC linear equations. A@/-sparse solution is a solution
to CBAC linear constraints with at modt/ non-zero elements. An
M-sparse solution t€BAC linear constraints witl2® variables
can be encoded as ad-tuple of pairs([vi, ..., vs], k) where the
propositional assignmerfty, . .., vs]; encodes one of thg® in-
teger variables, an#l specifies the value of that integer variable.
This encoding is polynomial id/Sw wherew is the number of
bits for representing the largest component of the solufian any
CBAC linear constrainf\"_, |b;| = k;, each solution i9/-sparse
whereM = max(k1, ..., kmn). For CBASC solutions,M is poly-
nomial in the size of th€ BASC representation because edghs
encoded in unary, so sparse solutions can be guessed iropubin
time. This proves thaEtBASC constraints are in NP.

4. Inclusion Diagrams

This section introduces inclusion diagrams (i-diagramasgyraph
representation dEBAC constraints. Figurld5 shows a formula with
sets and cardinalities and an equivalent i-diagram. lrdiag allow
us to naturally describe fragments@BAC constraints and the al-
gorithms for checking satisfiability and subsumption ofsthérag-
ments. The basic idea of i-diagrams is to represent the spag@ll
order using a graph where sets are annotated with card#satind
then indicate the disjointness and union relations by caims on
direct subsets of a set. To efficiently represent equal etsiodes
in the i-diagram stand not for set names, but for collectioinset
names that are guaranteed to be equal. Finally, we assariate
interpreted predicates with collections of nodes, reprisg the
fact that elements of given sets satisfy the propertiesngbyethe
predicate. The uninterpreted predicates illustrate a wapmbine
i-diagram representations with other constraints.

DEFINITION 1 (i-diagrams).We fix a finite seEN of Set-Names,
and a finite sePN of predicatenames. We denote BN® the set
of atoms{+P, —P|P € PN}.

Ani-diagram(Inclusion-Diagram) is either thaull-diagram. ; or
atuple(sS, @4, Sons, Split, Comp, CInf, CSup, ®) such that:

¢ S C P(SN) is a partition of SN containing (nonempty) equiva-
lence classes of set names that are guaranteed to be eqtial, wi

{s1}
1.5 —O—_
+P byls2}
\\. [0..0]
{55,561/0/
[o..3]\0.\ sd) [gssz}]
[1..1] Jite)

Dis such thaClnf({s1}) = 1, CSup({s1}) = 5, Sons({s1}) =
{{ss,56}, {sa}, {ss}}, Comp({s1}) = {{{ss, 56}, {sa},{s3}}}
Split({s1}) = {{{ss,s6}}, {{sa}, {ss}}}, ®({s1}) = {+P}
and is equivalent to

so=0 A s5 =56 A

saoUszsUsaUss Cs1 A st Css A sz Csa A ss Csa

s3Nsa=0 A s1 CssUssUss A sq4 C s

1< |S1| §5/\|84| :1/\|85| §3/\|83| <2A

Vo € s1. P(xz) A Va € s3. Q(x)

Figure 5. An example i-diagranD and an equivalent formula

represent pairwise disjoint sets, af@mp(S) is a set ofcom-
plete viewseach of which is a set of nodes that represent sets
whose union is equal to the father; we require

J Split(S) = Sons(S)
J Comp(S) C Sons(5)

forall S €§S;

e CInf,CSup : S — N specify lower and upper bounds on the
cardinality of sets;

ed .S — P(PNi) maps nodes to the uninterpreted unary
predicates and their negations that are true for all sets of a
node.

To avoid confusion between set names, nodes (sets of sesjame
and views (sets of nodes), we use lowercase lettess, s’ to
denote set names, uppercase lett§rs;, S’ to denote nodes,
and lettersQ,C to denote views and sets of nodes in gen-
eral. WhenD #.1, is a diagram, unless otherwise stated, we
name its componentsS, 4, Sons, Split, Comp, CInf, CSup, @,
and similarly we name the components of)’ as

S’, 0!, Sons’, Split’, Comp’, CInf’, CSup’, ®’.

In a graphical representation of an i-diagram, we represent
each elemenS € S whereS = {s1,...,s,} using underly-
ing sets{s1,...,sn}. We represent inclusio®; ~» Sz by an
arrow from S; to S2. We represent a split viewp € Split(.S)
where@ = {51, ...,S,} with a circle connected with undirected
edges toSy, ..., S, and an arrow leading t6. We represent a
complete view similarly, using a filled square instead of @lei

@a € S the equivalence class corresponding to names of sets For each nodeS € S we indicate its cardinality bounds by anno-

whose interpretation is the empty et

e Sons : S — P(S) represents subset relation;
we defineS ~ S €% S € Sons(S'); then (S,~) is a
graph, so we call elements §fnodes and the elements ef
edgeswe write~> for the transitive closure of-;

e Split, Comp : S — P(P(S)) represent disjointness and com-
pleteness of set inclusions;Sfis a node, the$plit(S) is a set
of split views where each view is a nonempty set of sons that

1Sparse solutions are interesting for gen€BIAC constraints as well. As
of yet we have no example of@GBAC constraint whose associat€BAC
equation system is satisfiable but has no sparse soluti@reower, we can
generalize the notion of sparse solutions to solutionsessprtable using
binary decision diagram5l[8] while preserving polynomiaie verifiability.
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tating the node witHa..b] wherea = CInf(S), b = CSup(S).
We represenE(S) = {£P,...,£P,} by annotatingS with
+P,...,£P,. We represenfl; = {s1,...,sn} by annotating
the node{s1, .. ., s, } with 0.

DEFINITION 2 (Semantics of i-diagramspninterpretatiorof SN
andPN is a triple (A, «, E) where

e Ais afinite set (the universe);
: SN — P(A) specifies the values of sets;
: PN — P(A) specifies the values of unary predicates;

LaNe
.

(1]

An interpretation/ is amodelfor an i-diagramD, denoted/ = D,
iff Vs € 04.c(s) = 0, and for all.S € S whereS = {s1,...,sn},
the following conditions hold:
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e a(s1)=...=asn);
accordingly, defin@(S) = a(s1) =... = a(sn)

e CInf(S) < |@(9S)| < CSup(S)
VP (+P) € B(5) = a(S) C
e VP.(—P) € &(S) = a(S) C
* VS" € Sons(9). a(S’) C a(9)
L] VQ S Sp|lt(S) VS1,8:2 € Q S 75 Sy = E(Sl)ﬂE(SQ) =10
* VQ € Comp(9). @(S) C UsleQ a(S1)

We use the standard notions of satisfiability, subsumptora(l-

ment), and equivalence:

def

(P)
(P)°

[1] [I]

Dis satisfiable «<— 3I. I=D
D ED — VIL.LIED =IED
D'=D < D EDADETD

DEFINITION 3 (Explicit Disjointness).
We writedisjp, g, (51, 52) as a shorthand for

S1 ;é Sa A EQ € SOhS(So). 51752 € Q

and we say thatS;, S, are explicitly disjoint and we write
disj;(Sl, 52) Iﬁ

351,55, 50 €S,51 51 A Sa~> S5 Adisjp g (51,55)

LEMMA 3. I-diagrams have the same expressive powe€B&C
constraints.

By “same expressive power” we here mean that there is a hatura

pair of mappings between the models of i-diagrams and soisiti
to CBAC constraints.

proc Simplify (D) :

1. use fixpoint iteration to computeas

the smallest equivalence relation such that:

1.1. 81582 A 82~ 81 = (S1,8) €p

1.2. (S,04) € pASi~+S = (S1,04) € p

1.3. § € Comp(S) = (S,04) € p

1.4. disjp g,(S1,52) A (S1,52) € p = (S2,0a) € p

1.5. diSjD,SO(ShSQ) A (50751) € p= (527011) €Ep

1.6. QeComp(S1) A (VS€Q.(S,04)€p) = (S1,04) € p
2.D:=D/p

[ Split(S) «{Q —{0a}|Q € Split(S), S ¢ Q}
3. | Comp(S)+{Q — {0a}|Q € Comp(S), S ¢ Q}
Sons(S) «Sons(S) — {04, S}
rSplit(S) « Split(S) — {0}

—{Q|3Q" € Split(5),Q" 2 Q}
4. | Comp(S) « Comp(S) — {0}

—{Q13Q" € Comp(5),Q" < Q}

Ses

6. returnD

Where[a < b] denotes the result of updating the component
i-diagramD with valueb.

Because nodes in i-diagrams are collections of set names, werigyre 6. Polynomial-time algorithmSimplify to compute an

can define the following operations.

DEFINITION 4 (Factor-i-diagram)Let p C S x S be an equiv-
alence relation on nodes. We defiig/p as follows. Define
La/p =La. LetD = (S, Bg, Sons, Split, Comp, CInf, CSup, ®).
We defineD/p = D' = (S, Sons’, Split’, Comp’, Clnf’, CSup’,
®’) as follows. Definéy so that if{S1, ..., S, } is the equivalence
class ofS underp, thenh(S) = S1 U... U S,. If Q C S, define
RIQ] = {h(S) | S € Q}. Then letS’ = h[S]. ConsiderS’ € S'.
BothS andS’ are partitions, and givers’ € S’ there is a unique

set{S1,...,S.} C Ssuchthats’ = S; U...US,. Then define:
CInf'(S") = max(CInf(S1), .. ., CInf(S,))
CSup’(S') = mln(CSup(Sl) , CSup(Sn))
Sons’(S’) h[Sons(S1) U USons( Sn)l
(5 = B(S1) U... UD(S,) .
Split’ (S') {h[Q] | Q € Split(S1) U...USplit(S,)}
Comp'(5") = {h[Q] | @ € Comp(51) U-.. U Comp(Sh)}

DEFINITION 5 (Merge). For any i-diagramD we define the i-

diagram D[Merge(Q)] %f D/p for the equivalence relatiop =
{(S1,52) [ 51,82 € QFU{(S,5) | S €S}

In the sequel we impose the following restrictions on therfor
of i-diagrams.

DEFINITION 6 (Simple Diagrams)A diagram isD is simple iff
D = (), or all of the following conditions hold for alt € S:

a) (S,~) has no cycles, in particulaf ¢ Sons(.S)

b) 0o ¢& Sons(S)

c) 0 & Split(S) AD & Comp(S)

d) VQ,Q". Qe Split(S)AQ € Q= Q" & Split(S)
€)¥Q,Q'". Q € Comp(S) AQ' 2 Q = Q' ¢ Comp(S)

f) CSup(P4) = 0,Sons(Dq)=P (D) = 0
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equivalent simple i-diagram

Simplicity eliminates redundancy from diagrams, but doesra-
strict their expressive power, as the following lemma shows

LEMMA 4. For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algoritt$implify
in Figure[@.

5. Sources of NP Hardness and Definition of
I-Trees

The satisfiability of i-diagrams is NP-hard because i-chags have
the same expressive power@AC constraints. We have observed
that the general directed acyclic graph structure of i+diats al-
lows us to encode NP-complete problems; this motives thewel
ing two restrictions.

DEFINITION 7.

An i-diagramD is tree shapedff
(S,~~) is a tree (with an additional isolated nodk)
An i-diagramD hasindependent viewsf

forall Q1, Q2 € Split(S) U Comp(S) at least one of the following
two conditions holds:

e QiNQ2=10
e () € Sp|lt(5) A Q2 € Comp(S) A Q1 C Q.

Recall that, by Lemmél4, it suffices to consider i-diagramthwi
acyclic graphs of the subset relation. The tree shape d¢ondg
then a natural next restriction on the structure of i-diaggaHow-
ever, due to the presence $lit and Comp, the tree shape condi-
tion by itself does not reduce the expressive power of i+diar,
and further restrictions are necessary. The independewswon-
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dition extends the tree condition to the entire graphicptesenta-
tion of i-diagrams, including the circles and squares tbptesent
Split and Comp views. The conjunction of these two conditions
can be expressed by saying that the graphical representstio
diagram is a tree.

REMARK 1. We can express the combination of the conditions:
being simple, being tree shaped, and having independems \ig
saying that there are only four kinds of edges in the cornmedipg
graphical representaticn:

e from an elemens € S—{f;} to acircle

o from a circle to a square, indicating that all nodes of a sj#itv
belong to a complete view

e from a circle to an elemerft € S—{0,},

e from a square to an elemefite S—{(4}.

Unfortunately, the restrictions on tree shape and independews
are not sufficient to guarantee a polynomial-time decisimcg-
dure in the presence of predicates associated with nodesteBh
son is that the ability to encode disjointness of arbitratg teads to
NP-hardness, yet even with tree structure and independms

is possible to assert that two arbitrary s&€tsandS- are disjoint by
letting (+P) € ®(S1) and(—P) € ®(S2) for some uninterpreted
predicateP. A simple way to avoid this problem is to require that
& contains only positive atomst-P). A more flexible restriction
is the following.

DEFINITION 8. An i-diagramD hasindependent signaturesf

for every pair of distinct nodes, S> such that(—P) € ®(S1)
and(+P) € ®(S2) forsomeP e PN, at least one of the following
two conditions holds:

1. S1 and S are explicitly disjoint, that is,disj}, (S1, S2)
2. S1 and S> havecompatible signatureghat is, there exists a
nodesS such that

S1~58 A S S A
Sig(S1) N Sig(:S2) € Sig(S)

whereSig(S) = {P | (+P) € ®(S)V (—P) € ®(9)}.

The independent signatures condition ensures that argirisgss
conditions are either 1) a result of the fact that the ancesib
S1 and S> are explicitly stated as disjoint, or 2) a result of a
contradictory predicate assignment (the case whieand S> have
compatible signatures, so there exists a parent that esseltich
of (+P) or (—P) hold for bothS; andsS2).

The discussion above leads to the definition of i-trees, facky
we will give polynomial-time algorithms for satisfiabilignd sub-
sumption in Sectiorid 6 aifdl 7.

DEFINITION 9 (i-treesiT). An i-tree 7 is a simple i-diagram
such thatZ =1, or such that all of the following three conditions
hold:

1. 7 istree shaped
2. 7 hasindependent views
3. 7 hasindependent signatures

We denote byT the set of i-trees.

The following theorem justifies why all three conditions umr alef-
inition of i-trees are necessary. Its proof is based on aatimtu
from graph 3-colorability, which can be encoded using sligdif-
ferent i-diagrams for each of the three cases. The commaepso
of these diagrams is that they can encode disjointness iifaagb
pairs of nodes.

2As a result, we can recognize this structure in linear timimgjsfor
example, a tree-automatdn_ [12].
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THEOREM2. Omitting any one out of three conditions from Defi-
nition[d yields a class of diagrams whose satisfiability is-ihd.

We note that in addition to NP-hardness, the omission of tree
shaped or independent views properties in fact retains ule f
expressive power o€EBAC constraints, using a similar argument
as in Lemm&B.

Our ability to specify i-trees as a natural subclass of gthms
justifies the definition of i-diagrams themselves. For examine
definition of i-trees would have been more complex had weahos
to represent disjointness using a binary relatipm s, = (.

Let us also observe that, despite the imposed restrictiens,
trees are fairly expressive. In particular they can exphésgr-
chical decomposition of a set given by a naslénto disjoint sets
Si,...,Sn, by letting{Si,...,Sn} € Split(S) N Comp(S). De-
spite the independent view condition, we can have multipieogy-
onal decompositions, 51, . . ., Sy, } € Split(S) N Comp(.S) for
{S1,...,8,}N{S1,...,Sn} = 0. This allows i-trees to naturally
express generalized typestate constraints.

6. Deciding the Satisfiability of I-Trees

In this section we prove that the satisfiability of i-treedésidable
in polynomial time. For this purpose we introduce a setvefik
consistencygonditionsC; (Definition[I®) such that:

@) We can enforce weak consistency for any satisfiableei-tis-

ing a rewriting systenR™ (Definition[I1) with the following
properties (LemmBl5):

e RY is semantic-preserving;

e if a non-L4 i-tree is iINR* normal form, then it satisfies
weak consistency conditions;

o for a particular strategy (Figuld 9) the systéRy termi-
nates in polynomial time.

€32) Every i-tree that satisfies weak consistency conulitie satisfi-

able; Lemmdl6 gives an algorithm for constructing a model for
any i-tree that satisfies weak consistency conditions.

Figure[® summarizes the polynomial-time satisfiability isien
procedure whose correctness (Theofgm 3) follows from thelte
of this section.

DEFINITION 10 (Weak Consistency)An i-tree satisfies weak
consistencyiff 7 #1,4 and 7 satisfies the following conditions
forall S €S:

VS" € Sons(S). ®(S’) 2 ®(S) (C1)
CSup(S) > 0= VP € PN. {+P,—P} Z &(5) (C)
VQ € Comp(S). CSup(S) < 3(CSup[Q)) (C3)
VQ € Split(S). CInf(S) > (CInf[Q]) (Ca)
CInf(S) < CSup(S) (Cs)

6.1 A Rewriting SystemR" for Enforcing Weak Consistency

We introduce the following rewriting system to enforce weak-
sistency properties when possible.

DEFINITION 11 (SystenmR™). For each tuple £, name,

condition, effect) in Figure [, we define a rewriting rule on

i-diagrams by
D L

name

for each assignmergpot of the free variables appearing in the
conditioncolumn. We defin&;, by

(D #L4 A condition A D' = Dleffect])

DD £ Jspot. DD

Ry name

We defineéR™ as union ofR—> for1 <j <5.
"J
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[ k [ name | conditions | effect |
a1) S € Sons(S")
1 | DnPhi | b1) ¢ = B(S) UB(S") | &(S) — bn
1) ¢n Z (I)( )
@) [+ 7.~ P} C8(3)
2 | Unsat | b2)n=0 CSup(S)—n
c2) CSup(S) > n
a3) Q € Comp(S)
3 | UpSup | b3) n = X(CSup[Q]) CSup(S)«—n
c3) CSup(S) > n
as) Q € Split(S)
4 | UpInf | bs) n = X(CInf[Q]) CInf(S)—n
ca) CInf(S) <n
5| Error | as) CInf(S) > CSup(S) | D14

A A A A
3.5 3.2
[§'p5] [ibsl [+P ] [+P ]
e e ]
L RNy B e
[4..5] [4..5] [4..5] [4..5]
C C
[2(.?2] [2?2] [2..2] [2..2]
D D D D
0..0 [0..0]
[o:g] E:"_Gé LP—I]D +P-P
o 24 5 2o Meph oA
DnPhi Unsat UpSup Error

Figure 8. An example sequence of rewriting steps fof’

Figure[® shows an example sequence of rewriting steps dpplie
an i-tree.

LEMMA 5 (Properties ofR*).
1. R¥ isiT-stable, that is
T €iT A TE)T, =7 €iT
. R" preserves the semantics, that is
D D=D=D

. R" enforces weak consistency when possible, that is, a dia-
gramD in R* normal form is either equal ta 4 or it is weakly
consistent

. R" terminates in polynomial time for the strategy correspond-
ing to the algorithmRy¢ in Figure[d.

Proof sketch.

1. Follows easily from the fact th®&“ rules do not modifySons,
Split, Comp.

2. Follows by construction 0R* rules. Suppos® = D'. Then
D E D’ follows from conditionsa; (1<i<5), andD’ = D
follows from conditionse; (1<:<4).

3. For everyk = 1..5, the condition of application of the rulg,,
corresponds to the negation@f. When a diagram is in normal
form for the ruleRy, it either satisfie€, or is L 4.

4. To prove thatRyr corresponds to a polynomial strategy, we
prove by induction that applying the rulg, in the speci-
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proc Ry (7)
1. for everyS € S from the root to the leaves
for every@ € Comp(S)
try to applyDnPhi(S, Q) to 7
2.for everyS € S
for everyP € PN
try to applyUnsat(S, P)to 7
3. for every S € S from the leaves to the root
for every@ € Comp(S)
try to applyUpSup(S,Q) to T
4. for every S € S from the leaves to the root
for every@ € Split(.5)
try to applyUpInf(S, Q) to T
5. foreveryS € S
try to applyError(S) to T
return?

procItreeSAT(T)
if (RNg(7) =Lq) returnsatisfiable
else returrunsatisfiable

Figure 9. Polynomial-time algorithm®Ry; and ItreeSAT to
computeR™ normal form and check satisfiability of i-trees

fied direction (from the root to the leaves or from the leaves
to the root), enforce€;. everywhere, and whef;, holds, the

rule is not applicable anymore. Finally, we prove that each
rule Ry for k = 1..5 preserves the conjunction of properties
Nj=1..c—1) Br, and as a consequence, we never need to reap-
ply any of the rulesk; for j < k. m

6.2 Constructing Models for Weakly Consistent I-Trees

The following Lemma[b is crucial for the completeness of our
algorithm, and justifies the definition of weak consistency.

LEMMA 6 (Model Construction)If an i-tree 7 is weakly consis-
tent, then we can construct a model fbr

The high-level idea of the proof of Lemrfih 6 is to first build finst
two componentg A, «) of the model, and then extend the model
with = using the independent signatures condition for i-trees. We
build the (A, «) part of the model by building a model for each
subtree using an induction on the height of the i-tree. Tetont
models that satisfisplit and Comp constraints in the inductive
step, we use a stronger induction hypothesis: we show tleag th
exists a mode(A, «) for a tree rooted in nod& with |A| = &
for all CInf(S) < k < CSup(S), and we rely on the properties
of weak consistency to prove the inductive step. The prodhisf
lemma is interesting because similar ideas are used whéirtgi
example models that show the completeness in Seldtion 7.

Putting all results in this section together using the argpinat
the beginning of the section, we obtain the following theore

THEOREM3 (ItreeSAT Correctness)7 is satisfiable if and only
if RNr(7) #L4. Therefore, the algorithritreeSATin Figure[d is

a sound and complete polynomial-time decision procedur¢hio

satisfiability of i-trees.

7. Deciding Subsumption of I-Trees

The goal of this section is to prove that we can decide thewsups
tion of i-trees in polynomial time. Note that the subclass-wées
is not closed under negation or implication, so we cannoideec
7 E T’ by checking the satisfiability of(7 = 7). Instead,
our approach is to brin@ into a form where the properties of the
models of 7 areeasy to readrom 7. We then check thal” en-
tails each of the conditions that correspond to the sensofi”’.
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[k [ name | condition [effect pr(iCRN;(;) BRI (T)
7 e — NF
)) ({S}CLIJ ch(o))EComp(S ) 6. for eachS’ € S from the root to the leaves
6 | DnInf n :z(cnsup[Qo]) CInf(S)—n for eachQ € Comp()
c6) n.> Clnf(S) foreverys & ?(s 5.0
; try DnInf(S, 5’
27) ({f}CLé QO)SGSPI't(S ) 7. for eachS’ € S from the root to the leaves
7 | DnSup| 7)™ = CSup(S) CSup(S) —n for eachq € Split(S)
—=(Clnf[Qo]) for eachS € Q
CS '
Z?) s spﬁf((sf o anepg Y DHSUR(5.5'.Q)
.for each$ €
8 | CCmp* bs) C CSUP(CB):F)E((C)IS?E??]}) Comp(S) —C, for each@ € Spl(it(S))
try CCmp(S, Q
CS)) %Legccom[()(?) 9. for eachS € S
a9 omp(.5 for each@ € Comp(S)
o | csplit| , SIS 2 BCSURIAD gy (5) try CSplit(S, Q)
9) (C" = SpI!t(S)U{Q} 10. for eachS € S from the leaves to the root
G e Camp 3] oy e of
. . ry UpPhi(s5,
10| UpPhi bw; zn Z ggg; UNQQ] [2(S) « ¢én 11. for eachS € S from the leaves to the root
€10) Pn try Void(S)
11| Void™ | a11) S # 0a A CSup(S) = 0|Merge({S, 0a}) 12. foreachS € S
12| Equal® | a12) {S"} € Comp(S) Merge({S, S'}) for each@ € Comp(S)
try Equal(S, Q)

*Follow the application of these rules Bymplify . returnT

Figure 10. Rules for SystenR

Figure 11. Polynomial-time algorithmRne(7) to computeR

. N " , ) normal form
We formalize the intuitive condition of being easy to readhe
notion of strong consistencyVe build on the syster®™ from the
previous section to create a larger rewriting systrfor ensuring 3. R enforces strong consistency when possible, that is, a aiagr
strong consistency. We introduce a polynomial-time sgafer R D in R normal form is either equal tal, or it is strongly
that transforms every i-tree intb, or into an i-tree that is strongly consistent.

consistent, and we give polynomial-time algorithms forasting

the information from strongly consistent i-trees. 4. R terminates in polynomial time for the strategy correspoidi

to the algorithmRyr described in Figur€1.
DEFINITION 12 (Strong ConsistencyAn i-tree 7 is strongly
consistentff it is weakly consistent and satisfies all of the following  Proof sketch.

properties: 1. The iT-stability is trivial for the rulesDnInf, DnSup,
vQ € Comp(S). VSo € Q. UpPhi. The other rules are marked with a star and we use the
CInf(So) > CInf(S) — £(CSup[Q — {So}]) (Ce) algorithm Simplify. In fact, we can show that it is not necays
. to applySimplify in its full generality, but only to remove any
V@ € Split(S). VS € Q. ; . .
_ _ C redundant views introduced i Cmp and CSplit, remove
CSup(So) < CSup(S) — X(CInf[Q — {So}]) () any self edges introduced by the operatiarge used in the
vQ € Split(S). Q ¢ Comp(S) = rulesEqual and Void, and to remove the edges going(t
CSup(S) > E(CInf[Q]) (Cs) that can be introduced by the ril&id.
VQ € Comp(S). Q ¢ Split(S) = 2,3. Fo.IIow by .COI’I.SII’L.J(.IIIOI’I asinthe prgwous section. /
CInf(S) < Z(CSup[Q)) (Co) 4. This part is significantly more difficult than for systeRi”,
because the interactions between the rules are more complex
VQ € Comp(S). N(2[Q]) € ©(S5) (C10) but follows the same structure as the proof Rt
S # (p = CSup(S) >0 (C11)
Q € Comp(S) = |Q| > 1 (C12) 7.2 Extracting Information from Strongly Consistent I-Tre es
. . In this section we start from a strongly consistent i-tfeand con-
7.1 A rewriting systemR to enforce strong consistency sider the problem of checking = D’. Analyzing Definitior(®,
This section follows the development of Seciiod 6.1. we observe that a diagram corresponds to a conjunction of con

I straints. Therefore, the subsumption probt&ng= D’ corresponds
DEFINITION 13 (SysteniR). The systenR extendsR* with the to the problem of verifying thaf” entails atomic formulas of the

additional rules of Figuré&Zll0, analogously to Definitiod 11. forms = 0, s1 = 2,81 C s2,a < |s| < b, s C P,s C P°,
s1Ns2 =Pands C J{s1,...,sn}. Without the danger of con-
LEMMA 7 (Properties ofR). 1. R isiT-stable, thatis fusion, we write7 = A when the atomic formulal holds in all

TEeiT ANT—T =T eiT models for7"
THEOREMA4. Let T be a strongly consistent i-tree and lef, for
atomic formulaA be as defined in Figuletl2. Théh = A if and
D—D =D=D only if HY.

= y ITHy

2. R preserves the semantics, that is
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procSubsumes(T, D) and only decreaseSSup. At each step we distinguish three

T = Rue(T) cases:
= Iunr
let f : SN — S such that/s € SN. s € f(s) (a) bothUpSup andUplnf are applicable; then the result fol-
leth’ : S — SN be any function such thatS’ € S. »'(S") € S’ lows fromCs;
check all of the following conditions: (b) only UpSup is applicable; then the result follows frofia;
. A A HSTI:S2 (c) only Uplnf is applicable; then the result follows frofs.
Ses’ s1,82€8
T def . 2. Follows easily from the hypothes@Inf(S) < i < s <
) vl_\:hereHsl s2 = fs1) = f(s2) CSup(S) and the fact thaR}ir is semantics preserving.
©hO)=0 3. Itis enough to notice that only ruléspInf andUpSup are used
whereH?_ —0 PN f(s) =10q when applyingRyg, and these rules are applied in the bottom-

3. s/\ HCInf’(S)<\h(S)\<CSup "(8) up directions

The fact that the resulting i-treéB¢ is not strongly consistent any-

whereH{_ <, L CInf(f(s)) <a<b< CSup(£())  more prevents us to apply this lemma twice from a given styong

4. A A H+P(h(S)) consistent i-tree. To enforce more than one restrictionneed to
sey (+P)€q"(s)def refine simultaneously the bounds of several nodes. For tijmge,
whereHJrP(&) <= (+P) € ©(f(9)) we use the following lemma.

5 A A HZ —P(h(S)) LEMMA 9 (Parallel Bounds Refinement)et7 be a strongly con-

ses’ <7P)Te<1>/<s> s sistent i-tree, andQo, ~) a subtree off such that
whereH” ., &5 (=P) € ®(f(s))

6. HZ 5 * The nodes of)o are painNise independent, that is,
s/e\s,/ S/esﬁsm MEIERET VS1, S € Qo. —(disj’r(S1, S2))
whereH? -, L f(s1) = 0a v fs1) 5 f(s2) * (Qo,~) has the same root &5.
. A A A His)nn(ss)=o Then the i-tre” defined by the simultaneous update
SEY QESII(S) g, 5,eq .,
$1#55 T T [ VS € Qo:CInf(S)—CSup(S) ]
def _ _
whereHs nsa=0 > Fls1) 7d(])iZji§r/({S'(182g‘J Da v is such that itsR* normal formZy = RNe(77) satisfies
8 A A Higcume 1. T #La
SeS’ QeComp’ (S) 2. IZ—I\1F ': T

whereHZ, £ £(s) = 0, V Included s), f12], T
sz us ¢ (F(s), 121, T) Lemmas[B and]9 are the basic tools we need to show that

where  procIncluded(So, C,T) the information syntactically computed from an i-tree ig thost
return V Incl(S5) precise information computable from the semantics of tired-
So~> 8 We prove this property for each of the atomic formuths
procIncl(S)
if S € C then returrtrue LEMMA 10. Ifani-treeT is strongly consistent, then for &l € S
elsereturn \/ ( A Incl(S’)) we have
QeComp(S) \ S’eQ

S# 0= 3IM. METAaM(S) # 0

Figure 12. An Algorithm for ComputingZ |= D’ for a an i-tree Proof. If S # 04, we haveCSup(S) > 0 by Ci: and therefore

7 and an arbitrary diagrar’. the i-tree7” Y T[Clnf(S)— max(1, CInf(S))] subsumes . By
LemmaB,7” is satisfiable, and we can take any model/dfas a
model of 7. m

It is easy to verify thaH? implies7 = A. The proof of the

converse is based on the following two lemmas, which progide LEMMA 11. Ifani-tree7 is strongly consistent, then for &l € S

link between strong and weak consistency. we have

LEMMA 8 (Bounds Refinement)l.et7 be a strongly consistent i- gﬁ ﬁ E ;2 }gﬁg 3{ _ lsn:é( ))

tree, S € S, 4,s such thatCInf(S) < i < s < CSup(9), let

T’ = T[CInf(S) < i,CSup(S) « s] andZyr = Rye(7"). Then Proof. According to Lemma [08, the two i-trees

e)a)

D) T #La, 2) Te | T, and 3) if (S~ So), then T{ = T(CSup(S)—CInf(S)] and 7 < T[CInf(S)—CSup(S)]

Inf — (CInf" / ) are satisfiable, and boff and7j trivially subsumeZ. Any model

(CInf(So), CSup(So)) = (CInfie (So), CSuphe (50)) M, of 77 is such thafaq, (S)| = CInf(S), and any model,
Proof sketch. of 73 is such thatau, (S)| = CSup(S).m

1. We prove this result by induction on the depthSoin the tree LEMMA 12. If an i-tree 7 is strongly consistentS, € S, C €
(S, ~). The key step of this proof is to show that the application P(S), andIncluded(Sy, C, T) returnsfalse then
of UpSup and/orUplnf to the fatherS’ of S does not produce
a situation whereus holds in the resulting diagrard@”’ (and M MET N @m(So) U am[C]
therefore the rul&rror is not applicable i7”’). We use the fact
that Ry applies the ruled)pinf and UpSup bottom up, and Proof sketch. Assume thaflncluded returnsfalse We argue
prove that each application presen@s only increase<Inf that the modelM exists in several steps. L&)y be the smallest
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set of nodes such that:

50335 :>S€Qo

S € Qo ACi € Comp(S)
A 51 € C1 A —Incl(S1) =51 € Qo

By definition of Incl, we haveQo N C = 0.

From the previously stated lemmas, we can prove Thefiem 4.
From Theoreni}4 and Lemnfih 7 we conclude that the algorithm in
Figure[T2 is a correct and complete test for subsumptionpmigt
of between trees, but also between a tree and an arbitragyadia

8. Related Work

Qo is tree-shaped by construction, but may contain two nodes ggglean algebras with cardinalities. Quantifier-free formulas of

which are explicitly disjoint. We therefore compute a sabtp; of

Qo, by starting from the root and keeping at most one son for each

complete view. In this process we ensure tatcontainsSy, by
avoiding to cut the branch which leadsSg.

We then apply LemmBl9 t®; and construct a model of the
resulting i-tree while enforcing that a certain element a(S) is
such thatr € @(9’) & S’ € Q1 forall " € S. More precisely,
we prove by induction or that for each nodé; of Q1 of depthn
in the tree); we can construct a modél\, «, Z) for the sub-i-tree
of 7" with root.S; such that

VS S 58 = (zeals) & S eqQr)

If n = 0thensS; is a leaf of(Q1, ~~) and has no complete view by
construction ofQ. Then usingCs we show that we can construct
a model of the sub-i-tree with rodt; containing a fresh element
(not included in any of the sons 6F).

If n > 0, we can deal with the split views in the same way, but
this time S, can have some complete views. If this complete view
contains a unique split view, we avoid merging a son ofS; with
elements in the other sons 6f. If there exist more than one split
view, we can us€g and construct the model using a refinement of
the ideas of Lemm@ 6.

Finally, since Sy € @i, we havex € @(Sp), and since
CNQ=0wehaver ¢ Ja[Cl].m

LEmmA 13. Ifani-tree7 is strongly consistent, for af1, S2 € S
such thatS; # () andS2 # @ we have

(S1~%S2) = IM. M ET Aam(S1) € am(Sz)

Proof. The propertyaM. M =T Aam(S1) € aam(Sz2) can
be checked usingdncluded (S, {S2},7). Using C12 we show
that this test is equivalent to teSt ~ Sz. m

LEMMA 14. Ifani-tree7 is strongly consistent, for af;, S; € S
we have

S1 75 So = AM. M 'IT/\EM(Sl) 75&/\/1(52)

Proof. If Si # Sa, then—(S1 ~% Sa) or =(S2 ~+ S1). In either
case the result follows from Lemrhal 8.

LEMMA 15. Ifani-tree7 is strongly consistent, then for &l € S
and P € PN we have

(+P) € &(S) = IM. M =T Aam(S)  Z(P)
(—P) € 3(S) = IM. M =T Aam(S) € =(P)°

Proof sketch. Let S € S be such that+P) ¢ ®(S). We define

Qr (S €S|(+P) € ®(S')}. UsingCio andC; we show that
Included(S, Qp,7T) returns false. By Lemmiall2, there exists a
model such thai(S) Z |J@[Qr]. We then change the model by
redefining=’ on PN as='(P) = J@[Qr], soa(S) € Z'(P).
The casd —P) ¢ ®(S) is dual and follows from the previous case
by swapping+P) and(— P) in the i-tree and taking complements
of Z(P).m

LEMMA 16. If an i-tree 7 is strongly consistent, then for all
S1,S2 € Ssuch thatS; # 04, S2 # 04 We have

ﬁ(diSj;—(Sh 52)) =M. M ': T/\EM(SH) ﬂam(SQ) 75 0.

On Algorithms and Complexity for Sets with Cardinality Cioaisits

boolean algebra are NP-complefel[33]. Quantified formulas o
boolean algebra are in alternating exponential space with-a
ear number of alternation5_[21]. Cardinality constrairgasurally
arise in quantifier elimination for boolean algebrhsl [31, [42].
Quantifier elimination implies that each first-order foraulf the
language of boolean algebras is equivalent to some quasitiie
formula with constant cardinalities; however, quantifimea-
tion may introduce an exponential blowup. The first-ordewotly

of boolean algebras of finite sets with symbolic cardingditior,
equivalently, boolean algebras of sets with equicardinajperator

is shown decidable i [14]. These results are repeatedyateti
by constraint solving applications, ih[23.139] and a splecése
with quantification over elements only is presented_ir [&fper
and lower bounds on the complexity of this problem were shiown
[22] which also introduces the nanBAPA, for Boolean Algebra
with Presburger Arithmetic. The quantifier-free cas®6PA was
studied in [[45] with an NEXPTIME decision procedure, whish i
also achieved as a special casel0l [23, 22]. The new decisin p
cedure in the present paper improves this bound to PSPACE and
gives insight into the problem by reducing it to boolean bigs
with binary-encoded large cardinalities, and showing thist not
necessary to explicitly construct all set partitions.

Several decidable fragments of set theory are studied_ih [10
Cardinality constraints also occur in description logi&} &nd
two-variable logic with countind [3%. 19, B8]. However, lbics
of counting that we are aware of have complexity that is bdyon
PSPACE.

We are not aware of any previously known fragments of boolean
algebras of sets with cardinality constraints that havgrpmhial-
time satisfiability or subsumption algorithms. Our polynahtime
result for i-trees is even more interesting in the light & tact that
our constraints can express some “disjunction-like” proes such
asA=BUC.

Set constraints. Set constraintd [1.]13.] 2] 6] are incomparable to
the constraints studied in our paper. On the one hand, sstraorts
are interpreted over ground terms and contain operaticatsaihr
ply a given free function symbol to each element of the setclwvh
makes them suitable for encoding type inferehte [4] andpnbee-
dural analysis[20. 34]. Researchers have also exploregffibent
computation of the subset relation for set constralnts. [08] the
other hand, set constraints do not support cardinalityaipes that
are useful in modelling databasési[40, 11] and analysiseo$ites
of data structure$ [29]. Tarskian constraints use uning¢ed func-
tion symbols instead of free function symbols and have végh h
complexity [18].

9. Conclusions

Constraints on sets and relations are very useful for aisadysoft-
ware artifacts and their abstractions. Reasoning abositaset re-
lations often involves reasoning about their sizes. Fompta, an
integer field may be used to track the size of the set of oboted
in a data structure. In this paper, we have presented newlegityp
results and algorithms for solving constraints on booldgelaa
of sets with symbolic and constant cardinality constraivits have
presented symbolic constraints and large constant camstrgave
more efficient algorithm for quantifier-free symbolic caastts,
identified several sources of NP-hardness of constraints pae-
sented a new class of constraints for which satisfiability an-
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tailment are solvable in polynomial time. We hope that osutes
will serve as concrete recipes and general guidance in gigrdef
algorithms for constraint solving and program analysis.
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A. Proofs
A.1 I-Diagrams

Lemmal[3 I-diagrams have the same expressive powe€B&AC
constraints.

Proof. We translate an i-diagram into@AC constraint as fol-
lows. As in FigurdR, we note that = b2, b1 C bz can be ex-
pressed in the forrtb| = 0, so we may assume that they are part of
CBAC. Similarly, |b] < k can be expressed &sC s A |s| = k
for a fresh variables, and |b| > k can be expressed as C
b A |s| = k. We translatel ; into e.g.|0| = 1. Next consideD =
(S, B4, Sons, Split, Comp, CInf, CSup, ®). For eachS € S, let
n(S) € S be a representative set name. For esicke S\ {n(S)}
introduce conjunc; = 7(S). Next, for eachS; € Sons(S), in-
troduce a conjunct; C S. For eachH-P € ®(S), introduce con-
junctS C P, and for each- P € ®(S) conjunctS C P¢. Express
the bounds using conjuncts| < CSup(S) and|S| > CInf(S).
For each@ € Split(S) andS1,S2 € Q whereS; # S, intro-
duce conjunctS; N Sz| = 0. For each{Sy,...,Sn} € Comp(S)
introduce conjunct = S; U...US,.

We translate £BAC constraint into i-diagram using the follow-
ing observations. It is sufficient to translate the follogimoolean
algebra expressionsy s1 U s2, so = s, and|s| = k. We
construct an i-diagram whose nodes are singletons. We piek o
set variableu to act as a universal set and put} € Sons({u})
for every set variable in the i-diagram. We translate = s; U
sz as{{s1},{s2}} € Comp({so}) and translateso s{ as
{{s0}. {s1}} € Split({u}), {{s0},{s1}} € Comp({u}). We
translate|s| = k asCInf({s}) = k andCSup({s}) = k. Then
for each satisfiable assignment ®BAC there is a model for the
constructed i-diagram whe#ra:} is interpreted as a universal set.
Conversely, for a model of i-diagram whefé{s}) = A, we let
[s — AN a(u)]. The resultis an assignment that satisfies the orig-
inal CBAC formula.m

Lemmald For every i-diagramD we can obtain an equivalent
simple i-diagram using the polynomial-time algorithm iny&ield.

Proof. We argue that algorithm in Figuk® 6 produces diagram that
isi) well-formed.,ii) simple,iii) equivalent to the original diagram.

We first observe that after step 2, the following two condisio
hold:

C) if Q € Split(S) andS € Q, then@ C {S, 04}. This condition

certain step and not violated afterwards, according todghevfing

table:
D[]

3.]4. [ 4. 14. 5.

iii) We show that semantics is preserved when executing each
sequence of steps...,k for 2 < k < 5, that is, each step pre-
serves the semantics provided that it is executed afterrthequs
steps.

k = 2. Each equality introduced intp is a semantic conse-
guence of the diagram, because

1.1 5(51) C S5 anda(Sg) - E(Sl),

1.2 5(51) C a(@d) =0,

1.3 5(51) C U(D =0,

1.4@(S1) Na(Sz) = 0 for@(S1)

1.5a@(S1) Na(S2) = 0, fora(Sh)
so agaira(Sz) = 0,

1.6 @(S1) C Sanda(S) C U{a(S1)} = a(S1).

It follows that the condition on equality of sets, as well las ton-
ditions onClInf, CSup, Sons, ®, Comp are all semantically equiv-
alent when applied to the original and the factor diagrane aitly
semantic condition which can be lost in factor-diagram trwics
tionisdisjp g, (S1,.52) whenS: and Sz nodes are merged, that is,
when (S1, S2) € p. However, in this case the disjointness condi-
tion follows from@(S1) = 0, which is enforced in 1.3. Therefore,
for the particular relation constructed in step 1, factiaigdam is
an equivalence preserving transformation.

k = 3. We need to show that no information is lost by removing
(4 and S from the sons, as well as split and complete views of
S. Clearly, removingS and @; from Sons(S) does not change
the subset conditions becaugeC @(S) anda(S) C @(9).
Eliminating @, from Q@ € Comp(SS) is justified because the view
has the same semantics with or with@ut Dropping a viewQ €
Comp(S) for S € @ is justified because in that cag&S) C
Us, co @(S1) holds trivially. Eliminating@q from @ € Split(S)
is justified because intersection with empty set is alwayptgm
so this condition does not bring any new information. Fipall
dropping & € Split(S) with S € Q is justified because condition
(C) implies that in such cas@ C {04, S} so theSplit condition is
trivial.

k = 4. Removing{@} from Split(S) preserves semantics
because such view carries no information. Similarly, beeaall

(SQ) SOE(SQ) =
(So), anda(Sg)

0, or
C a(So),

=
=

holds because the step 1.5 of the algorithm merges all nodesmaximal views are preserved, removing their subsets doés no

Q \ {S} with §4 whenS € @Q € Split(S).
D) if @ € Comp(S), then@ # 0 (by step 1.3), ifQ = {04} then
S = 04 (by step 1.6).

i) To see that the resulting i-diagram is well-formed, it suf§ic
to check the conditionig) Split(.S) = Sons(.S) and|J Comp(S) C
Sons(.S). This condition is preserved by factor-diagram construc-
tion (for any equivalence relation). It is preserved by Sdpr the
following reason. The only nodes removed fr&wons(S) are (4
and S. These nodes do not appear(itComp(S) because), is
removed from each view), and views withS € @ are removed.

It remains to check thalons(S) C | Split(S) after step 3, and
this holds because our condition (C) implies that no eleroémrer
than s, f4 is lost from(J Split(S) in step 3. The well-formedness
condition is preserved by step 4 because this step does angeh
J Comp(S) or |JSplit(S). Step 5 does not violate this condition
either because it sets the componentf afo 0.

i) To see that the resulting diagram is simple, we show that
it satisfies conditions),. .. ,f) of Definition[d. After step 2 of the
algorithm, the resulting factor-diagram has no cycles afjth 2
or more, there are only potentially some self-cycles. Thase
eliminated in step 3 and no further edges are introducedcéien
a) holds. For each of the following condition, they are enfdrae
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change the semantics. Fosmp(.S), we consider two cases. In first
casef) ¢ Comp(S). In this case, removing does not have any
effect, and it is sound to remove all non-minimal views beeau
they are implied by the minimal views. The second cas is
Comp(S). By condition D) on the step 1, we know th@t# () after
the step 2, and the only node removed in steg/3 jso it must have
been the case thgt = {04} after step 2. By condition D), we then
haveS = ();. Because the semantic condition ©omp for Q@ = 0
reduces tav(.S) = 0, this condition brings no new information, so
we can remove it.

k = 5. Becausex(fs) =, CSup(hs) = 0 does not change
semantics, similarly fo(0;) = 0. We also know thaons(.S) C
{04} because this condition is ensured by step 2 and is not viblate
afterwards. Because we have already observed that theatiagr
is well-formed, we conclud€omp(S) C {04} andSplit(S) C
{04}, so setting these valuesialoes not change the semantiss.
Theorem[d Omitting any one out of three conditions from Defini-
tion[@ (1. being tree-shaped, 2. having independent viend,3a
having independent signatures) yields a class of diagraimsse/
satisfiability is NP-hard.

Proof. Suppose that at least one of the three conditions does not
apply to a class of i-diagrams. We then give a reduction froen t
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problem 3COL to the satisfiability of i-diagrams in this claklere
3COL denotes the NP-complete problem of deciding, given an
indirected graph, whether the graph can be colored usindddsco
such that adjacent nodes have different colarks [41, Page 275

Given a graph(N, E) whereE C N x N is a symmetric ir-
reflexive relation, we first build the i-diagraf defined as follows:

= N U {U}, CInf(U) = CSup(U) = 3, Sons(U) = N,
Split(U) = {{n}n € N}, andComp(U) = ®(U) = 0. For
all n € N we letCinf(n) = CSup(n) = 1 and letSons(n) =
Split(n) = Comp(n) = ®(n) = 0.

Each model of this diagram is a triple), «, Z) such that
[@(U)| = 3 and for alln, @(n) is a singleton included im(U).

If we considera(U) as a set of three colors, then in each model
with this property@(n) indicates the color of node.

Then for each edgéni,n2) € E we encode the fact that
n1 andne must have different colors by enforcing the property
@(n1) Na@(n2) = 0 on the models oD. We encode this constraint
in different ways depending on the class of i-diagrams:

o If D allows dependent signatures, we introduce a fresh pred-

icate symbol P,,, ,,, and add(+Pn, n,) to ®(n1), and
(= Pnyny) 0 @(n2).

o If D allows dependent views, we adld, n2} to Split(U).

o If D allows multiple fathers, then we simulate depen-
dent views by introducing a new noden(ni,n2).
We let CInf(m(ni,n2)) = CSup(m(ni,n2)) =
Sons(m(ni,n2)) = {ni,n2}, Split(m(ni,na))
Comp(m(ni,n2)) = {{n1,n2}}, and®(m(ni,n2)) = 0.
We then remover, ne from Sons(U), and addm(ni,n2) to
Sons(U) instead.

None of these constructions violates more than one of tlee tton-
sidered restrictions. It is straightforward to verify thlaé diagram

is satisfiable iff the graph is colorable, and that the camsion of

D can be done in polynomial time. This proves that the satisfia-
bility of i-diagrams with any of the three restrictions reved is
NP-hardm

A.2 Termination of SystemR

LEMMA 17 (Invariants ofR). For everyk € [1..12] the rule Ry
preserves\,;_, ) C;orreturnsLg.

Proof. We analyze each rul®y, for two i-trees7 and7’ such

thatTR—>T’ , assuming thatl” satisfiesA\;_, ,_,,C;, and,
k

more preciserT%T’, wherespotare variable names as they
k.
appear in the definition oR.

1. (DnPhi). Trivial.

2. (Unsat). (C1) does not depend o@Sup.

3. (UpSup). If n = 0, (Co) is trivialy true for S in D’. If
n > 0, by (c3) CSup(S) > 0 and we have alreadyP €
PN.{+P, —P} ¢ ®(S) and sinced’ = ®, (Cz) holds in7".

4. (UpInf). Neither (C1),(C2) nor (C3) depend orClinf.

5. (Error). 7' =14

6. (DnlInf). Only (C4) and(Cs) depends or€Inf.

¢ (Cs) is maintained foiS in 7" because, noticing tha€y) is
maintained forS’ # S, we have
Clnf’(S) = CInf(S") — 3(CSup(Qo))
< CSup(S’) — £(CSup(Qo))  (byCs)
< CSup(S) (by Cs)
¢ To prove that €4) is maintained in7’ we need to check
that (C4) is maintained forS, which is trivial by (c¢), and

that (4) is maintained for the fathe$’ of S and the views
Q € Split(S’) containingS. By property of independent
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views there exists only one such viey = ({S} & Q)
such thatQy € Qo and

SCInf'(Q) = CInf'(S)+=CInf(Q})
= (CInf(S") —£CSup(Qo)) +XClInf(SH)
= CInf(S")—SCSup(Qo — Qb)
+syeq; (CInf(Sh) — CSup(Sh))
< CInf(S")=XCSup(Qo — Q)  (byCs)
< CInf(S")
=ClInf'(5")

7. (DnSup). Only (C2), (C3) and(Cs) depend orCSup. (C2) is
maintained thanks ta:{) as for the case of rul&lpSup.

e (C5) is maintained forS in 7’ because, noticing that{) is
maintained forS’ # S we have

CSup'(S) = CSup(S’) — X(CInf(Qo))
> CInf(S) — 2(CInf(Qo))  (byCs)
> CInf(S) (by C4)

e To prove that €3) is maintained in7’ we need to check
that (C3) is maintained forS, which is trivial by (¢7), and
that (Cs) is maintained for the fathe$’ of S and the views
Q € Comp(S’) containingS. By property of independent
views there exists only one such viéyw= ({S} W Qo) and

YCSup’(Q) = CSup’(S)+3CSup(Qo)
= (CSup(S")—ZCInf(Qo))+XCSup(So)
= CInf(S")+Zs,eq, (CSup(So) — CInf(So))
>CInf(S") (byCs)
= CInf’(S")
8. (CCmp). Only (C3) and(C¢) depend orComp.
e (C3) is maintained forS, Q because
CSup’(S) = CSup(S)
< X(CInf(Q))
< X(CSup(Q))
=%(CSup'(Q))
® (Cs) is maintained forS, @ and all.Sy € @ because
CInf’(S) = CInf(S)

(by as)
(by Cs)

< CSup(S5) (byCs)
< 3(CInf(Q)) (by as)
=CInf(So) + Z(CInf(Q — {So}))

< CInf(So0) + 2(CSup(Q —{So}))  (byCs)

= CInf'(So) + S(CSup’(Q — {So}))

(Remarh. If ever we use a simplification afterwards, as indi-
cated by the star in figufelL0, it can only consists in removing
a complete viewQ’ such thai)’ ¢ Q. This operation trivially
maintains/\;_, ;) C; because in every properties of consis-
tency where complete views appear they are universally-quan
tified.

9. (CSplit). Only (C4) and(C7) depend orbplit.

¢ (C4) is maintained foiS, Q because

CInf'(S) = CInf(S)

> X(CSup(Q))  (by ag)
> X(CInf(Q))  (byCs)
=X(CInf'(Q))

¢ (Cr) is maintained forS, @ and all.Sy € @ because
CSup’(S) = CSup(S)

> CInf(S) (by Cs)
> 3(CSup(Q)) (by as)
= CSup(S0) + Z(CSup(Q — {S0}))
> CSup(So) + S(CInf(Q — {So}))  (by Cs)
= CSup(50) + £(CInf'(Q — {S0}))
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(Remarh. If ever we use a simplification afterwards, as indi-
cated by the star in figufe1L0, it can only consists in remov-

ing a split viewQ’ such that)’ C Q. This operation trivially

maintains/\j:L_8 C; because in every properties of consistency

where split views appear they are universally quantified.
10. (UpPhi). Only (C;) and(Cz) depend orb

¢ (C1) is maintained forS and allS’” € Q because

'(S) = B(S) UN Q) (by b1o)
=®(S) U((S)N®(Q —{5'})
Cd(S)UP(S)

e We can also prove that{) is maintained forS. Suppose
there existsP in PN such that{+P, —P} € ®'(S). Then
we distinguish three cases.

vif {+P,—P} C ®(S), by Ca, CSup(S) =0

vif {+P,—P}N®(S) = 0, then{+P, —P} € N ®(Q).
Then for allS” € Q, CSup(S’) = 0 by C2. Then byCs,
CSup(S) =0

vif {+P,—P} N ®(S) = +P for one atom+P €
{+P,—P}. Then the opposite atomrP belong
() ®(Q) and byC:, £ P belong to) ®(Q). By C2, each
nodeS’ € @ is such thatCSup(S’) = 0 and byCs,
CSup(S) =0

In the three caseSSup’(S) = CSup(S) = 0.

11. (Void). If S is the root,the resulting i-tred”’ is such that
S = {SN} = {04} and(; is trivial for all i € [1..11].
Otherwize, we have to check that removing the néd&fom
the sons of the father of (as indicated in the step 3 of the
proceduresimplify) maintains/\j:l“10 C;. We denote bySy
the father ofS and byQ, the split view ofSy containing$. If
S is also contained in a complete view 8§ we denote byCy
this complete view.

e (C1) and (C-) are trivially maintained.
¢ (Cs) is maintained because,df, exists and”) = Co—{S}

is not empty
CSup’(So) = CSup(So)
< ¥BCSup(Co)  (byCs)
=3CSup(Ch)  (byais)

=3CSup’(Ch)
e (C4) is maintained because,if, = Qo — {S} is not empty

CInf'(So) = CInf(So)
> ¥CInf(Qo)
> SClInf (Q})
= XCInf'(Qh)

(byCa)

e (Cs) is maintained for the nod&, = S U ()4 of 7’ because
by (a12) and(Cs), CInf(S) < CSup(S) = 0, by simplic-
ity and (Cs), CInf(fq) < CSup(#s) = 0, and therefore
Clnf' (1) = Maz(CInf(S), CInf(04)) = 0 < CSup’ (1,).

® (Cg) is maintained foiSy, Cp and everyS; € Cj such that
S1 # S because

CInf'(S1) = CInf(S1)
> Clnf(So0)—X(CSup(Co—{51})) (by Co)
= CInf(S0)—3(CSup(Co—{S}—{51})) (by a12)

= CInf’(So)—2(CSup’ (CH—{S1}))
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¢ (Cr) is maintained foiSy, Qo and everyS; € Qo such that
S1 # S because

(S1)
< CSup(So) — X(CInf(Co — {S1})) (byCr)
(50) = E(Clnf(Co — {5} — {S1}))

¢ (Cg) is maintained foQ, because

CSup’(So) = CSup(So)
> S(CInf(Qo))
> 3(CInf(Qo — {So}))
=2(CInf"(Q0))

® (Cy) is maintained folCy (if exists andC = Co — {So} #

(byCs)

() because
CInf'(So) = Clnf(So)
< %(CSup(Qo)) (byCo)
=X(CSup(Qo —{So}))  (byan)

= %(CSup’(Qo))
¢ (C10) is maintained fol, (if exists andCh = Co—{So} #

() because
N®'(Co) =N 2(Co — {So})
CN®(Co)
g (I:'(So) (byclo)
=®'(S0)

12. (Equal). Before to mergeS and .S’ for {S’} € Comp(S) we
have
e CInf(S) = CInf(S’) by C4 andCs
e CSup(S) = CSup(S’) by C3 andC~
o @(S) = (I)(S,) by01 andClo

Therefore all the propertie§; for i =
maintained.

1..10 are trivially

A.3 Model Construction

Lemmald (Model Construction) If an i-tree 7 is weakly consis-
tent, then we can construct a model fbr

Proof. Let7 be a weakly consistent i-tree.

We construct a mod€lA, «, Z) by first constructing a partial

model (A, «) for all parts of 7 except®, and then extending
(A, ) with E to satisfy®.
Constructing (A, o). We write(A, «) = 7 to denote that\ and
« satisfy those conditions @ Sons, Split, Comp, CSup, Cinf that
do not mention in Definitiond. To show we can construc, «)
such that(A, «) = 7 we prove by induction om the following
more general claim.

CLAIM 1. For every i-tree7 of heightn with root Sg:

Vk € [CInf(Sr), CSup(Sgr)].
(A, q). (A,a) ED A [a(Sg)| = |A] =k

If n = 1, the claim holds by taking
A=a(Sg)={1,...,k}

For n>1, consider an i-tree7 with root Sp and &k €
[CInf(Sr), CSup(Sr)]. By examining the constraints if, we
choose the cardinalities for subtrees®f use the induction hy-
pothesis to construct models for subtrees, and paste thelsniuad
subtrees into a model faF. We decompose this process into three
steps:
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1. For eaciC' € Comp(SRr), consider a subtre@&: built from 7
by removing all sons outsidg) C. We construct a modeM ¢
for 7¢ of cardinalityk.

2. For each remainin@ < Split(Sr) whereQ Z |J Comp(Sr),
consider a subtre@g with the same rooSr but without the
sons outsid¢ J Q. We construct a modeM q for 7¢ of cardi-
nality k.

3. Because the constructed models have the same cardimadity
can easily merge them to obtain a modelfar

Step 1. Let C € Comp(Sgr), andC C Split(Sr) such that

C = UC. For eachy € C, lettg ef min(k, X(CSup[Q)])). Using

k > CInf(Sg) andCs we can show
E(CInf[Q)) < to < £(CSup[Q)) (H1)

To each node5 € @ we can therefore assign an inted€(S) <
[CInf(S), CSup(S)] such thatg = X(K[Q]). Let 75 be the sub-
i-tree of 7 rooted atS. By induction hypothesis, leM s be the
model of 7s of cardinality K (S). We can then take the disjoint
union of these models to construct a modelys, of sizetq for
the forestUSeQ Ts.

For all @ € C, we havetg < k by definition oftg and k.
We can also prove thdt < Yqectg. Indeed, if there exists a
Qo € C such thatg, = k, this is trivial. Otherwise, becausg
is weakly consistent, frors we can show that < CSup(S) <
¥ (CSup|[C]) because

2(CSup[C]) = 3(CSup[Q))) = tq).
(CSup[C]) Ze:(c( (CSup[@Q)])) %C( Q)
We finally obtain
<k<
mgth k EECtQ (H2)

Thanks to( H2), we can build a model for the i-tre&:, as follows.
We start with the disjoint union of model®t, for 7 for Q € C.
This model has cardinalitf.gcctq. Then, we rename elements
from different models to be identical to elements from otimexd-

els. Such merging is possible as long as there is no modelevhos
domain contains the domains of all others, so we can reach any

cardinalityk for maxgec < k.

REMARK 2. (Freedom in the choice dfti};c1..n)) In Section¥
we enforce some additional properties on models using ardiff
ent choice ot . Such construction is possible whenevgsatisfy
(H1)and(H2). Moreover, ifK(S) denotes some chosen cardinal-
ity for each nodeS, and the valued((S) satisfy certain assump-
tions, then we can enforce additional properties when mgrtjie
models M corresponding fof) € Split(.S). The following two
cases are of interest.

1. If > tg > K(S), we can chose any pair of different split
QeC
views Q1,Q2 € C, and two elements; from Mg, andz:
from Mg, and decide to merge them.

2.1fC ={Qo} WwCo andcr;le%x tg < K(S), we can chose any
0

element in the modeM g, and decide not to merge it with any
of the elements of the modelst, for Q" € Co.

Step 2. Let @ € Split(Sr), such that? is not included in any
complete view. We construct a model ¢ of sizek for the i-forest
Tr by first building a model of sizé((S") = CInf(S’) for each
S’ € Q. Becausé: > CInf(S) > X(CInf[Q]), by C4, the disjoint
union of these models has cardinality smaller tharBy adding
the correct number of fresh elements/Ag we obtain a model of
cardinalityk.

REMARK 3. (Existence of fresh elements) In Secfidn 7 we use the

following property: For allQ € Split(S) and@ ¢ UComp(S),
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if X(CInf[Q]) < K(S), then there exists a model such thts)
contains an element which does not belong to@g§') for any of
the sons ofS.

Step 3. We can apply an arbitrary bijectionc : Ac — [1..n]

to each mode/M ¢ constructed as previously described before to
build a model for the entire i-tree. We [&(Sr) = [1..n] and for

all S # Sg, @(S) = ac(S) whereC is the view containing an
ancestor ofS in Split(Sr) or Comp(Sr).

REMARK 4. (Freedom in the choice of.) If we know that
K (S) > 0, for any pairSs, Sz of sons ofS such thatS;, Sz belong
neither to the same split view nor to the same complete view, f
each choice of elements , z2 in the modelsZs, and7s, we can

chooseo 1, o2 such thato (z1) = o2(x2) 4/ ¢ and the resulting
i-tree will be such that € @(S1) N@(S2).

Extending the model with =. Let (A,«) = 7. Then for each
P € PN, define

2(P) = J{a(s) | S eSAPe®S)}
Then (+P) € ®(S) = @(S) C =(P) holds by construction,

it remains to show(—P) € ®(S) = a(S) C Z(P)° for every
nodeS. ConsiderS; € S such that—P) € ®(S1). If S1 = 0g4,
then@(S1) = 0, so the condition trivially holds. Similarly, if
(+P) € ®(S1), then byCa, CSup(S1) = 0 soa(S1) = @ and the
condition holds. Otherwise, assure P) ¢ ®(S1). For the sake
of contradiction suppose that there exists an elemeat@(S1),
x € Z(P). By definition of Z(P), there exists a nods. # Si
such thatr € @(S2) and (+P) € ®(S2). By the condition on
independent signatures, one of the followig two cases eppli

1. disj5(S1,S2). Then@(S1) N @(S2) = 0 by the semantics
of i-diagrams, which is a contradiction with € &(S:1) and
x € E(SQ).

2. S1 and S2 have compatiable signatures. Then there exists a
node S such thatS; ~> S, Sz~ S andSig(S;1) N Sig(S2) C
Sig(S). Because(—P) € ®(S1), (+P) € Sig(S1), and
becausg¢—P) € ®(S:), P € Sig(S2). ThereforeP € Sig(S).
We have two cases:

(@) (+P) € ©(S). By Cy, then(+P) € ®(S1), a contradic-

tion.

(b) (—P) € ®(S5). By Co, then(—P) € ®(S2). By C2 then
CSup(S2) = 0, soa(S2) = 0, a contradiction withe €
5(52).

We have reached the contradiction in each case, so we cenclud
a(S1) CE(P).m

A.4 Details of the Proofs for Subsumption Completeness

A.4.1 Refinemenents of Lemm§l6

According to the remarks in the proof of Lemida 6, if an i-tés
weakly consistent, there exists a choice of cardinalfiiesS — N,
such that we can build a modél, a, =) for 7 with the property
[@(S)| = K(S) forall S € S. For a fixed choice of cardinalities
K, we can, in certain cases, enforce some additional pregerti
by choosing which element we merge in the steps 1 and 3 of the
construction. The three following Lemmas are based on deia.i

LEMMA 18 (Non-empty intersection (1)).etS: and.S; be nodes
in a weakly consistent i-tre€ is such that

CInf(S1) >0AS1~ S, AS; € Q1A
CInf(S2) > 0 A S2~% S5 ASH € Qa

for someS, S1, 55 € S, Q1,Q2 € Split(S) where@Q: # Q- and
—(3C € Comp(S). Q1 € C A Q2 C C). Then there exists a
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model(A, «, E) for 7 such that Proof. We use a variation of the construction in the proof of
Lemme[®. We apply the assumptions about the sulsfreto show
@(S1) Na(Ss) # 0. db pply p tspre

that we always have enough “slack” to avoid merging one $ipeci
Proof. We use the construction described in Lenifha 6, with the €lément from@, with the elements of neighbors. We being by
exception of step 3 of the construction of the modédls for the

describing a slightly modified Step 1 of the proof of Lenitha 6.

subtreeZs with root S, where we do the following: Step 1’ (for nodes of Q). Consider the rootSg € Q. Let

L . . C € Comp(Sgr), andC C Split(Sr) such thatC = UC. By

* We choose an element in@, (51) in the modelM.s; built for construction, there exists a unique ssh € Q; of Sr and a

Ts; (we know there exists one sueh becauseInf(S1) > 0) corresponding split viewp’ such thats’ € Q" andC = {Q"}wCo.

* Analogously, we choose an elementin @ (S>) in the model We definel o/ = min(k, 3(CSup[Q'])) and for eact)o € Co, we

My build for T, definet g, " min(k—1, %(CSup[Qo])). For eactQo € Co, since

* We choose the bijectionsg, and og, in step 3 such that & > CInf(Sg) by choice ofk andCinf(Sg) > E(ClInf[Qo]) by
09, (1) = 00, (z2).m hypothesis 3 o, we haveX(CInf[Qo]) < k—1, so

E(CInf[Qo]) < tq, < X(CSup[Qo]) (H1)

LEMMA 19 (Non-empty intersection (2)).etS: and.S; be nodes
in a weakly consistent i-tre€ is such that and the property (H1) also holds ftg/, because is defined as

— , in Lemmd®.
CInf(51) > 0 A Sy ”: SIS € Q1A By definition of ¢ we clearly havemaxgecto < k. We next
CInf(S2) > 0A S22~ S5 A S5 € Q2 show ¥ tq > k by considering the following cases.
Qec

for someS, S1, S5 € S, Q1, Q2 € Split(S) whereQ: # @2, and _ . .
Q1 C C,Q2 C Cfor someC € Comp(.S) with the property * tqr = k. Then the claim is obvious. .
e For allQ € C we havetg = X(CSup|[Q]). The claim follows

CSup(5) < %(CSup[CY). from C3 and the choice ok becausetty > %(CSup[C]) >

Then there exists a modeh, «, =) for 7 such that CSUP(SR). 2 k. )
e There existsQo € Co such thattg, k — 1. Using

a(s1) Na(S2) # 0. »(CSup[Q’]) > CSup(S’) > 0 andk ;cmf(sR) > 0,

Proof. We use the construction described in the proof of we obtaintq: > 0, S0

Lemmal®, except for the step 1 of the construction of the model Y tg>tgytitg > (k—1)+1>k.
M s for the subtreds with root S, for which we do the following. QeC
From K(S) < CSup(S) < X(CSup[@Q]), we conclude that the  We finally obtain
choice of cardinalitiesg for @ € C in the proof of Lemmdl6 is

such thablgectq > K(S), by considering two cases. maxto <k < e (H2)
1. There existg) € C such that By definition of alltg, we then have
to = min(K(S), 2(CSup[Q))) = K(S). VQo € Co. tg, < k (H3)
Then we choos&); € {Q1,Q2} such thatQ; # Q. Since According to Remarkl2, H3 allows us to choose an element of the
CInf(S1) > 0 A S1~5 8] ~ S, repeatedly applying, and modelM s, constructed for the subtrgg: and decide not to merge
usingCs, we have it with any other element. This observation allows us to reively
, , enforcer € @(S) < S € Q1.
* 3(CSup[Qi]) = CSup(S7) > CInf(S;) > CInf(S;) >0 Indeed, consider a nodéz € Q; and let{S},...,S%} =
e K(S) > CInf(S) > CInf(S;) >0 Sons(Sr) N Q1 be its sons inQ;. For eachi, we can then recur-
As a consequenck, = min(K(S), £(CSup[Q:])) > 0 and sively ensurer; € @(S) <= S € @ for eachS in the i
Yoectq > tg + th7'> K(S). subtree i.e. for eacly for which S~ Sj. By definition of Q1,
Y ' _ _ eachS}, is in a different complete view, so we can apply bijection
2.Foral@ € G to =(Coup[Q])). Then Xgectq to the submodels (Remdrk 4) andde{z1) = ... = op(zp) = .

=(Coup[C)) > CSup(S) = K(S). We ensure that does not belong to any subtree rooted at a node
Becausetqectq > K(S), we can apply Remaild 2 and choose S, € Sons(Sg) \ Q1, using RemarKl2 to make sure thats not
one elementr; in @:(S1) in the model Mg, built for 7, , and merged with any of the elements®{S, ), which is possible thanks
an elementrz in @2(S2) in the model built for7s,, and decide  to H3. Finally, for the base case, whérhas no sons, we pick to
to merge these elements in the step 1 of the construction. Webe a fresh element, which is possible by assumption 3 on the su
know that such elements;, z» exist becaus€Inf(S;) > 0 and treeQ1, as noted in RemaiHl &

CInf(S2) > 0.m A.4.2 Links between weak and strong consistency

LEMMA 20 (Isolated elementlet 7 be a weakly consistent i-

tree and(Q1, —) a subtree of(S, ) with the same 005z as Lemma[8 (Bounds Refinement)Let 7 be a strongly consistent

i-tree, S € S, ¢, s such thatCInf(S) < i < s < CSup(S), let

7T, such that for allS € @ all the following conditions hold: T’ = T[CInf(S) — i, CSup(S) — s] and Ty = R¥(7”). Then
1. CInf(S) > 0 1) Te #La, 2) Toe = T, and 3) if—(S <5 Sp), then
2.YC € Comp(S). I='Q € Split(S). QCCA|QNQ:| =1 CInF(S0). CSun(Sa)) = (Clnfle(Sa). CSupl.- (S
3.VQ € Split(S). [QNQi|#1 = (CInf(So), CSup(0)) = (Clnfie (So), CSupye(So)).
(1Q N Q1| = 0 A Z(CInf[Q]) < CInf(S)). Proof.
Then we can construct a model fdrsuch that 1. We prove this result by induction on the depthSin the tree
_ _ (S, ~). The key step of this proof is to show that the application
Jdrz € q(R). VS €S. (z €a(S) & S € Q) of UpSup and/orUplnf to the fatherS’ of S do not produce
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a situation whereu; holds in the resulting diagrard”’ (and Therefore, 7" is already in normal form, s@y is identical to7”
therefore the rul&rror is not applicable if7””’). We distinguish and is clearly distinct fromL4, proving condition 1. Condition 2
three different cases : holds becaus&” |= 7 because the cardinality bounds7r are at

e When UpSup and UpInf are both applicable to this node least as strong as . Condition 3 holds because

S" we haveClnf”(S’) < CSup”(S’) because foilC' € S(CInf'[Q]) =Z(CInf[Q])  (becaus&) N Qo = ()

Comp(S’), Q@ € Split(S’) suchthai) C C,Q = {S} W < CSup(95) (byCz;). B

Qo, C = {S} W Co andT” §'.0 %9 71 e have = ClInf’(S) (by definition of 7")
UpSup UpInf -

CInf?(S )zggg:zg { B i glsnjp(?)) E?yjz)) LEMMA 21 (Parallel Bounds Refinement (2))et7 be a strongly
< %(CSup'[Qo]) + CSup' (S) (b)TC5) consistent i-tree and, S, 57,55, 5 € SandC, @ such that
< E(CSHP [,Co]) + CSup’(9) (ﬁ? € Co) C € Comp(S), Q1, Q2 € Split(S)
=CSup’() (by bs) S5 SIAS EQAQCC

e When only UpSup is applicable to this nod&’ we have S5 S5 A8 EQaANQe CC
CInf”(S") < CSup”(S’) because forC € Comp(S’), Q1 # Qs -
! S/7C 1"
C={S}wCoandT UEIPT we have Define
CSup”(9") = E(CSup:[Co]) + CSUF[)/(S) (by b3) T Tvs, 815 S5 8]+ CInf(S') — CSup(S")]

2 2(CSup[Qo]) + CInf(S) (i < ) VS', 82 % 8% 5 : Clnf(S") — CSup(S")]
> CInf’(S") (by Cs) . def .
= CInf"(9") Tne = RGe(77)

ndef ow / 7 /
e When only UplInf is applicable to this node&’ we have T" = R (Zne[CSup™(5)  Clnfye(5)))
CInf"(S) < CSup”(S’) because forQ € Split(S’), ThenT” #14,T" =T, andCSup”(S) < 2(CSup”[C]).

= and7”’ 5.9 7" we have
Q={5}¥ o Uﬁlf Proof. As in the proof of Lemmd]9, weak consistency con-

CInf"(8") = £(CInf'[Qo]) + CInf'(S)  (by ba) ditions hold in 7’ for all nodes inS’ such thatS; ~ S or
<3(CInf'[Qo]) + CSup'(S) (i < ) Sa & 55. Therefore, ’ghe only rewrite step that mat bg applicable
chup/(sl) (by_C7) in 7' is the.appllcatlon ofUpInf to S. This application may
;CSup”(S') lead to applications of other instances GipInf, but the proof

of Lemmal® shows that this process will result in a weakly con-
2. Follows easily from the hypothes@Inf(S) < i < s < sistent i-tree, sdfye #.1q4. Moreover, the process of comput-
CSup(S) and the fact thaRjr is semantics preserving. ing Rk (Tne[CSup”(S) « Clnfye(S)]) is identical to applying

3. Itis enough to notice that only rulékpinf andUpSup are used LemmalB to7” with boundsi = s = Clnfye(S), and therefore
when applyingR}r, and these rules are applied in the bottom- leads to a weakly consistent i-tr@¢’, so7" # L.
up directionm The condition7” = T follows becauseRy is semantics-
preserving, and the updates of trees only shrink the bounds o

Lemmal[d (Parallel Bounds Refinement (1)Let7 be a strongly ~ nodes, so they convert a diagram into a stronger one.

consistent i-tree, andQo, ~) a subtree ofl which has the same To prove CSup”(S) < X(CSup”[C]), observe first
root as7 and is such that that CSup”(S) = CInf\e(S) by definition of 7", and
o _ 3(CSup”[C]) = =(CSup[C]) because Sup does not change for
* The nodes of)o are pairwise independent, that is any ancestors of. Therefore, it suffices to show
51, 82 € Qo ~(disj (51, 52)) Cinfye () < £(CSup|C])
. o

Then the i-tred™ defined by We prove this condition by distinguishing two cases.

T T [VS € Qu:CInf(S)—CSup(S)] 1. UplInf is not applicable t5. ThenClnfye(S) = Clnf(S) and
) _ L def o the condition follows byCo.
is such that his?™ normal formZye = Ryi¢(7") satisfies 2. Uplnf is applicable toS. Then for some, b where{a, b} =
1T #£14q {1, 2} we have
2T ET Clnfiye(9) CInf'[Qu))

3( ]
3(CInf'[Qa]) + S(CInf[Qs])
2(CInf'[C])
2(CSup[C])

3.VS € Qo. VQ € Splite(S). QN Qo =0 =
S(CInfre Q) < Clnfue(S)

Proof. If we apply[CInf(S")«CSup(S")] to every node5’ of Qo
starting from the root to the leaves, we always main@irCz, Cs
because® and CSup are never modified. We also maintaih
because for each € Qo and each view) € Split(S) such that
there existsS’ € Q N Qo, by —disj’-(S1, S2), we know thatS’ is

INIA A

A.4.3 Completeness of the algorithnSubsumes

Theorem[ Let 7 be a strongly consistent i-tree and léf; for

the only modified node, and atomic formulaA be as defined in Figulgdl2. Thét?, if and only
CInf’(S) = CSup(S) it 7 = A.
> 2(CInf[Q — {S"}]) + CSup(S’) (byCr) The (=) direction of Theorenl4 is trivial by the semantics of i-
=% (CInf'[Q)) diagrams. For<) direction we prove the following characteriza-

On Algorithms and Complexity for Sets with Cardinality Cioaisits 18 2006/5/30



tions:
S £ @y = IM. @(S) £0
k € [CInf(S), CSup(S)] = IM. [@(S)| = k
—(Included(So,C, 7)) = IM. a(So)  Ua[C]
S1 ;é Dag A —‘(51 & 52) = IM. E(Sl) Z 5(52)
S1 # Sy = IM. @(S1) # @(S2)
Dq g {51752} A ﬁdiSj;—(Sh 52) = IM. E(Sl) ﬂa(SQ) 75 1]
TP (S) = IM. a(S)  Z(P)
P ®(S) = IM. a(S) Z Z(P)°

where M denotes a modeM = (A, a, E) of 7. We next present
the remaining lemmas that prove these characterizati@esalso
Sectior¥).

Lemmal[l2 If an i-tree 7 is strongly consistentSy, € S,C €
P(S), andIncluded(So, C, T) returnsfalse then

aM. a(So) Z | JalC]

Proof. Let Qo be the smallest set of nodes such that:

S~ S
S € QoA Q1€ Comp(S)A
Sy € Q1 A —‘Il’lCl(ShC)

=5 € Qo
}:>Sl € Qo

By definition of Incl we know thatQ, N C = (.
Qo is tree-shaped by construction, but may contain two nodes
which are explicitly disjoint. We compute a subtrén of Qo,

by starting from the root and keeping each time at most one son

for each complete view. We also impose tigat containsS, by
avoiding to cut the branch which leadsSo
We then define

T =Ry (T[VS € Q1 : CInf(S)«—CSup(S)])

According to Lemmd]9 (Parallel Bounds Refinement) we have
T #1,.

We then apply LemmB20 to construct a model for the weakly
consistent i-tred”’ such that

VS eS. (zea(s) & S €Qr)
for some element € @(.S). Becauses € )1, we haver € a@(S).
Because&®' N Q1 = 0, we haver ¢ N @[C].m

Lemmal[l3 If an i-tree T is strongly consistent, then for afl € S
and P € PN we have
(+P) € P(S) = IM. METANam(S) L
(=P)¢®(S)=IM. METANam(S) L

E(P)
=(P)°

Proof. Let S € S be such that(+P) ¢ ®(S). We define

Qir™{S" € S|(+P) € ¥(5)}. Using Cio we show that
Included(S, Q+p,T) cannot return true. Then, there exists a
model such that(S) € (Ja[Q+p]). We then change the model
by redefining=" by:

VP € PN. Z'(P)

Uta(s)Is" € Q+r}

to ensure thaE'(P) ¢ @a(S). The case of —P) ¢ ®(9) is
analogous by taking a model such t@&tS) ¢ (Ja[Q-p]) and
redefining=’ by:

VP ePN. 2/ (P)=A—| J{a(s")|s" € Q-»}

Lemma [I8 If an i-tree 7 is strongly consistent, then for all
S1,S2 € Ssuch thatS; # (), Sz # 0 we have

= (disjz (51, 52)) = IM. @(S1) Na(Sz2) # 0.
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Proof. Let 51,52 € S\ {0a} such that—(disj}(S1,S2)). If
S1 = S2 we can find a modeM wherea@(S1) = @(S2) # 0 by
LemmaldD, in this modek(S1) Na(S2) = @(S2) # 0. Suppose
S1 # Ss. DefineSy, S5, So as the unique nodes such tisitis the
least common ancestor 8f and.S in 7, and.S;,S5 € Sons(So)
are the ancestors &f; and S», respectively. We distinguish two
cases:

e 51 andS; do not belong to a same complete view%f Then
apply LemmdD to the subtree

Qo (S eS| 858V S5 S}

whose nodes are pairwise independent by the hypothesis
disj>(S1, S2). The resulting treeZy; satisfies the hypothesis

of Lemma[IB, so there exists a model = (A, «, =) for Tyr

such that

a(S1) Na(S2) # 0.

M is also a model of” becauseZy = 7.
¢ S1 and.S5 belong to a same complete view Define

T YRY(TVS', Sy~ 8" 5 S+ CInf(S") — CSup(S")]
V', Sp <5 §' 5 Sy« Clnf(S")—CSup(S")))
T Ry (T'[CSup” (S) — Clnf'(S)]

By LemmdZl, the¥” = 7 andCSup” (S) < Z(CSup”[C)).
This last property allows us to apply Lemrfal 19 and prove
the existence of a modé\, o, ) for 7 such thatw(S1) N
a(S2) #0.m

B. Example transformation to CBAC constraints
We illustrate the idea of the algorithm in Figuig 2 through an
example of checking the validity of the formula
|[AUB|=|A|+|B|—|AN B
that is, checking the unsatisfiability of the formula
|AUB| # |A| + |B| - |[An B|

This formula has no integer variables initially, so the fatstp does
not apply. Furthermore, all set algebra expressions apezady
within cardinality constraints, so step 2 is unnecessanyelk as
is step 3 because there are no divisibility constraints.

In step 4, we introduce a non-negative integer variable dehe
cardinality term, yielding the system:

tAuB #ia +1iB —iAnB

|1] = MAXC
|AUB| = 1AUB
|A| =1iA

|B| =ig

|AﬂB| = 9ANB

Because the formula is already in the form of a conjunctibare
is no need to non-deterministically guess the conjunctiostép 5,
and we continue with the current constraints.

In step 6, we non-deterministically replace, s # ia + ip —
tanB Withiaup+1 <ia+ip —ianB Oria+ip —ians+1 <
iaup, and we illustrate the first case (the other case needs to be
checked as well unless the satisfying assignment is fourttlen
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first case):
tauB+1 <144 +iB —tanB

|1] = MAXC
|AUB| = 1AUB
|A| ESN

|B| =ig

|AﬂB| = 9ANB

In step 7, we introduce a slack variahlg to eliminate the first
inequation, and transform the equation to normal form:

1AUB — %A — 1B +1anB + 10 = —1

|1] = MAXC
|AU B| = 1AUB
|A| ESN

|Bl =ig

|Aﬂ B| = 9ANB

In step 8, we identifyy = (MAXC,tauB,i4,iB,%4nB,%0) and
haveA = [0,1,—1,—1,1,1] andd = (—1). We havem, = 1,
m1 = 5,n9 = 6,andS = 2. Thereforeyn = 6,n = 6, anda = 1.
From these values we computé = 6 - (6 - 1) = 6'2 < 232,
Therefore, if there exists a solution to the system of equatithere
exists a solution that can be represented by at most 32 ltitaany.

In step 9, we guess non-deterministically a solution vector
bounded byM that satisfies the first equation (thatith = —1).
One such solution i = (101, 100, 77, 40, 10, 6) (written in dec-
imal notation). For this guessed solution, we generateCtRAC

constraint:
[1] = 101

|AU B| = 100
|A] =77
|B| = 40
AN B| =10

This exampleCBAC constraint does not have a solution, and nei-
ther do the remaining examples generated by the non-detistioi
algorithm. The search tree corresponding to the non-détestic
algorithm returns false in all branches, so the formula satisfi-

able, and its negation is valid.

We note that, in this case, the dimensions of the system
of equations are such that the estimaté can be improved
if we consider the system of equations where the variables
MAXC,iauB,%4,18,14np are all substituted into the the original
integer part of theQFBAPA problem. In general, this alternative

. . . ’
estimate is given by’ = n’(m’a’)>™ ! where

m’ = mo

n' = max(ng — mq,2%)

a’ = max ( max |dg],
1<g<mg

mo
max max lapql,

p=1 q€
mo
maxmax( 3 apg, 3
q€Q qeQ
apq>0 apq<0
where@ = {p1,...,pm, } are indices of variables denoting cardi-

nalities (and that are being substituted), de- {1,...,n0} \ R.

In our example,
=1

’
m
’
n
/
a

4
max(1,1,2)
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and M’ = 16, so it suffices to use only 4 bits to represent the
constants in the resultingBAC constraints generated in step 10.
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