Generalized Typestate Checking for Data Structure
Consistency

Patrick Lam, Viktor Kuncak, and Martin Rinard

Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract. We present an analysis to verify abstract set specificafienpro-
grams that use object field values to determine the memipeo$lubjects in ab-
stract sets. In our approach, each module may encapswat@bgata structures
and use membership in abstract sets to characterize host®pgrticipate in its
data structures. Each module’s specification uses setral@@tmulas to charac-
terize the effects of its operations on the abstract sets.pfbgram may define
abstract set membership in a variety of ways; arbitraryyaeasl (potentially with
multiple analyses applied to different modules in the saneggam) may verify
the corresponding set specifications. The analysis we mra@s¢his paper veri-
fies set specifications by constructing and verifying se¢ladg formulas whose
validity implies the validity of the set specifications.

We have implemented our analysis and annotated severatapnsg(75-2500
lines of code) with set specifications. We found that ouringfanalysis algo-
rithm did not scale; this paper describes several optiriaizatthat improve the
scalability of our analysis. It also presents experimediéah comparing the orig-
inal and optimized versions of our analysis.

1 Introduction

Typestate systems [7, 10, 12, 13, 21, 30] allow the type oflgaabd to change during
its lifetime in the computation. Unlike standard type sys$e typestate systems can
enforce safety properties that depend on changing obpeetsst

This paper develops a new, generalized formulation of tgesystems. Instead
of associating a single typestate with each object, ouresyshodels each typestate
as an abstract set of objects. If an object is in a given tgpesit is a member of the
set that corresponds to that typestate. This formulationedtiately leads to several
generalizations of the standard typestate approach. Ifiooonulation, an object can
be a member of multiple sets simultaneously, which promotedularity and types-
tate polymorphism. It is also possible to specify subsetdisidintness properties over
the typestate sets, which enables our approach to suppoartiical typestate classi-
fications. Finally, a typestate in our formulation can benrfally related to a potentially
complex property of an object, with the relationship betwte typestate and the prop-
erty verified using powerful independently developed asedysuch as shape analyses
or theorem provers.

We have implemented the idea of generalized typestate iHobegprogram specifi-
cation and verification framework [23, 24]. This framewoupports the division of the
program into instantiable, separately analyzable modiMeslules encapsulate private

state and export abstract sets of objects that supporbabstiasoning about the encap-
sulated state. Abstraction functions (in the form of adsifrunary predicates over the
encapsulated state) define the objects that participatecim &stract set. Modules also
export procedures that may access the encapsulated stdthéaefore change the con-
tents of the exported abstract sets). Each module usegsbtralexpressions (involving
operators such as set union or difference) to specify theopiditions and postcondi-
tions of exported procedures. As a result, the analysiseficinodules that coordinate
the actions of other modules can reason solely in terms abtperted abstract sets and
avoid the complexity of reasoning about any encapsulatdd.st

When the encapsulated state implements a data structutegsuist, hash table, or
tree), the resulting abstract sets characterize how abpatticipate in that data struc-
ture. The developer can then use the abstract sets to speai§jstency properties that
involve multiple data structures from different modulescBa property might state, for
example, that two data structures involve disjoint objectthat the objects in one data
structure are a subset of the objects in another. In this sayapproach can capture
global sharing patterns and characterize both local arlzhgjttata structure consistency.

The verification of a program consists of the applicationpafténtially different)
analysis plugins to verify 1) the set interfaces of all of thedules in the program and
2) the validity of the global data structure consistencypgrties. The set specifica-
tions separate the analysis of a complex program into inudgre verification tasks,
with each task verified by an appropriate analysis plugii.[@8ir approach therefore
makes it possible, for the first time, to apply multiple spdized, extremely precise,
and unscalable analyses such as shape analysis [27, 2&romanually aided theorem
proving [31] to effectively verify sophisticated typestatnd data structure consistency
properties in sizable programs [23, 31].

Specification Language Our specification language is the full first-order theory of
the boolean algebra of sets. In addition to basic typestaieepties expressible using
quantifier-free boolean algebra expressions, our langcagstate constant bounds on
the cardinalities of sets of objects, such as “a local végigbnot null” or “the con-
tent of the queue is nonempty”, or even “the data structurgados at least one and
at most ten objects”. Because a cardinality constraint toalh objects that satisfy a
given property, our specification language goes beyondiatdritypestate approaches
that use per-object finite state machines. Our specificiimguage also supports quan-
tification over sets. Universal set quantifiers are usefusfating parametric properties;
existential set quantifiers are useful for information hiliNote that quantification over
sets is not directly expressible even in such sophistidategliages as first-order logic
with transitive closure! Despite this expressive power, our set specification laggua
is decidable and extends naturally to Boolean Algebra widsBurger Arithmetic [22].

The Flag Analysis Plugin The present paper describes the flag analysis plugin, which
uses the values of integer and boolean object fields (flagiftoe the meaning of ab-
stract sets. It verifies set specifications by first consimgatet algebra formulas whose

! The first-order logic with transitive closure is the basistef analysis [28]; our modular plug-
gable analysis framework [23] can incorporate an analykerTVLA [28] as one of the anal-
ysis plugins.

validity implies the validity of the set specifications, theerifying these formulas us-
ing an off-the-shelf decision procedure. The flag analykigip is important for two
reasons. First, flag field values often reflect the high-leeslceptual state of the en-
tity that an object represents, and flag changes correspartthhges in the conceptual
state of the entity. By using flags in preconditions of obgoerations, the developer
can specify key object state properties required for theectprocessing of objects
and the correct operation of the program. Unlike standapedtate approaches, our
flag analysis plugin can enforce not only temporal operasiequencing constraints,
but also the generalizations that our expressive set spagtaifin language enables.

Second, the flag analysis plugin can propagate constra@ttgelen abstract sets
defined with arbitrarily sophisticated abstraction fuant in external modules. The
plugin can therefore analyze modules that, as they coarlit@ operation of other
modules, indirectly manipulate external data structuedmdd in those other modules.
The flag analysis can therefore perform the intermoduleorgag required to verify
global data structure invariants such as the inclusion ef @etta structure in another
and data structure disjointness. Because the flag plugsithedoolean algebra of sets
to internally represent its dataflow facts, it can propagatkverify these constraints in
a precise way.

To evaluate our flag analysis, we have annotated severahberk programs with
set specifications. We have verified our benchmarks (in peit)g the flag analysis
algorithm described in Section 3, with MONA [19] as the d&wisprocedure for the
boolean algebra of sets. We found that our original anaalgsrithm did not scale. This
paper describes several optimizations that our analysstoesmprove the running time
of the algorithm and presents experimental data compahnagtiginal and optimized
versions of our analysis.

2 Specification Language

Our system analyzes programs in a type-safe imperativeutagegsimilar to Java or
ML. A program in our language consists of one of more modwdash module has an
implementation section, a specification section, and aalyais-specific) abstraction
section. We next give an overview of the specification sectio

Figure 1 presents the syntax for the specification sectiomoafules in our language.
This section contains a list of set definitions and procedpeeifications and lists the
names of types used in these set definitions and proceducdisatons. Set decla-
rations identify the module’s abstract sets, while booleanable declarations iden-
tify the module’s abstract boolean variables. Each promedpecification contains a
requires, nodi fi es, andensur es clause. The equi r es clause identifies the
precondition that the procedure requires to execute clyrebe ensur es clauses
identifies the postcondition that the procedure ensuresiwhdéed in program states
that satisfy the equi r es condition. Tharodi f i es clause identifies sets whose ele-
ments may change as a result of executing the proceduréné-putposes of this paper,
nmodi fi es clauses can be viewed as a special syntax for a frame-conditinjunct
in theensur es clause. The variables in thensur es clause can refer to both the
initial and final states of the procedure. Botaqui r es andensur es clauses use ar-
bitrary first-order boolean algebra formulBsextended with cardinality constraints. A

free variable of any formula appearing in a module specitioadenotes an abstract set
or boolean variable declared in that specification; it ismaref no such set or boolean
variable has been declared. The expressive power of suatufas is the first-order
theory of boolean algebras, which is decidable [20, 26]. déeidability of the spec-
ification language ensures that analysis plugins can mlggsopagate the specified
relations between the abstract sets.

M ::= spec module m {(type t)*(set S)*(predvar b)* P*}
P = procpn(ps : t1,...,pn : ta)[returnsr : i
[requires B] [modifies S*] ensures B
B .= SE|{ = SE> | SE4 C SE> | card(SE):k
| BAB|BVB|-B|3S.B|VS.B
SE =:=0]|p]|[m]S]|[m]S
| SE, U SE> | SE1NSE> | SE. \ SE-

Fig. 1. Syntax of the Module Specification Language

3 The Flag Analysis

Our flag analysis verifies that modules implement set spadifies in which integer or
boolean flags indicate abstract set membership. The dexredpecifies (using the flag
abstraction language) the correspondence between cerftagtvalues and abstract
sets from the specification, as well as the correspondenaebga the concrete and the
abstract boolean variables. Figure 2 presents the syntaxfdlag abstraction modules.
This abstraction language defines abstract sets in two waystirectly, by stating a
base set; or (2) indirectly, as a set-algebraic combinaifosets.Base setdhave the
form B = {« : T' | z.f=c} and include precisely the objects of typewhose fieldf
has valuec, wherec is an integer or boolean constant; the analysis convertatrons
ofthe fieldf into set-algebraic modifications of the getDerived setsire defined as set
algebra combinations of other sets; the flag analysis hami#eved sets by conjoining
the definitions of derived sets (in terms of base sets) to eagfication condition and
tracking the contents of the base sets. Derived sets mayamecdbase sets in their
definitions, but they may also usaonymousets given by set comprehensions; the flag
analysis assigns internal names to anonymous sets ang treaik values to compute
the values of derived sets.

In our experience, applying several formula transfornretidrastically reduced the
size of the formulas emitted by the flag analysis, as well adithe that the MONA
decision procedure spent verifying these formulas. Sectidescribes these formula
optimizations. These transformations greatly improvedtérformance of our analysis
and allowed our analysis to verify larger programs.

3.1 Operation of the Analysis Algorithm

The flag analysis verifies a moduld by verifying each procedure af/. To verify
a procedure, the analysis performs abstract interpretfijowith analysis domain el-

M ::= abst module m {D* P*}

D :=id=D,;

D, :=D,UD, |D,ND, |id|{x:T|z.f=c}
P ::= predvar p;

Fig. 2. Syntax of the Flag Abstraction Language

ements represented by formulas. Our analysis associatedified boolean formulas
B to each program point. A formul& has two collections of set variables: unprimed
set variablesS denoting initial values of sets at the entry point of the e, and
primed set variableS’ denoting the values of these sets at the current progran goin
may also contain unprimed and primed boolean variabéewl)d’ representing the pre-
and post-values of local and global boolean variables. ®imitions in the abstrac-
tion sections of the module provide the interpretationsheke variables. The use of
primed and unprimed variables allows our analysis to reprie$or each program point
p, a binary relation on states that overapproximates thenedslity relation between
procedure entry ang[6,17,29].

In addition to the abstract sets from the specification, theyasis also generates
a set for each (object-typed) local variable. This set dostthe object to which the
local variable refers and has a cardinality constraint thatricts the set to have car-
dinality at most one (the empty set represents a null reéeehe formulas that the
analysis manipulates therefore support the disambiguafitocal variable and object
field accesses at the granularity of the sets in the analytisr analyses often rely on
a separate pointer analysis to provide this information.

The initial dataflow fact at the start of a procedure is thecpnglition for that pro-
cedure, transformed into a relation by conjoin#ig= S for all relevant sets. At merge
points, the analysis uses disjunction to combine booleandtas. Our current analysis
iterateswhi | e loops at most some constant number of times, then coarserferth
mula tot r ue to ensure termination, thus applying a simple form of widerb]. The
analysis also allows the developer to provide loop invasialirectly.? After running
the dataflow analysis, our analysis checks that the proeazhinforms to its specifica-
tion by checking that the derived postcondition (which irtes theensur es clause
and any required representation or global invariants)datdll exit points of the pro-
cedure. In particular, the flag analysis checks that for exithpointe, the computed
formula B, implies the procedure’s postcondition.

Incorporation. The transfer functions in the dataflow analysis update lzsolermulas

to reflect the effect of each statement. Recall that the datdéicts for the flag analysis
are boolean formula® denoting a relation between the state at procedure entry and
the state at the current program point. L&t be the boolean formula describing the
effect of statement. The incorporation operatioB o B, is the result of symbolically

2 Our typestate analysis could also be adapted to use predibatraction [1,2,16] to synthesize
loop invariants, by performing data flow analysis over thecgpof propositional combinations
of relationships between the sets of interest, and makiagftithe fact that the boolean alge-
bra of sets is decidable. Another alternative is the use afrmal form for boolean algebra
formulas.

composing the relations defined by the formutaand B;. Conceptually, incorporation
updatesB with the effect ofB,. We computeBo B, by applying equivalence-preserving
simplifications to the formula

H;S'Al,...,gn. B[SZ/ — gl] /\BS[Si (g S’l]

3.2 Transfer Functions

Our flag analysis handles each statement in the implementaihnguage by providing
appropriate transfer functions for these statements. Emergc transfer function is a
relation of the following form:

[st](B) = B o F(st),

where F(st) is the formula symbolically representing the transitiofatien for the
statementt expressed in terms of abstract sets. The transition rekfir the state-
ments in our implementation language are as follows.

Assignment statements.We first define a generic frame condition generator, used in
our transfer functions,

frame, = /\ S =S5A /\(p'@p),
S#z, S not derived pExT
where S ranges over sets angover boolean predicates. Note that derived sets are
not preserved by frame conditions; instead, the analysisgoves the anonymous sets
contained in the derived set definitions and conjoins thefiaitions to formulas before
applying the decision procedure.
Our flag analysis also tracks values of boolean variables:

F(b = true) = b’ A framey
F(b = false) = (=b') A framey
Fo=y)= (1 <y)Aframe,
F(b = (ifcond)) = (b’ & fT({if cond))) A frame,
F(o=le) =F(=¢e)o ((b & —b) Aframey)

wheref*(e) is the result of evaluating, defined below in our analysis of conditionals.
We also track local variable object references:

Fx=y)=(x'=y)Aframe, F(x=null) = (x' = 0) A frame,
Fx=newt) =—-(x' =0) A Ag(x' NS =0) A frame,

We next present the transfer function for changing set meshige If R = {z :
T | «.f = ¢} is a set definition in the abstraction section, we have:

F(X.f = C) = RI = R Ux A /\SEQHIS(R) Sl = S \ XA frame{R}U aIts(R)

wherealts(R) = {S | abstraction module contaitts= {z : T | z.f =c¢1},¢1 # ¢.}
The rules for reads and writes of boolean fields are similgimcause our analysis
tracks the flow of boolean values, more detailed:

bABY = Bt Ux) (_‘b/\B_l:B_UX)
F(xf=b)= A
(: < A Nseans@t) §'=9\x A Nseans@-) §'=8\x

Nframe; pyualts(B)
Fb=y1f)= (¥ & ye B")Aframe,.

whereBY = {z: T | z.f =true} andB™ = {x : T | z.f = false}.
Finally, we have some default rules to conservatively antéar expressions not oth-
erwise handled,

F(z.f = x) = frame, F(z = x) = frame,.

Procedure calls. For a procedure cal=pr oc(y) , our transfer function checks that
the callee’s requires condition holds, then incorporgtesc’s ensures condition as
follows:

F(x = proc(y)) = ensures; (proc) A /\ S =8

where bothensures; andrequires; substitute caller attuals for formals pf oc (in-
cluding the return value), and wheferanges over all local variables.

Conditionals. The analysis produces a different formula for each branchandff
statement f (e) . We define functiong™ (¢), f~(e) to summarize the additional in-
formation available on each branch of the conditional; taegfer functions for the true
and false branches of the conditional are thus, respegtivel

[if (e)]"(B)=fT(e)rB [if (e)](B)=/ (e)AB.

For constants and logical operations, we define the obvioug —:

[(true) = true £~ (true) = false
f*(false): false /- (false)ftrue
frle) = f(e) fole)=f7(e)
fr(a!=e) = [~ (z==e) [(at =e) = f+(z==¢)
Frer&&ea) = fr(er) A ff(e2) f(e1&&ea) = f (e1)V f (e2)

We definef*, f~ for boolean fields as follows:

[faf)=zCB fT@f)=2¢B
fH(z.f==false) =z ¢ B [(z.f==false) =z C B

whereB = {z : T' | z.f = true}; analogously, leR = {z : T'| z.f =c}. Then,
ff(e.f==¢)=xCR f (z.f==C)=z ¢ R.
We also predicate the analysis on whether a referentelis or not:
fra==nul) =z =0 f (z==null) = z # 0.
Finally, we have a catch-all condition,
fT(x) =true f~(x) =true

which conservatively captures the effect of unknown caods.

Loops. Our analysis analyzeshi | e statements by synthesizing loop invariants or by
verifying developer-provided loop invariants. To synilzesa loop invariant, it iterates
the analysis of the loop body until it reaches a fixed pointjmtil NV iterations have
occurred (in which case it synthesizege). The conditional at the top of the loop is
analyzed the same wayf statements are analyzed. We can also verify explicit loop

invariants; these simplify the analysiswifii | e loops and allow the analysis to avoid
the fixed point computation involved in deriving a loop inaat. Developer-supplied
explicit loop invariants are automatically conjoined witle frame conditions generated
by the containing procedure’s modifies clause to ease ttaebuwn the developer.

Assertions and Assume Statement§Ve analyze statemeantof the formassert A
by showing that the formula for the program pairimpliesA. Assertions allow devel-
opers to check that a given set-based property holds at@miatiiate point of a proce-
dure. Usingassune statements, we allow the developer to specify propertiaisate
known to be true, but which have not been shown to hold by thédyais. Our analysis
prints out a warning message when it processesune statements, and conjoins the
assumption to the current dataflow fact. Assume statementsgroven to be valuable
in understanding analysis outcomes during the debuggimyasfedure specifications
and implementations. Assume statements may also be usethtounicate properties
of the implementation that go beyond the abstract repratentused by the analysis.

Return Statements.Our analysis processes the statemaitur n x as an assignment
rv = X, wherer v is the name given to the return value in the procedure ddidara
For all return statements (whether or not a value is retyrrad analysis checks that
the current formula implies the procedure’s postcondiiod stops propagating that
formula through the procedure.

3.3 \Verifying Implication of Dataflow Facts

A compositional program analysis needs to verify implicatbf constraints as part
of its operation. Our flag analysis verifies implication whieencounters an assertion,
procedure call, or procedure postcondition. In these sitng, the analysis generates a
formula of the formB = A whereB is the current dataflow fact andlis the claim to
be verified. The implication to be verified? = A, is a formula in the boolean algebra
of sets. We use the MONA decision procedure to check its ialiti8].

4 Boolean Algebra Formula Transformations

In our experience, applying several formula transformmtidrastically reduced the size
of the formulas emitted by the flag analysis, as well as the timeded to determine
their validity using an external decision procedure; intfaome benchmarks could
only be verified with the formula transformations enableldisTsubsection describes
the transformations we found to be useful.

Smart Constructors. The constructors for creating boolean algebra formulas ap-
ply peephole transformations as they create the formulassant folding is the sim-
plest peephole transformation: for instance, attemptngéateB A true gives the for-
mula B. Our constructors fold constants in implications, confions, disjunctions, and
negations. Similarly, attempting to quantify over unusadables causes the quantifier

% Note thatB may be unsatisfiable; this often indicates a problem wittptiogram’s specifica-
tion. The flag analysis can, optionally, check whetBeis unsatisfiable and emit a warning if
itis. This check enabled us to improve the quality of our #pEtions by identifying specifi-
cations that were simply incorrect.

to be dropped3x.F is created as jusk’ whenzx is not free inF'. Most interestingly,

we factor common conjuncts out of disjunctiofst A B) vV (A A C) is represented
asA A (B V (). Conjunct factoring greatly reduces the size of formulasked after

control-flow merges, since most conjuncts are shared on d¢mitrol-flow branches.
The effects of this transformations appear similar to tfeot$ of SSA form conversion
in weakest precondition computation [14, 25].

Basic Quantifier Elimination. We symbolically compute the composition of state-
ment relations during the incorporation step by existégtguantifying over all state
variables. However, most relations corresponding to states modify only a small
part of the state and contain the frame condition that irtdicthat the rest of the state
is preserved. The result of incorporation can thereforerofie written in the form
Jz.x = z1 A F(x), which is equivalent taF'(z4). In this way we reduce both the
number of conjuncts and the number of quantifiers. Moredkiex transformation can
reduce some conjuncts to the form= ¢t for some Boolean algebra terimwhich is a
true conjunct that is eliminated by further simplifications

Itis instructive to compare our technique to weakest prditmm computation [14]
and forward symbolic execution [4]. These techniques atenired for the common
case of assignment statements and perform relation cotigpoand quantifier elimina-
tion in one step. Our technique achieves the same resuls mgthodologically simpler
and applies more generally. In particular, our techniqueteie advantage of equali-
ties in transfer functions that are not a result of analyzisgjgnment statements, but are
given by explicit formulas irensur es clauses of procedure specifications. Such trans-
fer functions may specify more general equalities suchas A’ Uz A B’ = BUz
which do not reduce to simple backward or forward substituti

Quantifier Nesting. We have experimentally observed that the MONA decision pro-
cedure works substantially faster when each quantifierplieghto the smallest scope
possible. We have therefore implemented a quantifier rgestap that reduces the scope
of each quantifier to the smallest possible subformula thatains all free variables
in the scope of the quantifier. For example, our transformnateplaces the formula
Va. Vy. (f(z) = g(y)) with (3z. f(z)) = (Vy. g(y)).

To take maximal advantage of our transformations, we sijfdirmulas after ap-
plying incorporation and before invoking the decision magre. Our global simplifica-
tion step rebuilds formulas bottom-up and applies simglifans to each subformula.

5 Other Plugins

In addition to the flag plugin, we also implemented a shapéyaisgplugin that uses the
PALE analysis tool to verify detailed properties of linkealta structures such as lists
and trees. This plugin represents an extreme case in thisipreof properties that fully
automated analyses can verify. Nevertheless, we weresttst in verifying even more
detailed and precise data structure consistency propekt@mely, we sought to verify
properties of array-based data structures such as haseh talblich are outside the scope
of the PALE tool. We therefore implemented a theorem proypilngin which generates
verification conditions suitable for partially manual feration using the Isabelle proof
checker [31]. One of the goals of this effort is build up adityr of instantiable verified
data structure implementation modules. Ideally, suchrafjbwould eliminate internal

data structure consistency as a concern during developitaaning developers free to
operate exclusively at the level of abstract sets to conatnbn broader application-
specific consistency properties that cut across multipie stauctures.

6 Experience

We have implemented our modular pluggable analysis systepulated it with several
analyses (including the flag, shape analysis, and theorewepplugins), and used the
system to develop several benchmark programs and appheafiable 1 presents a sub-
set of the benchmarks we ran through our system; full detsenip of our benchmarks
(as well as the full source code for our modular pluggabldyaigsystem) are avail-
able at our project homepage latt p: // cag. csail . m t. edu/ ~pl am hob.
Minesweeper and water are complete applications; the ®Hrereither computational
patterns (compiler, scheduler, ctas) or data structunexi¢ons). Compiler models a
constant-folding compiler pass, scheduler models an tipgraystem scheduler, and
ctas models the core of an air-traffic control system. Thedazontroller, and view
modules are the core minesweeper modules; atom, ensemdblr2a are the core wa-
ter modules. Thdold entries indicate system totals for minesweeper and watde; n
that minesweeper includes several other modules, some ichwane analyzed by the
shape analysis and theorem proving plugins, not the flagmlug

Number of Lines Lines

modules of spec of impl
prodcons 41 50
compiler 75 143
scheduler 34 22
ctas 49 53
board 78 168
controller 43 133
view 43 372
minesweepe 7 236 750
atom 31 64
ensemble 164 883
h2o 158 420
water 10 582 1976

Table 1.Benchmark characteristics

We next present the impact of the formula transformatiofintipations, then dis-
cuss the properties that we were able to specify and vertfygminesweeper and water
benchmarks.

6.1 Formula Transformation Optimizations

We analyzed our benchmarks on a 2.80GHz Pentium 4, runningwith 2 gigabytes
of RAM. Table 2 summarizes the results of our formula tramsfation optimizations.

10

Each line summarizes a specific benchmark with a specificnigation configuration.
A vin the “Smart Constructors” column indicates that the sroanistructors optimiza-
tion is turned on; & indicates that it is turned off. Similarly,.din the “Optimizations”
column indicates that all other optimizations are turnegdeor indicates that they are
turned off. The “Number of nodes” column reports the sizestérms of AST node
counts) of the resulting boolean algebra formulas. Ourlteguicate that the formula
transformations reduce the formula size by 2 to 60 time®(oftith greater reductions
for larger formulas); the Optimization Ratio column presahe reduction obtained in
formula size. The “MONA time” column presents the time spienthe MONA deci-
sion procedure (up to 73 seconds after optimization); thad'ime” column presents
the time spent in the flag analysis, excluding the decisioogature (up to 477 seconds
after optimization). Without optimization, MONA could nsticcessfully check the for-
mulas for the compiler, board, view, ensemble and h2o0 medweause of an out of
memory error.

Optimizations Smart Number Optimization MONA Flag
Constructors of nodes ratio time time
prodcons v vV, X 12306 2.46 0.17 0.03
X v, X 30338 1.00 0.27 0.04
compiler v v 15854 32.06 0.45 5.10
v X 28003 18.15 0.60 6.19
X V', X 508375 1.00 N/A 60.27
scheduler v V% 442 2.44 0.05 0.04
X v, X 1082 1.00 0.12 0.14
ctas v V% 2874 3.18 0.21 0.12
X v, X 9141 1.00 12.79 0.33
boarg v v 28658 41.43 1.92 18.89
v X 106550 11.14 11.45 29.27
X v 926321 1.28 N/A 134.94
X X 1187379 1.00 N/A 151.46
controller v v 6759 4.23 0.41 0.18
v X 7101 4.02 0.41 0.18
X v, X 28594 1.00 3.08 0.54
view, v v 15878 59.08 1.07 12.38
v X 53925 17.39 1.45 18.88
X v, X 93800 1.00 N/A 263.15
atom v v 9677 3.14 0.53 0.13
v X 10244 2.97 0.54 0.13
X V', X 30447 1.00 40.95 0.43
ensemble v v 120279 20.60 50.90 34.15
v X 148748 16.66 105.59 47.06
X v, X 2478004 1.00 N/A 464.52
h20 v v 205933 432 73.80 477.01
v X 206167 431 8185 475.86
X v, X 889637 1.00 N/A 1917.99

Table 2. Formula sizes before and after transformation

11

6.2 Minesweeper

We next illustrate how our approach enables the verificatibproperties that span
multiple modules. Our minesweeper implementation hagaéredules: a game board
module (which represents the game state), a controller la@ainich responds to user
input), a view module (which produces the game’s output)egmosed cell module
(which stores the exposed cells in an array), and an unedpmsemodule (which
stores the unexposed cells in an instantiated linked Ti$tgre are 750 non-blank lines
of implementation code in the 6 implementation modules a3@l r®on-blank lines in
the specification and abstraction modules.

Minesweeper uses the standard model-view-controller (Md#&3ign pattern [15].
The boar d module (which stores an array Gel | objects) implements the model
part of the MVC pattern. EacBel | object may be mined, exposed or marked. The
boar d module represents this state information usingitsé ned, i sExposed
andi sMar ked fields of Cel | objects. At an abstract level, the sétsr kedCel | s,

M nedCel | s, ExposedCel | s, UnexposedCel | s, andU (for Universe) repre-
sent sets of cells with various properties; theet contains all cells known to the board.
The board also uses a global boolean variglalee Over , which it sets td r ue when
the game ends.

Our system verifies that our implementation has the follgwpnoperties (among
others):

— The sets of exposed and unexposed cells are disjoint; uthleggame is over, the
sets of mined and exposed cells are also disjoint.

— The set of unexposed cells maintained in blear d module is identical to the set
of unexposed cells maintained in theexposedLi st list.

— The set of exposed cells maintained in bwar d module is identical to the set of
exposed cells maintained in tk& posedSet array.

— Atthe end of the game, all cells are revealeglthe set of unexposed cells is empty.

Although our system focuses on using sets to model prograi®, stot every mod-
ule needs to define its own abstract sets. Indeed, certaimleschay not define any
abstract sets of their own, but instead coordinate theigctif other modules to ac-
complish tasks. The view and controller modules are exasmfiesuch modules. The
view module has no state at all; it queries the board for theectigame state and calls
the system graphics libraries to display the state.

Because these modules coordinate the actions of other swduland do not en-
capsulate any data structures of their own — the analysisesfet modules must oper-
ate solely at the level of abstract sets. Our analysis isldapd ensuring the validity
of these modules, since it can track abstract set membersbie formulas in the
boolean algebra of sets, and incorporate the effects okaw@rocedures as it ana-
lyzes each module. Note that for these modules, our analgsid not reason about any
correspondence between concrete data structure repaieeatand abstract sets.

The set abstraction supports typestate-style reasonirtheatevel of individ-
ual objects (for example, all objects in tlixposedCel | s set can be viewed as
having a conceptual typestakxposed). Our system also supports the notion of
global typestate. Théoar d module, for example, has a globghneQver vari-
able which indicates whether or not the game is over. Theesysises this vari-

12

able and the definitions of relevant sets to maintain theajlotvariantgameOver |
di sj oi nt (M nedCel | s,ExposedCel | s).

This global invariant connects a global typestate propertis the game over? —
with a object-based typestate state property evaluatedbf@acts in the program —
there are no mined cells that are also exposed. Our analygimp verify these global
invariants by conjoining them to the preconditions and pastlitions of methods. Note
that global invariants must be true in the initial state & pnogram. If some initializer
must execute to establish an invariant, then the invarianthe guarded by a global
typestate variable.

Another invariant concerns the correspondence betweerEtip@sedCel | s,
UnexposedCel | s, ExposedSet . Cont ent , andUnexposedLi st . Cont ent
sets:

(ExposedCel | s = ExposedSet. Content) & (UnexposedCells = UnexposedLi st. Content)

Our analysis verifies this property by conjoining it to fresur es andr equi r es
clauses of appropriate procedures. Tear d module is responsible for maintain-
ing this invariant. Yet the analysis of the board module does in isolation, have
the ability to completely verify the invariant: it cannotas®on about the concrete state
of ExposedSet . Cont ent or UnexposedLi st . Cont ent (which are defined in
other modules). However, trensur es clauses of its callees, in combination with its
own reasoning that tracks membership inExg@osedCel | s set, enables our analy-
sis to verify the invariant (assuming thHatposedSet andUnexposedLi st work
correctly).

Our system found a number of errors during the developmeht@intenance of
our minesweeper implementation. We next present one of thresrs. At the end of the
game, minesweeper exposes the entire game board; weeusw eFi r st to remove
all elements from the unexposed list, one at a time. After esehexposed the entire
board, we can guarantee that the list of unexposed cellspsyem

proc drawFi el dEnd()
requi res ExposedList.setlnit & Board.gameOver &
(UnexposedLi st. Content <= Board. U)
nodi fi es UnexposedLi st. Content, Board. ExposedCel | s,
Boar d. UnexposedCel | s, ExposedLi st. Content,
UnexposedLi st . Cont ent
ensures card(UnexposedLi st. Content’) = O;

because the implementation of theawFi el dEnd procedure loops untilsEnpt y
returnst r ue, which also guarantees that thimexposedLi st. Cont ent set is
empty. The natural way to write the iteration in this proocedwould be:

whi | e (UnexposedList.isEmty()) {
Cell ¢ = UnexposedLi st.renpveFirst();
drawCel | End(c);

}

and indeed, this was the initial implementation of that cddewever, when we at-
tempted to analyze this code, we got the following error ragss

Anal yzi ng proc drawFi el dEnd. . .
Error found anal yzi ng procedure draw-i el dEnd:
requires clause in a call to procedure View. drawCel | End.

13

Upon further examination, we found that we were breakingrtkiariant ensuring that
Boar d. ExposedCel | s equalsUnexposedLi st. Cont ent . The correct way to

preserve the invariant is by calliidpar d. set Exposed, which simultaneously sets
thei sExposed flag and removes the cell from tlumexposedLi st :

Cell ¢ = UnexposedList.getFirst();
Boar d. set Exposed(c, true);
drawCel | End(c);

6.3 Water

Water is a port of the Perfect Club benchmark MDG [3]. It usgsedictor/corrector
method to evaluate forces and potentials in a system of watégcules in the liquid
state. The central loop of the computation performs a tirap simulation. Each step
predicts the state of the simulation, uses the predictéel i@ompute the forces acting
on each molecule, uses the computed forces to correct tdepoa and obtain a new
simulation state, then uses the new simulation state to atntpe potential and kinetic
energy of the system.

Water consists of several modules, including teenparm atom H20,
ensenbl e, andnmai n modules. These modules contain 2000 lines of implementa-
tion and 500 lines of specification. Each module defines setbaolean variables; we
use these sets and variables to express safety propentigstae computation.

The si npar mmodule, for instance, is responsible for recording simoiapa-
rameters, which are stored in a text file and loaded at theafttite computation. This
module defines two boolean variablesj t andPar nsLoaded. If | ni t istrue, then
the module has been initializede. the appropriate arrays have been allocated on the
heap. IfPar nsLoaded is true, then the simulation parameters have been loaded fro
disk and written into these arrays. Our analysis verifiestth@program does not load
simulation parameters until the arrays have been allo@atddioes not read simulation
parameters until they have been loaded from the disk antewiiitto the arrays.

The fundamental unit of the simulation is the atom, whichrisapsulated within
theat ommodule. Atoms cycle between tipgedictedand correctedstates, with the
predi ¢ andcor rec procedures performing the computations necessary toteffec
these state changes. A correct computation will only ptedéorrected atom or correct
a predicted atom. To enforce this property, we define twoRe&sdi ¢ andCor r ec
and populate them with the predicted and corrected atorsgeotively. Thecor r ec
procedure operates on a single atom; its precondition resjtiis atom to be a mem-
ber of thePr edi c set. Its postcondition ensures that, after successful tiiop, the
atom is no longer in th®r edi ¢ set, but is instead in th€or r ec set. Thepr edi ¢
procedure has a corresponding symmetric specification.

Atoms belong to molecules, which are handled by It#2€ module. A molecule
tracks the position and velocity of its three atoms. Likensdpeach module can be in
a variety of conceptual states. These states indicate mptdrether the program has
predicted or corrected the position of the molecule’s atbuislso whether the program
has applied the intra-molecule force corrections, whetheas scaled the forces acting
on the molecule, etc. We verify the invariant that when théemale is in the predicted
or corrected state, the atoms in the molecule are also irathe state. The interface of
theH2Omodule ensures that the program performs the operationaanmolecule in

14

the correct order — for example, thadr y procedure may operate only on molecules
in the Ki neti set (which have had their kinetic energy calculated bykheet i
procedure).

Theensenbl e module manages the collection of molecule objects. Thisuteod
stages the entire simulation by iterating over all molesaad computing their posi-
tions and velocities over time. The ensemble module usello@redicates to track
the state of the computation. When the boolean prediciéERF is true, for exam-
ple, then the program has completed the interforce comput&ir all molecules in
the simulation. Our analysis verifies that the boolean jgadds, representing program
state, satisfy the following ordering relationship:

Init ~ N Tl A~ PREDI C~> | NTRAF ~» VI R~» | NTERF ~» - - -

Our specification relies on an implication from boolean rates to properties rang-
ing over the collection of molecule objects, which can beueed by a separate array
analysis plugin [23].

These properties help ensure that the computation’s plex®esite in the correct
order; they are especially valuable in the maintenancegbba program’s life, when
the original designer, if available, may have long sincgétten the program’s phase
ordering constraints. Our analysis’ set cardinality caaists also prevent empty sets
(and null pointers) from being passed to procedures thaaxmpn-empty sets or non-
null pointers.

7 Related Work

Typestate systems track the conceptual states that eagtt giojes through during its
lifetime in the computation [7,9-12, 30]. They generalitanslard type systems in that
the typestate of an object may change during the computaiitasing (or more gen-
erally, any kind of sharing) is the key problem for typesttetems — if the program
uses one reference to change the typestate of an objecypistdte system must en-
sure that either the declared typestate of the other refeseis updated to reflect the
new typestate or that the new typestate is compatible wélotth declared typestate at
the other references.

Most typestate systems avoid this problem altogether loyiediting the possibility
of aliasing [30]. Generalizations support monotonic typtschanges (which ensure
that the new typestate remains compatible with all existiigses) [12] and enable
the program to temporarily prevent the program from usingteo$ potential aliases,
change the typestate of an object with aliases only in thattsn restore the typestate
and reenable the use of the aliases [10]. It is also possidapport object-oriented
constructs such as inheritance [8]. Finally, in the roldeys the declared typestate of
each object characterizes all of the references to the pljbich enables the typestate
system to check that the new typestate is compatible wittealkining aliases after a
nonmonotonic typestate change [21].

In our approach, the typestate of each object is determigéts btmembership in
abstract sets as determined by the values of its encapsfiletds and its participation
in encapsulated data structures. Our system supportsalieaéons of the standard
typestate approach such as orthogonal typestate conguoaitd hierarchical typestate

15

classification. The connection with data structure paoitton enables the verification
of both local and global data structure consistency pragsert

8 Conclusion

Typestate systems have traditionally been designed ta@nf&afety conditions that
involve objects whose state may change during the courdeeatdmputation. In par-
ticular, the standard goal of typestate systems is to erikateperations are invoked
only on objects that are in appropriate states. Most exjstipestate systems support a
flat set of object states and limit typestate changes in thegprice of sharing caused by
aliasing. We have presented a reformulation of typestatiesys in which the typestate
of each object is determined by its membership in abstragedtate sets. This refor-
mulation supports important generalizations of the tygestoncept such as typestates
that capture membership in data structures, compositetyes in which objects are
members of multiple typestate sets, hierarchical typestaind cardinality constraints
on the number of objects that are in a given typestate. Inahtegt of our Hob modular
pluggable analysis framework, our system also enablespthefication and effective
verification of detailed local and global data structureststency properties, including
arbitrary internal consistency properties of linked anédybased data structures. Our
system therefore effectively supports tasks such as utaaheliag the global sharing
patterns in large programs, verifying the absence of unalglsi interactions, and en-
suring the preservation of critical properties necessaryte correct operation of the
program.

AcknowledgementsThis research was supported by the DARPA Cooperative Agree-
ment FA 8750-04-2-0254, DARPA Contract 33615-00-C-1682 Singapore-MIT Al-
liance, and the NSF Grants CCR-0341620, CCR-0325283, afd@B6154.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auotatic predicate abstraction of
C programs. IrProc. ACM PLDI 2001.

2. T. Ball, A. Podelski, and S. K. Rajamani. Relative comgetss of abstraction refinement
for software model checking. MACAS’02 volume 2280 of NCS page 158, 2002.

3. W. Blume and R. Eigenmann. Performance analysis of jgdizatlg compilers on the Perfect
Benchmarks programdEEE Transactions on Parallel and Distributed SysteB($):643—
656, Nov. 1992.

4. L. Clarke and D. Richardson. Symbolic evaluation metHodgrogram analysis. |Rro-
gram Flow Analysis: Theory and Applicatigréhapter 9. Prentice-Hall, Inc., 1981.

5. P. Cousot and R. Cousot. Systematic design of progranyaasdtameworks. IfProc. 6th
POPL, pages 269-282, San Antonio, Texas, 1979. ACM Press, Nely Mf.

6. P. Cousot and N. Halbwachs. Automatic discovery of limeatraints among variables of a
program. InConference Record of the Fifth Annual ACM SIGPLAN-SIGAGi#®gium on
Principles of Programming Languagegages 84-97, Tucson, Arizona, 1978. ACM Press,
New York, NY.

7. R. DeLine and M. Fahndrich. Enforcing high-level praifscin low-level software. IfProc.
ACM PLDI, 2001.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.
25.
26.
27.
28.
29.

30.

31.

. R. DeLine and M. Fahndrich. Typestates for object®rioc. 18th ECOOPJune 2004.
. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, #dsiannini. Fickle: Dynamic

object re-classification. IRroc. 15th ECOOPLNCS 2072, pages 130-149. Springer, 2001.
M. Fahndrich and R. DeLine. Adoption and focus: Pratficear types for imperative
programming. IrProc. ACM PLDI 2002.

M. Fahndrich and K. R. M. Leino. Declaring and checkirgnimull types in an object-
oriented language. IRroceedings of the 18th ACM SIGPLAN conference on Objéetimd
programing, systems, languages, and applicatigmagies 302-312. ACM Press, 2003.

M. Fahndrich and K. R. M. Leino. Heap monotonic typesgatininternational Workshop
on Aliasing, Confinement and Ownership in object-orient@gjmmming (IWACQ)2003.

J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestatification: Abstraction tech-
nigues and complexity results. 8tatic Analysis, 10th International Symposium, SAS 2003,
San Diego, CA, USA, June 11-13, 2003, Proceedivgsme 2694 of_ecture Notes in Com-
puter ScienceSpringer, 2003.

C. Flanagan and J. B. Saxe. Avoiding exponential expiogsenerating compact verification
conditions. InProc. 28th ACM POP|2001.

E. Gamma, R. Helm, R. Johnson, and J. VlissiBesign Patterns. Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, Reading, Mass., 1994.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillakbstractions from proofs. In
31st POPL.2004.

B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relati@amproach to interprocedural
shape analysis. Ihlth SAS2004.

N. Klarlund and A. MgllerMONA Version 1.4 User ManuaBRICS Notes Series NS-01-1,
Department of Computer Science, University of Aarhus, daan@001.

N. Klarlund, A. Mgller, and M. I. Schwartzbach. MONA ingphentation secrets. roc.
5th International Conference on Implementation and Agpian of AutomataLNCS, 2000.
D. Kozen. Complexity of boolean algebra§heoretical Computer Scienc#0:221-247,
1980.

V. Kuncak, P. Lam, and M. Rinard. Role analysisPhoc. 29th POPL.2002.

V. Kuncak and M. Rinard. The first-order theory of setdweirdinality constraints is decid-
able. Technical Report 958, MIT CSAIL, July 2004.

P. Lam, V. Kuncak, and M. Rinard. On our experience wittdutar pluggable analyses.
Technical Report 965, MIT CSAIL, September 2004.

P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob projectbwpage.
http://hob.csail.mit.edu, 2004.

K. R. M. Leino. Efficient weakest preconditions. KRMLH1£2003.

L. LoewenheimUber mogligkeiten im relativkalkiilMath. Annalen76:228-251, 1915.

A. Mgller and M. |. Schwartzbach. The Pointer Assertiagic Engine. InProgramming
Language Design and Implementati@901.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape aisalya 3-valued logic. ACM
TOPLAS 24(3):217-298, 2002.

M. Sharir and A. Pnueli. Two approaches to interprocaidimta flow analysis problems. In
Program Flow Analysis: Theory and Applicatior®rentice-Hall, Inc., 1981.

R. E. Strom and S. Yemini. Typestate: A programming lagguconcept for enhancing
software reliability.|IEEE TSE January 1986.

K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theogroving with static anal-
ysis for data structure consistency. liternational Workshop on Software Verification and
Validation (SVV 2004)Seattle, November 2004.

17

