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Abstract

Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. To inte-

grate synthesis into programming languages, synthesisitims

should behave in a predictable way—they should succeed for a

well-defined class of specifications. They should also stppo
bounded data types such as numbers and data structuresoWe pr
pose to generalize decision procedures into predictatdecam-
plete synthesis procedures. Such procedures are guatdaotted
code that satisfies the specification if such code existsebiar,
we identify conditions under which synthesis will statlgalecide
whether the solution is guaranteed to exist, and whetheuitique.
We demonstrate our approach by starting from decision proes
for linear arithmetic and data structures and transforrttiegn into
synthesis procedures. We establish results on the sizehareffi-
ciency of the synthesized code. We show that such proceduoees
useful as a language extension with implicit value defingicand
we show how to extend a compiler to support such definitions. O
constructs provide the benefits of synthesis to programméitis-
out requiring them to learn new concepts or give up a detésiicn
execution model.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1¢gics and Meaning
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages, Verification

1. Introduction

Synthesis of software from specifications [MW71, MW80]
promises to make programmers more productive. Despitdaubs
tial recent progress [SLTB06, SLJB08, VYY09, SGF10], synthe-
sis is limited to small pieces of code. We expect that thi eadh-
tinue to be the case for some time in the future, for two resison
1) synthesis is algorithmically a difficult problem, and 2hthesis
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requires detailed specifications, which for large progréesome
difficult to write.

We therefore expect that practical applications of syrighesin
its integration into the compilers of general-purpose paogning
languages. To make this integration feasible, we aim totifyen
well-defined classes of expressions and synthesis algwsigbar-
anteed to succeefrr these classes of expressions, just like a com-
pilation attempt succeeds for any well-formed program. Sart-
ing point for such synthesis algorithms akecision procedures

A decision procedure for satisfiability of a class of fornaude-
cepts a formula in its class and checks whether the formudaaha
solution. On top of this basic functionality, many decisjmoce-
dure implementations provide the additional feature ofegating
a satisfying assignment (a model) whenever the given farnul
satisfiable. Such a model-generation functionality hasymeses,
including better error reporting in verification [Mos09]catest-
case generation [AGTO08].

Model generation could also be used as an advanced computa-
tion mechanism—given a set of values for some of the vargable
a constraint solver can at run-time find the values of the ineimg
variables such that a given constraint holds. A recent elaip
integrating such a mechanism into a programming languagthar
quotations of theF'# language [SGCO07] used to interface to the
Z3 satisfiability modulo theories (SMT) solver [B08]. Suclech-
anisms promise to bring the algorithmic improvements of SMT
solvers to declarative paradigms such as Constraint Logie P
gramming [JM94]. However, they involve a possibly unpreatide
search at run-time, and require the deployment of the ed&og
sion procedure as a component of the run-time system.

Our goal is to provide the benefits of the declarative appgroac
in a more controlled way: we aim to run a decision procedure
at compile timeand use it to generate code. The generated code
then computes the desired values of variables at run-timis. |
thus specific to the desired constraint, and can be moreesgftici
It does not require the decision procedure to be presenhaime,
and gives the developer static feedback by checking theitbomsl
under which the generated solution will exist and be unidie.
use the ternsynthesidor our approach because it starts from an
implicit specification, and involves compile-time precautggion.
Because it computes a function that satisfies a given inpipi/io
relation, we call our synthesiinctional in contrast to reactive
synthesis approaches [PR89] (another term for the genieeatidn
of our approach is AE-paradigm or Skolem paradigm [PR89]).
Finally, we call our approacbhompletebecause it is guaranteed to
work for all specification expressions from a well-specifidaks.

We demonstrate this approach by describing our synthesis al
gorithms for the domains of linear arithmetic and collectiof
objects. We have implemented these synthesis algorithehslen
ployed them as a compiler extension of the Scala programlaimg
guage [OSV08]. We have found that using such constraintseve w
able to express a number of program fragments in a more hatura



way, stating the invariants that the program should satsfpp-
posed to the computation details of establishing theseiavis.

In the area of integer arithmetic, we obtain a language siten
that can implicitly define integer variables to satisfy giveon-
straints. The applications of integer arithmetic synthésclude
conversions of quantities expressed in terms of multipiésuas
well as a substantially more general notion of pattern niagch
on integers, going well beyond matching on constant&wo+ &)-
patterns of Haskell.

In the area of data structures, we describe a synthesiscanaze
that can compute sets of elements subject to constraintessex
in terms of basic set operations (union, intersection, fefrdnce,
subset, equality) as well as linear constraints on sizegtsf $Ve
have found these constraints to be useful for manipulatitg of
objects in high-level descriptions of algorithms, from plmoper-

ations such as choosing an element from a set or a fresh elemen

or splitting sets subject to size constraints. Such cootstrarise
in pseudo code notations, and they provide a useful addition
the transformations previously developed for the SETL paog
ming language [Dew79, Sha82]. Regarding data structursspa-
per focuses on sets, but the approach applies to other anstfor
which decision procedures are available [KPSW10], ineiganul-
tisets [PK08a, PK08b, YPK10] and algebraic data types [SI}K1

Contributions. This paper makes the following contributions.

6. We show that the synthesis for integer arithmetic can be ex

tended to the non-linear case where coefficients multiglyin
output variables are expressions over parameters thahevek
only at run-time. We have implemented this extension ané hav
found that it increases the range of supported specification
shows that we can have complete functional synthesis fa@i-spe
fications for which the satisfiability over the space of aligra-
eters is undecidable.

. We also present an implemented synthesis procedure for
Boolean Algebra with Presburger Arithmetic (BAPA), a logic
of constraints on sets and their sizes. This algorithmtifues
that complete functional synthesis applies not only to miime
cal computations, but also to the very important domain ¢d da
structure manipulations. This result also illustratesittea of
the composition of synthesis procedur&ghile the implemen-
tations of BAPA decision procedures work by reduction to in-
teger arithmetic decision procedures [KNRO6, KRO7], wesher
show how to build a synthesis procedure for BAPA on top of
our synthesis procedure for integer linear arithmetic.

. We describe our experience in using synthesis as a plogin f
the Scala compiler. Our implementation is publicly avdi&ab
at http://lara.epfl.ch/dokuwiki/comfusy and can be
used as a starting point for the development of further ®gith
approaches.

1. We describe an approach for deploying algorithms fortsgmt

2. Example

sis within programming languages. Our approach introdaces We first_illustr_ate the use of a syn_thesis procedure for teg
higher-order library functiorhoose of type (a: = bool) = a, Ilnear arithmetic. Consider the foII.0W|ng exgmple to breakvn a
which takes as an argument a specification, given as an expres 9Iven number of seconds (stored in the varialec) into hours,
sion\z.F of typea = bool. Our compiler extension rewrites ~ Minutes, and leftover seconds.

calls tochoose into efficient code that finds a valueof type «

such thatF is true. The generated code computess a func-
tion of the free variables (parameters) of the expression

This deployment is easy to understand by programmers becaus . o
it has the same semantics as invoking a constraint solvanatr ~ OUr synthesizer succeeds, because the constraint is geiriteear
time. It does not impact the semantics or efficiency of exgsti ~ arithmetic. However, the synthesizer emits the followirgrming:
programming language constructs, because the executtén ou synthesis predicate has multiple solutions

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) =
h % 3600 + m * 60 + s == totsec &&

0<m&&m<60 &&

0 <s&&s<60)

sidechoose remains unchanged. for variable assignment: totsec = 0
. Building on thechoose primitive, we show how to support pat- Solution 1: h =0, m =0, s =0
Solution 2: h = -1, m = 59, s = 60

tern matching expressions that are substantially moreesxpr
sive than the existing ones, using the full expressive pafer

> The reason for this warning is that the boundsrrands are
the term language of a decidable theory.

not strict. After correcting the error in the specificatioaplac-
. We describe a methodology to convert decision procedares  ing m < 60 with m < 60 ands < 60 with s < 60, the synthesizer
a class of formulas intsynthesis procedurethat can rewrite ~ emits no warnings and generates code corresponding toltbe-fo
the corresponding class of expressions into efficient eabtei Ing:
code. Most existing procedures based on quantifier elinoimat

. val (hours, minutes, seconds) = {
are directly amenable to our approach.

val locl = totsec div 3600

val num2 = totsec + ((—3600) =* locl)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((—3600) * locl) + (—60 * loc2)
(locl, loc2, loc3)

. As afirst illustrative example, we describe synthesisgdares
for propositional logic and rational arithmetic. We shovatth
compared to invocations of constraint solvers at run-tithe,
synthesized code can have better worst-case complexihein t
number of variables. This is because our synthesis proeedur ) .
converts (at compile time) a given constraint into a sohadhf The absence of warnings guarantees that the solution al-
that can be executed, avoiding most of the run-time seateh. T Ways exists and that it is unique. By writing the code in

synthesized code is guaranteed to be correct by constuctio ~ this style, the developer directly ensures that the coomliti
. i h % 3600 + m * 60 + s == totsec will be satisfied, making pro-
- As our core implemented example, we present synthesis for gam understanding easier. Note that, if the developer semthe
linear arithmetic over unbounded integers. Given an intege qnstraint
linear arithmetic formula and a separation of variable® int

output variables and parameters, our procedure constijets v (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) =

h % 3600 + m * 60 + s == totsec &&

program that computes the values of outputs given the values
inputs, and 2) the weakest possible precondition on infnas t
guarantees the existence of outputs.

<h< 24 &&
m && m < 60 &&

<
< s && s < 60)



our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions e
totsec parameter is too large.

In addition to thechoose function, programmers can use syn-
thesis for more flexible pattern matching on integers. Irstixgy
deterministic programming languages, matching on integiher
tests on constant types, or, in the case of Haskell's k) patterns,
on some very special forms of patterns. Our approach support
much richer set of patterns, as illustrated by the followfasgt ex-
ponentiation code that does case analysis on whether thenarg
is even or odd:

def pow(base :
def fp(m : Int, b : Int, i
case 0 = m
case 2xj = fp(m, bxb, j)
case 2xj+1 = fp(mxb, bxb, j)
}
fp(1,base,p)

}

The correctness of the function follows from the observatioat
fp(m, b, i) = mb*, which we can prove by induction. Indeed, if we
consider the casex j + 1, we observe:

fp(m,b,i) = fp(m,b,2j+ 1) = fp(mb,b?, j)
(by induct. hypothesis) mb(b?) = mb¥ I+ = mb'

Note how the pattern matching on integer arithmetic exjpoass
exposes the equations that make the inductive proof simpiher
pattern matching compiler generates the code that dec@sjpos
into the appropriate new exponegntMoreover, it checks that the
pattern matching is exhaustive. The construct supporisamnpex-
pressions of linear integer arithmetic, and can prove famgpie
that the set of patterrs* k, 3 x k, 6 x k — 1, 6 x k + 1 is exhaus-
tive. The system also accepts implicit definitions, such as

val 42 x x + 5 xy =2z

Int, p : Int)

=1
s Int)

= i match {

The system ensures that the above definition matches evegein
z, and emits the code to computeandy from z.

Our approach and implementation also work for parametgrize
integer arithmetic formulas, which become linear only otheepa-
rameters are known. For example, our synthesizer accepfolth
lowing specification that decomposes an offset of a linganesen-
tation of a three-dimensional array with statically unkmogimen-
sions into indices for each coordinate:
val (x1, y1, z1) = choose((x: Int, y: Int, z: Int) =

offset == x + dimX *x y + dimX * dimY * z &&
0 < x && x < dimX &&
0<y&&y<dimY &&

0<z&&z<dimZ)

Here dimX, dimY, dimZ are variables whose value is unknown
until runtime. Note that the satisfiability of constraintsat con-
tain multiplications of variables is in general undecigabh such
parameterized case our synthesizer is complete in the $ease
it generates code that 1) always terminates, 2) detectatme
whether a solution exists for current parameter values3aedm-
putes one solution whenever a solution exists.

In addition to integer arithmetic, other theories are arbna
to synthesis and provide similar benefits. Consider thelpnolof
splitting a set collection in a balanced way. The followingde
attempts to do that:
val (al,a2) = choose((al:Set[O],a2:Set[O]) =

al union a2 == s && al intersect a2 == empty &&
al.size == a2.size)

It turns out that for the above code our synthesizer emitsraing
indicating that there are cases where the constraint haslutions.
Indeed, there are no solutions when thessistof odd size. If we
weaken the specification to

val (al,a2) = choose((al:Set[0],a2:Set[O]) =
al union a2 == s && al intersect a2 == empty &&
al.size — a2.size < 1 &&

a2.size — al.size < 1)

then our synthesizer can prove that the code has a solution fo
all possible input sets. The synthesizer emits code that, for each
input, computes one such solution. The nature of consgraimsets

is that if there is one solution, then there are many solsti@ur
synthesizer resolves these choices at compile time, whigdins
that the generated code is deterministic.

3. From Decision to Synthesis Procedures

We next define precisely the notion of a synthesis procedude a
describe a methodology for deriving synthesis procedures f
decision procedures.

Preliminaries. Each of our algorithms works with a set of for-
mulas, Formulas, defined in terms of termsJerms. Formulas
denote truth values, whereas terms and variables denatesval
from the domain (e.g. integers). We denote the set of vasabl
by Vars. FV(q) denotes the set of free variables in a formula or
atermg. If ¥ = (z1,...,z,) thenZ, denotes the set of vari-
ables{z1,...,z,}. If g is a term or formulaZ = (z1,...,2n)

a vector of variables antl= (¢1,...,t,) a vector of terms, then
q[T := 1] denotes the result of substituting jrthe free variables
x1,...,Tn Withtermsty, .. ., t,, respectively. Given a substitution
o : FV(F) — Terms, we write Fo for the result of substituting
eachz € FV(F) with o(x). Formulas are interpreted over ele-
ments of a first-order structuf with a countable domai®. We
assume that for each € D there exists a ground term whose
interpretation irD is e; let C' = {c. | e € D}. We further assume
that if ' € Formulas then alsoF'[z := ¢.] € Formulas (the class
of formulas is closed under partial grounding with constant

The choose programming language constructWe integrate into
a programming language a construct of the form

7 = choose(Z = F)

@
Here F' is a formula (typically represented as a boolean-valued
programming language expressions) ahd = F denotes an
anonymous function fron to the value ofF' (that is,\Z.F’). Two
kinds of variables can appear withifi: output variablest and
parametersi. The parameterg are program variables that are in
scope at the point wherhoose occurs; their values will be known
when the statement is executed. Output variaBleenote values
that need to be computed so tliabecomes true, and they will be
assigned to’ as a result of the invocation ehoose.

We can translate the abovkoose construct into the following

sequence of commands in a guarded command language [Dij76]:
assert (3Z.F);

havoc (7);

assume (F[Z :=7]);

The simplicity of the above translation indicates that itnetu-
ral to representhoose within existing verification systems (e.g.
[FLL*02, ZKRO8]) The use othoose can help verification be-
cause the desired properfyis explicitly assumed and can aid in
proving the subsequent program assertions.

Model-generating decision proceduresAs a starting point for
our synthesis algorithms fothoose invocations we consider a



model-generating decision procedure. Givene Formulas we
expect this decision procedure to produce either

a) a substitutior : FV(F) — C such thatF'o is a true, or
b) a special valuensat indicating that the formula is unsatisfiable.

We assume that the decision procedure is deterministic eimaMes
as a function. We writeZ (F')=0 or Z(F)=unsat to denote the
result of applying the decision procedurefo

Baseline: invoking a decision procedure at run-time.Just like

an interpreter can be considered as a baseline implemanfati

a compiler, deploying a decision procedure at run-time can b
considered as a baseline for our approach. In this scenago,
replace the invocation of (1) with

F = makeFormulaTree(makeVars(Z), makeGroundTerms(a));
7= (Z(F) match {

case 0 = (0(x1),...,0(xn))

case unsat = throw new Exception(” No solution exists")

1

The dynamic invocation approach is flexible and useful. Hare
there are important performance and predictability achged of
an alternativeompilationapproach.

Synthesis based on decision procedure©ur goal is therefore
to explore a compilation approach where a modified decision p
cedure is invoked at compile time, converting the formuta ia
solved form.

DerFINITION 1 (Synthesis Procedure)Ve denote an invocation of
a synthesis procedure ¢, F'] = (pre, ¥). A synthesis procedure
takes as input a formul&’ and a vector of variableg and outputs
a pair of

1. a precondition formulgre with FV(pre) C FV(F) \ Zs

2. atuple of termal with FV(¥) C FV(F) \ &,

such that the following two implications are valid:

(3Z.F) — pre
pre — F[Z:=Y]

OBSERVATION 2. Because another implication always holds:
F[#:= U] — 3Z.F

the above definition implies that the three formulas are gliie-
alent: (3Z.F), pre, F[T := \17]. Consequently, if we can define
a functionwitn where forwitn(Z, F) = ¥ we haveFV(¥) C
FV(F) \ Zs and 3Z.F implies F'[Z := V], then we can define a
synthesis procedure by

[Z, F] = (F[Z := witn(Z, F)], witn(Z, F))

The reason we use the translation that compptesn addition to
witn(Z, F') is that the synthesizer performs simplifications when
generatingre, which can produce a formula faster to evaluate than
F[% := witn(Z, F)].

The synthesizer emits the ternds in compiler intermediate
representation; the standard compiler then processes hamg
with the rest of the code. We identify the syntax treeloith its
meaning as a function from the paramet@éte the output variables
Z. The overall compile-time processing of the choose stateig
involves the following:

1. emit a non-feasibility warning if the formutapre is satisfiable,
reporting the counterexample for which the synthesis @bl
has no solutions;

2. emit a non-unigueness warning if the formula
FAFZ:=yINZ#Y

is satisfiable, reporting the values of all free variablesaas
counterexample showing that there are at least two sokjtion

3. as the compiled code, emit the code that behaves as

assert(pre); 7 = ¥

The existence of a model-generating decision procedurkamp
the existence of a ‘trivial’ synthesis procedure, whichis$egs
Definition 1 but simply invokes the decision procedure attiore.
The usefulness of the notion of synthesis procedure conoas fr
the fact that we can often create compiled code that avoids th
trivial solution. Among the potential advantages of the pdation
approach are:

e improved run-time efficiency, because part of the reasoising
done at compile-time;

e improved error reporting: the existence and uniquenesslof s
tions can be checked at compile time;

e simpler deployment: the emitted code can be compiled to &iny o
the targets of the compiler, and requires no additionaltinne-
support.

This paper therefore pursues the compilation approacho”Ahé
processing of more traditional programming language coot,
we do believe that there is space in the future for mixed augives,
such as ‘just-in-time synthesis’ and ‘profiling-guided gyesis’.

Efficiency of synthesis. We introduce the following measures to
quantify the behavior of synthesis procedures:

e time to synthesize the code, as a functiorFopf
¢ size of the synthesized code, as a functiodof

* running time of the synthesized code as a functiod’'adnd a
measure of the run-time valuesaf

When usingF' as the argument of the above measures, we often
consider not only the size of, but also the dimension of the
variable vectorr and the parameter vectarin F.

From quantifier elimination to synthesis. The preconditiorpre
can be viewed as a result of applying quantifier eliminatisee(
e.g. [Nip08]) to remover from F, with the following differences.

1. Synthesis procedures strengthen quantifier elimingiroce-

dures by identifying not onlyre but also emitting the cod@
that efficiently computes witnessfor .

2. Quantifier elimination is typically applied to arbitragganti-
fied formulas of first-order logic and aims to successiveimel
inate all variables. To enable recursive application ofalde
elimination, pre must be in the same language of formulas as
F'. This condition is not required in our case.

3. Worst-case bounds on quantifier elimination algorithngsam
sure the size of the generated formula and the time needed to
generate it, but not the size df or the time to evaluatab.

For some domains, it can be computationally more difficult to
compute (or even ’print’) the solution than to simply chebk t
existence of a solution.

Despite the differences, we have found that we can natuealy
tend existing quantifier elimination procedures with esiplcom-
putation of witnesses that constitute the prograim



4. Selected Generic Techniques

We next describe some basic observations and techniqusgrfor
thesis that are independent of a particular theory.

4.1 Synthesisfor Multiple Variables

Suppose that we have a functieritn(x, F') that corresponds to
constructive quantifier elimination step for one variabhel gro-
duces a tern¥ such thatF'[z := ] holds iff 3z.F holds. We can
then liftwitn(x, F') to synthesis for any number of variables, using
the following translation scheme with non-tail recursion:

[-, -] : U (Vars™ x Formulas — Formulas x Terms"™)

[0, FI = (F.0)
[[(xl,..47zrn)7F}] =
let ¥, = witn(zn, F)
F' = simplify(Fz, := ¥,,])
(pre7 (\1117 ey \I/nfl)) = [[(ml, e 7In,1)7 F/ﬂ
\I/,I,L = \I/n[:rl = \111, ey Tp—1 1= g/nfl]
in
(pre, (¥1,...,U,_1,07))
The above translation includes the base case in which there a
no variables to eliminate, sB becomes the precondition, and the
recursive case that applies thén function.
In implementation we can use local variable definitionsaast
of substitutions. Given (1), we generate\Ea Scala code block

val 1 = @1
val Tn—1= q/n,1
val x, =Y,
z

where the variables i@,, directly refer to variables computed in
Uy,...,¥,_; and whereFV(¥;) C FV(F) \ {zs,...,zn}. A
consequence of this recursive translation pattern is tirasynthe-
sized code computes values in reverse order compared ttethe s
of a quantifier elimination procedure. This observationloaielp-
ful in understanding the output of our synthesis procedures

4.2 One-Point Rule Synthesis
If z ¢ FV(t) we can define
witn(z, z =t A F) =t
If the formula does not have the form = ¢ A F, we can often
rewrite it into this form using theory-specific transforioats.
4.3 Output-Independent Preconditions

WheneveFV(F1) N &, = 0, we can apply the following synthesis
rule:

[[f, i A FQH = let (pre, \17) = [[537 FQH in
(pre A F1,T)

which moves a ‘constant’ conjunct of the specification irtte t
precondition. We assume that this rule is applied whenevssiple
and do not explicitly mention it in the sequel.

4.4 Propositional Connectivesin First-Order Theories

Consider a quantifier-free formula in some first-order theGon-
sider the tasks of checking formula satisfiability or apptyelim-
ination of a variable. For both tasks, we can first rewrite ftbhre
mula into disjunctive normal form and then process eachudddj
independently. This allows us to focus on handling conjiomst of
literals as opposed to arbitrary propositional combimatio

We next show that we can similarly use disjunctive normaifor
in synthesis. Consider a formula; V ...V D,, in disjunctive nor-
mal form. We can apply synthesis to eabh yielding a precondi-

tion pre; and the solved forn¥’;. We can then synthesize code with
conditionals that select the firdt; that applies:

[Z,D1V...VD,]=
let (prel, \111) = [[537 Dlﬂ

-

(pre,,, Wn) = [, D]

in
if (pre;) Uy
" else if (pre,) Wy
\/ pre;, ¢ T, -
i1 else if (pre,) ¥,

else
throw new Exception(“No solution”)

Although the disjunctive normal form can be exponentially
larger than the original formula, the transformation tgutistive
normal form is used in practice [Pug92] and has advantages in
terms of the quality of synthesized code generated for iddat
disjuncts. What further justifies this approach is that wpeex a
small number of disjuncts in our specifications, and may riéed
ferent synthesized values for variables in different dlisjs.

Other methods can have better worst-case quantifier elirmima
complexity [Coo72, FR79, Wei97, Nip08] than disjunctivermal
form approaches. We discuss these alternative approachés i
sequel as well, but it is the above disjunctive normal forprapch
that we currently use in our implementation.

45 Synthesisfor Propositional Logic

Our paper focuses on synthesis for formulas avdroundeddo-
mains. Nonetheless, to illustrate the potential asymptmggiin of
precomputation in synthesis, we illustrate synthesis lier case
when F' is a propositional formula (see e.g. [KS00] for a more so-
phisticated approach to this problem). Suppose ihate output
variables andi are the remaining propositional variables (parame-
ters)inF.

To synthesize a function fromi to #, build an ordered binary
decision diagram (OBDD) [Bry86] foi, treating botha and #
as variables for OBDD construction, and using a variableiongd
that puts all paramete@before all output variableg. Then split
the OBDD graph at the point where all the decisionsaohave
been made. That is, consider the set of nodes that termimate o
some paths on which all decisions arhave been made and no
decisions onz have been made. For each of these OBDD nodes,
we precompute whether this node reachesttbe sink node. As
the result of synthesis, we emit the code that consists dédefs
then-else tests encoding the decisionsipfollowed by the code
that, for each node that reachese emits those values af that
trace one path to thigue sink node.

Consider the code generated using the method above. Note tha
although the size of the code is bounded by a single expaigenti
the code executes in time linear in the total number of vée&gb
a andZ. This is in contrast to NP-hardness of finding a satisfying
assignment for a propositional formuld, which would occur in
the baseline approach of invoking a SAT solver at run-tinme. |
summary, for propositional logic synthesis (and, more gahe
for NP-hard constraints over bounded domains) we can prgetam
solutions and generate code that computes unknown prapusit
values in deterministic polynomial time in the size of inpaind
outputs.

In the next several sections, we describe synthesis proggdu
for several useful decidable logics ovefinite domains (numbers



and data structures) and discuss the efficiency improvenaderet to
synthesis.

5. Synthesisfor Linear Rational Arithmetic

We next consider synthesis for quantifier-free formulasimgdr
arithmetic over rationals. In this theory, variables ranger ratio-
nal numbers, terms are linear expressiang ciz1 + . . . + cnTn,
and the relations in the language ateand=. Synthesis for this
theory can be used to synthesize exact fractional aritltmethpu-
tations (or floating-point computations if we are willing igmore
the rounding errors). It also serves as an introduction ¢ontiore
complex problem of integer arithmetic synthesis that wecdes
in the following sections.

Given a quantifier-free formula, we can efficiently transfiat
to negation-normal form. Furthermore, we observe that < t2)
is equivalent to(tz < 1) V (t1 = t2) and that—(¢ty = t2) is
equivalent to(t1 < t2) V (t2 < t1). Therefore, there is no need
to consider negations in the formula. We can also normaliee t
equalities to the formt = 0 and the inequalities to the forth< t.

5.1 Solving Conjunctionsof Literals

Given the observations in Section 4.4, we consider conjpmgtof
literals. The method follows Fourier-Motzkin eliminatifBch98].
Consider the elimination of a variable

Equalities. If z occurs in an equality constraitit= 0, then solve
the constraint forr and rewrite it ast = ¢/, wheret’ does not
containz. Then simply apply the one-point rule synthesis (Sec-
tion 4.2). This step amounts to Gaussian elimination. Wim\ol
this step whenever possible, so we first eliminate thoseabtas
that occur in some equalities and only then proceed to iriigsa

Inequalities. Next, suppose that occurs only in strict inequali-
ties0 < t. Depending on the sign af in ¢, we can rewrite these
inequalities intaz, < x orz < b, for some terms,, b,. Consider
the more general case when there is both at least one lowadbou
a, and at least one upper boubgd We can then define:

witn(z, F) = (m;lx{ap} + mqin{bq})/2

As one would expect from quantifier elimination, thes corre-
sponding to this case results framMby replacing the conjunction
of all inequalities containing with the conjunction

/\ap<bq

p,q

In case there are no lower bounds, we definewitn(z, F) =
ming{bs} — 1; if there are no upper boundg,, we define
witn(z, F') = maxp{ap} + 1.

Complexity of synthesis for conjunctions.We next examine the
size of the generated code for linear rational arithmetie &lim-
ination of input variables using equalities is a polynontiaie
transformation. Suppose that after this elimination weleftavith

N inequalities and’” remaining input variables. The above inequal-
ity elimination step for one variable replacésinequalities with
(N/2)? inequalities in the worst case. After eliminating all out-

put variables, an upper bound on the formula increaseij&fv.
Therefore, the generated formula can be in the worst caselydou
exponential in the number of output variablés However, for a
fixed V, the generated code size is a (possibly high-degree) poly-
nomial of the size of the input formula. Also, if there are 4ewer
inequalities in the original formula, the final size is pabynial,
regardless o¥/. Finally, note that the synthesis time and the exe-
cution time of synthesized code are polynomial in the sizéhef
generated formula.

5.2 Digunctionsfor Linear Rational Arithmetic

We next consider linear arithmetic constraints with disjions,
which are constraints for which the satisfiability is NP-qiete.
One way to lift synthesis for rational arithmetic from comgtions
of literals to arbitrary propositional combinations is tpply the
disjunctive normal form method of Section 4.4. We then obtai
complexity that is one exponential higher in formula sizartihe
complexity of synthesis for conjunctions.

In the rest of this section we consider an alternative tadisj
tive normal form. This alternative synthesizes code thatoacute
exponentially faster (even though it is not smaller) corepdo the
disjunctive normal form approach of Section 4.4.

The starting point of this method are quantifier elimination
techniques that avoid disjunctive normal form transfoiorate.g.
[FR79], [Nip08], [BMO7, Section 7.3]. To remove a variabterh
negation normal form, this method finds relevant lower baund
and upper bounds, in the formula, then computes the values
mpq = (ap + bg)/2 and replaces a variable; with the values
from the set{mq }»,q €xtended with “sufficiently small” and “suf-
ficiently large” values [Nip08]. This quantifier eliminatianethod
gives us a way to compufge.

We next present how to extend this quantifier elimination
method to synthesis, namely to the computationwith (z, F').
Consider a substitution in quantifier elimination step ttegtiaces
variablez; with the termm. We then extend this step to also at-
tach to each literal a special substitution syntactic femn— m).
When using this process to eliminate one variable, the ditleeo
formula can increase quadratically. After eliminating alltput
variables, we obtain a formulare with additional annotations; the

size of this formula is bounded byzo(v) wheren is the original
formula size. (Again, although it is doubly exponentialiin it is
not exponential im.)

We can therefore build a decision tree that evaluates thesal
of all 27" literals in pre. On each complete path of this tree,
we can, at synthesis time, determine whether the truth sabfie
literals imply thatpre is true. Indeed, such computation reduces
to evaluating the truth value of a propositional formula igieen
assignment to all variables. In the cases when the litargjithat
pre holds, we use the attached substitutien — m) in true literals
to recover the synthesized values of variahlgesSuch decision tree

has the depthzo(v) , because it tests the values of all literals in the
result of quantifier elimination. For a constant number ofaldles

V, this tree represents a synthesized program whose runimagst
polynomial inn. Thus, we have shown that using basic methods of
quantifier elimination (without relying on detailed geomefacts
about the theory of linear rational arithmetic) we can sgaibe for
each specification formula a polynomial-time function thaps
the parameters to the desired values of output variables.

6. Synthesisfor Linear Integer Arithmetic

We next describe our main algorithm, which performs syrighes
for quantifier-free formulas of Presburger arithmetic€gsdr linear
arithmetic). In this theory variables range over integ&esms are
linear expressions of the form + c1z1 + ... + chn, n > 0, ¢;

is an integer constant and is an integer variable. Atoms are built
using the relationg, = and|. The atonx|t is interpreted as true iff
the integer constantdivides term:. We usea < b as a shorthand
fora < bA—(a = b). We describe a synthesis algorithm that works
for conjunction of literals.

Pre-processing. We first apply the following pre-processing steps
to eliminate negations and divisibility constraints. Weme nega-
tions by transforming a formula into its negation-normatfcand
translating negative literals into equivalent positiveesm-(¢; >



t2) is equivalent tatz > t1 + 1 and—(t1 = t2) is equivalent to
(t1 > t2+1) V (t2 > t1 + 1). We also normalize equalities into
the form¢ = 0 and inequalities into the form> 0.

We transform divisibility constraints of a forajt into equalities
by adding a fresh variablg. The value obtained for the fresh
variablegq is ignored in the final synthesized program:

[ (clt) A F] =
let (pre, (¥, ¥ni1)) = [(#,q), t = cq A F]
in (pre, ¥)

The negation of divisibility-(c|t) can be handled in a similar way
by introducing two fresh variablesandr:

[Z, ~(clt) A F] =

let F/ =t4+r=cqAN1<r<c—1AF
(pre, (\117\117L+17\117l+2)) = [[(57(]77")7F/}]
in (pre, U)

In the rest of this section we assume the input fornfuta have no
negation or divisibility constraints (these constructs,dzowever,
appear in the generated code and precondition).

6.1 Solving Equality Constraintsfor Synthesis

Because equality constraints are suitable for deternmgréitmina-
tion of output variables, our procedure groups all equeifrom a
conjunction and solves them first, one by one. Eebe one such
equation, so the entire formula is of the fofthA F. Let i be the
output variables that appear A

Given an output variablg; and F of the formcy, + t = 0 for
¢ # 0, asimple way to solve it would be to impose the precondition
c|t, use the witnesg, = —t/c in synthesized code, and substitute
—t/c instead ofy; in the remaining formula. However, to keep
the equations within linear integer arithmetic, this wouddjuire
multiplying the remaining equations and disequationg ity c,
potentially increasing the sizes of coefficients substdliti

We instead perform synthesis based on one of the improved
algorithms for solving integer equations. This algorithroids
the multiplication of the remaining constraints by simo&ausly
replacing alln output variablegy in E with n — 1 fresh output
variablesh. Using this algorithm we obtain the synthesis procedure
in Figure 1. An invocation oéqSyn(y, F) is similar to[y, F'] but
returns a triple(pre, T, X), which in addition to the precondition
pre and the witness term tupiﬁ also has the fresh variables

6.1.1 TheeqSyn Synthesis Algorithm

Consider the application ofqSyn in Figure 1 to the equation
Y Bibi + Ei—1v5y; = 0. If there is only one output variable,
y1, we directly eliminate it from the equation. Assume therefo
n > 1. Letd = ged(B1,...,Bm,V1,---,7n). If d > 1 we can
divide all coefficients byl, so assumé = 1.

Our goal is to derive an alternative definition of the #&t=
{7 | S16:ibi + X7_1v;5; = 0} which will allow a simple
and effective computation of elements . Note that the seK
describes the set of all solutions of a Presburger arittof@tinula.

Recall that asemilinear se{GS64] is a finite union of linear
sets. Given an integer vectbiand a finite set of integer vectofs
alinear setis aset{# | Z = b+ 51 + ... + 5n; 5 € S;n > 0}.
Ginsburg and Spanier [GS64, GS66] showed that the set of all
solutions of a Presburger arithmetic formula is always ailéeear
set, which implies thak is semilinear. However, we cannot apply
this result directly because the values of parameter Vasaiye not
known until run-time. Instead, we proceed in the followirngps,
as shown in Figure 1:

[-, - : U (Vars™ x Formulas — Formulas x Terms™)

[[(gv f)vE/\Fj] =,
let (prey, Uy, ) = eqSyn(¥,
F' = simplify(F[:= Uy
(pre, (Ux, Ux)) = [(A, &
preyo = prey [X i= Uy, Z :
\f/yo = \f/y[X = @A,f::

E)
)

F/

~

1

]
W]

x]

ey

in
(preyo A pre, (Uyo, Ux))

eqSyn: | Vars™ x Formulas — Formulasx Terms™ x Vars™ ™!

n

eqSyn(y1,t +viy1 =0) = ((nlt), —t/7, ()

eqSyn(ys, ..., yn,t + Xj_17,;4,=0) = (fort =X, 3:b;)
let d= ng(ﬂh' o 75m7’717 .. 7’Yn)
if (d>1) eqSyn(ys,...,yn, t/d+ Xj_(7;/d)y;=0)
else let (841,...,8n,—1) = linearSet(y1,...,vn)
(w1, ..., wyn) = particularSol(¢,v1,...,7n)
pre = (ged (1, ... n)t)
A1, ..., An—1 — fresh variable names

v = (wh. . 47wn) + A8+ A 18n—1
in (pre,\f/,X)

Figure 1. Algorithm for Synthesis Based on Integer Equations

1. obtain a linear set representation of the set

Su ={7|>_ vy; =0}

j=1
of solutions for the homogeneous part using the function
linearSet (defined in Section 6.1.2 to compugg, ..., 5,1
such that
n—1
S ={7 13, Aa1 €Z.5 =Y NiFi}
=1

. find one particular solution, that is, use the function
particularSol (defined in Section 6.1.3) to find a vector of terms
a (containing the parametebs) such that + 37, yjw; =0
for all values of parameteis.

n—1
3. return as the solutio@ + Z AiS;
=1

To see that the algorithm is correct, fix the values of paramset

and lety = (v1,...,7v»). From linearity we have + 7 - (& +

>, Ai8j) =t —t+ 0= 0, which means that eaali + >_ \;5;

is a solution. Conversely, iff is a solution of the equation then

F¥(§— W) = 0,507 —wW € Su, whichmeang/ — & = 37" | \iS;

for some);. Therefore, the set of all solutionsof 37, vw; =

0 is the set{w + 31" \i&; | A € Z}. It remains to define

i=1
linearSet to find 5; andparticularSol to find w.

6.1.2 ComputingaLinear Set for a Homogeneous Equation

This section describes our version of the algorithm
linearSet(v1,...,v») that computes the set of solutions of
an equatior®i_v;y; = 0. A related algorithm is a component of



the Omega test [Pug92]. We define
linearSet(~1, ...
(Ku, cee

7’7”) = (§17 .. '7§7L*1)

, Knj;) and the integer;; are computed as

wheres’;
follows:

e if i < 7, K;; = 0 (the matrixK is lower triangular)

. Ky = ged((vk)k>j541)
ged((vr)k>5)
e for each index, 1 < j < n — 1, we computek;; as follows.
Consider the equation

il + Y yiuig =0
i=j+1
and find any solution. That is, compute

(K(j+1)j7 sy KTL]) = partiCU|arSO|(_Wjij7 Vi+lye .- 77”)

whereparticularSol is given in Section 6.1.3.
Let Sy = {y | Xi=1v:y: = 0} and let

SL :{A1§1+...+An§7l | AlyeveyAn GZ}:

Kll
A1 :
Knl
We claimSy = Si.

First we show that each vect@l belongs toSyx. Indeed, by
definition of K;; we havey; K;;+3 7 ., 7iKi; = 0. Thismeans
precisely thas; € Sy, by definition ofs; andSx. Next, observe
that Sy is closed under linear combinations. Becafseis the set
of linear combinations of vectors, we haveS;, C Sq.

To prove that the converse also holds, fetce Su. We will
show that the triangular system of equatioﬁ%;l AiSi = ¥
has some solution\y,...,\,—1. We start by showing that we
can find ;. Let G1 = ged((yx)r>1). Fromy € Sy we have
Z?:yyiyi = 0, that iS,G1(E?:1ﬂiyi) = 0 for ﬁz = ’yi/Gl.
This implies S1y1 + X3 28iys = 0 and ged((Br)e>1) = 1.
Let Gy, = ng((ﬁk)kzg)./From ﬂly1 + E;-Lgﬁiyi = (0 we then
obtain B1y1 + Ga2(Xi_s8;y:) = 0 for B = B;/G2. Therefore
Y1 —G2(X720;yi)/B1. Becauseged (51, G2) = 1 we have
51|2?:25,£yi so we can define the integar = —2?:25;%/51
and we have); = A1 G2. Moreover, note that

Ga = ged((Br)r>2) = ged((vr)r>2)/G1 = Kn

Therefore,y1 = A1 K11, which ensures that the first equation is
satisfied.

Consider now a new vectar= i — A1 31. Because/ € Sy and
ands; € Sy alsoz € Si. Moreover, note that the first component
of Zis 0. We repeat the described procedurez@mds,. This way
we derive the value for an integes and a new vector that h@sas
the first two components.

We continue with the described procedure until we obtain a
vectoru € Sy that has all components set to 0 except for the
last two. Fromi € Sy we havey,—1un—1 + ynun = 0. Letting
Bn-1 = ’Ynfl/ng(’Ynflfyn) andg, = ’Yn/ ng(’YnflfYn) we
conclude thaf3,—1un—1 + Brun = 0, SOun—1/8 IS an integer
and we letA,—1 = wun—1/0n. By definitions of 3; it follows
An—1 = Un—1 - gcd(Yn—1,vn)/¥n. Next, observe thai,_. has
the form (0, ..., 0,7/ ged(Vn—1,7n), =¥n—1/ ged(Vn—-1,1n))-

It is then easy to verify thal = A\,—155—1.

This procedure shows that every elementSef can be repre-
sented as a linear combination of vect8fs which showsSy C
St and concludes the proof.

Kin-1)
+ .o+ At i €Z

Kn(nfl)

6.1.3 Findinga Particular Solution of an Equation

We finally describe thearticularSol function to find a solution (as
a vector of terms) for an equatigrt Xi_;v;u; = 0. We use the
Extended Euclidean algorithm [CLRSO01, Figure 31.1] thatery
the integersi; andas, finds their greatest common divisdrand
two integersw, andws such that, w1 + asw2 = d. Our algorithm
generalizes the Extended Euclidean Algorithm to arbitramber
of variables and uses it to find a solution of an equation with
parameters. We chose the algorithm presented here bechitse o
simplicity. Other algorithms for finding a solution of an edjion
t+Xi1viu; = 0 can be found in [Ban88, FH96]. They also runin
polynomial time. [Ban88] additionally allows bounded inedjty
constraints, whereas [FH96] guarantees that the returaetdbers
are no larger than the largest of the input coefficients digidy 2.

The equationt + Xi—;7viu, 0 has a solution iff
ged((ve)r>1)[t, and the result oparticularSol is guaranteed to
be correct under this condition. Our synthesis proceduseires
that when the results of this algorithm are used, the canditi
ged((vk)e>1)|t is satisfied.

We start with the base case where there are only two variables
t + yiu1 + y2u2 = 0. By the Extended Euclidean Algorithm let
v1 andwve be integers such thativi + y2v2 ged(y1,7v2). If
d = ged(y1,72) andr = t/d one solution is the pair of terms
(—v1r, —v2r):

particularSol(t,v1,72) =
let (d,v1,v2) = ExtendedEuclid(vy1,72)
r=t/d
in (—vir, —var)

If there are more than two variables, we observe ¥fat,v;u; is

a multiple ofged((vx)r>2). We introduce the new variabt€ and

find a solution of the equatiott 1 u1 + ged((yk)k>2) -u’ = 0 as
described above. This way we obtain tertas ,w’) for (u1,w’).

To derive values ofiz, . . . , u, We solve the equatioR;_,y;u;, =
ged((vk)k>2) - w'. Given that the initial equation was assumed
to have a solution, the new equation can also be showed to have
a solution. Moreover, it has one variable less, so we caresolv
recursively:

particularSol(¢, 71, . . .
let

(w1, w") = particularSol (¢, v1, ged((v&)k>2))

(w2, ..., wn) = particularSol(— ged((v&)k>2)w’, V2, - - .
in (wi,...,wn)

7’}/”1) =

7’}/”1)

Example. We demonstrate the process of eliminating equations on
an example. Consider the translation

[(z,y,2),2a —b+3x+4y +82=0Abx+ 4z <y —1]

To eliminate an equation from the formula and to reduce a mumb
of output variables, we first invoke&ySyn((x, y, ), 2a — b+ 3z +
4y+8z = 0). Itworks in two phases. In the first phase, it computes
the linear set describing a set of solutions of the homogeneo
equality 3z + 4y + 8z = 0. Using the algorithm described in
Section 6.1.3, it returns:

4 0
=3 | + A2 2
0 -1

SL A1 )\17)\262

The second phase computes a withess vagtand a precondition
formula. Applying the procedure described in Section 6réslilts
in the vectordd = (2a — b, b — 2a,0) and the formulal|2a — b.
Finally, we compute the output efjSyn applied to2a — b + 3z +
4y + 8z = 0: itis a triple consisting of

1. a precondition|2a — b



2. alist of terms denoting witnesses far, y, z):

\111:2a—b+4)\1
Wy =b—2a — 3\1 + 22
W3 =—A2

3. alist of fresh variableg\1, A2).

We then replace each occurrence:off andz by the corresponding
terms in the rest of the formula. This results in a new formula
Ta — 3b + 13)\1 < 4).. It has the same input variables, but the
output variables are now; and).. To find a solution for the initial
problem, we let

(preX, ((13'17 (192)) = [[()\17 )\2)7 Ta —3b+ 13X\ < 4)\2]

Sincel|2a — b is a valid formula, we do not add it to the final
precondition. Therefore, the final result has the form

(preX, (2a —b+4+4P1,b— 2a — 3P, +2(I>27—(I>2))

6.2 Solving Inequality Constraintsfor Synthesis

In the following, we assume that all equalities are alreadg@ssed
and that a formula is a conjunction of inequalities. Dealivith
inequalities in the integer case is similar to the case dbmat
arithmetic: we process variables one by one and proceeklefurt
with the resulting formula.

Let z be an output variable that we are processing. Every con-
junct can be rewritten in one of the two following forms:

[Lower Bound] A; < «;z
[Upper Bound] Bixz < Bj

As for rational arithmeticz should be a value which is greater
than all lower bounds and smaller than all upper bounds. Merve
this time we also need to enforce thaimust be an integer. Let
a = max; [A;/a;] andb = min; | B;/3;]. If bis defined (i.e.
at least one upper bound exists), we dsas the witness for,
otherwise we use.

The corresponding formula with which we proceed is a con-
junction stating that each lower bound is smaller than eupper
bound:

/\ [Ai/ai] < |B;/8;] 2
2]

Because of the division, floor, and ceiling operators, thevab
formula is not in integer linear arithmetic. However, in diesence
of output variables, it can be evaluated using standard-anaging
language constructs. On the other hand, if the teAmsand B;
contain output variables, we convert the formula into anvedent
linear integer arithmetic formula as follows.

With Icm we denote the least common multiple. LBt =
lem; (e, B5). We introduce new integer linear arithmetic terms
Al = QLAL and Bj = £ B;. Using these terms we derive an
equivalent integer linear arithmetic formula:

[Ai/ai] < |B;j/B;] & [Ai/L] < |Bj/L| &
Aj < B} — B} mod L
T = L

<:>B§ modLng—A;
S B =L-lj+k;iNkj < Bj— A
Formula (2) is then equivalent to
N\B; =L +k; A \(k; < B) — AY))
J i
We still cannot simply apply the synthesizer on that formilet
{1,...,J} be a range ofj indices. The newly derived formula

containsJ equalities and2 - J new variables. The process of
eliminating equalities as described in Section 6.1 willke &nd

result in a new formula which containg new output variables
and this way we cannot assure termination. Therefore, shi®i
a suitable approach.

However, we observe that the value /of is always bounded:
k;j € {0,...,L — 1}. Thus, if the value ofk; were known, we
would have a formula with only new variables and additional
equations. The equation elimination procedure descritefdré
would then result in a formula that has one variable less than
original starting formula, and that would guarantee teation of
the approach.

Since the value of eadty variable is always bounded, there are
finitely many (J - L) possible instantiations @f; variables. There-
fore, we need to check for each instantiation of /gllvariables
whether it leads to a solution. As soon as a solution is fowre,
stop and proceed with the obtained values of output vasalife
no solution is found, we raise an exception, because thénalig
formula has no integer solution. This leads to a translat@ema
that contains/ - L conditional expression. In our implementation
we generate this code as a loop with constant bounds.

We finish the description of the synthesizer with an exantpé t
illustrates the above algorithm.

Example. Consider the formul2y — b < 3x + a A 2z —

a < 4y + b wherex andy are output variables and and b

are input variables. If the resulting formul@y — b — a/3] <

|4y + a + b/2] has a solution, then the synthesizer emits the value
of = to be |4y + a + b/2]. This newly derived formula has only
one output variablgy, but it is not an integer linear arithmetic
formula. It is converted to an equivalent integer lineathamietic
formula (4y + a +b) - 3 6l + k ANk < 8y + 5a + 5b,
which has three variableg; £ and!. The value oft is bounded:

0 < k < 5, sowe treat it as a parameter. We start with elimination
of the equality: it results in the preconditiéfBa + 3b — k, the list

of termsl = (3a + 3b — k)/6 + 2a, y = o and a new variabley.
Using this, the inequality becomés- 5a — 5b < 8. Becausey is

the only output variable, we can compute it[# — 5a — 5b)/8].
The synthesizer finally outputs the following code, whicmpaites
values of the initial output variablesandy:

val kFound = false
for k =0 to 5 do {
valvl =3%xa+3*b—k
if (vl mod 6 == 0) {
val alpha = ((k — 5% a — 5 % b)/8).ceiling
val | = (vl / 6) + 2 = alpha
val y = alpha
val kFound = true
break } }
if (kFound)
val x = ((4 *y + a + b)/2).floor
else

throw new Exception(” No solution exists")

The precondition formula i§k. 0 < k < 5 A 6|3a + 3b — k,
which our synthesizer emits as a loop that cheikea + 3b — k
for k € {0,...,5} and throws an exception if the precondition is
false.

6.3 Digunctionsin Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesisafti-
trary propositional combinations by applying the methodSet-
tion 4.4. We also obtain a complexity that is one exponehtigther
than the complexity of synthesis from the previous secti-
proaches that avoid disjunctive normal form can be usedi@m th
case as well [Nip08, FR79, Wei97].



6.4 Optimizationsused in the Implementation

In this section we describe some optimizations and hecsistiat
we use in our implementation. Using some of them, we obtained
speedup of several orders of magnitude.

Merging inequalities. Whenever two inequalities; < t» and

to < t; appear in a conjunction, we substitute them with an
equalityt; = to2. This makes the process of variable elimination
more efficient.

Heuristic for choosing the right equality for elimination. When

there are several equalities in a formula, we choose to ®éitai
an equality for which the least common multiple of all the fliee
cients is the smallest. We observed that this reduces théewof

integers to iterate over.

Some optimizations on modulo operationsWhen processing in-
equalities, as described in Section 6.2, as soon as we irtedtie
modulo operator, we face a potentially longer processing tiT his

is because finding the suitable value of the remainder int@Equ&;
mod L < Bj — Aj] requires invoking a loop. While searching for
a witness, we might need to test all possiblealues. Therefore,
we try not to introduce the modulo operator in the first pladas

is possible in several cases. One of them is when eithet 1 or

b; = 1. In that case, if for exampla; = 1, an equivalent integer
arithmetic formula is easily derived:

[Ai/ai] < |B;j/Bj] & Ai < |Bj/B;) © BjAi < Bj

Another example where we do not introduce the modulo operato
is whenA; — B; evaluates to a numbe¥ such thatV > L. In that
case, it is clear thaBjmod L < B} — Aj is a valid formula and
thus the returned formula tsue.

Finally, we describe an optimization that leads to a redndin
the number of loop executions. This is possible when theigsex
an integerN such thatB; = N - T; andL = N - L. (Unless
L = pj, this is almost always the case.) In the case wh¥€re
exists, therk; also has to be a multiple @¥. Putting this together,
an equivalent formula oB;mod L < Bj — A is the formula
Tjmod L1 = k; AN - k;j < B; — A}. This reduces the number
of loop iterations by at least a factor df.

7. Synthesis Algorithm for Parameterized
Presburger Arithmetic

In addition to handling the case when the specification fdanms
an integer linear arithmetic formula of both parameters @utgut
variables, we have generalized our synthesizer to the case the
coefficients of the output variables are not only integenschn be
any arithmetic expression over the input variables. Thieresion
allows us to write e.g. the offset decomposition progranmfro
Section 2 with statically unknown dimensiodienX, dimY, dimZ.
As a slightly simpler example, consider the following ination:

val (valueX, valueY) = choose((x: Int, y: Int) =
(offset == x + dim * y && 0 < x && x < dim))

Hereoffset anddim are input variables, whereasandy are output
variables. Note that dimy is not a linear term. However, at run-
time we know the exact value afim, so the term will become
linear. Our synthesizer can handle such cases as well thraug
generalization of the algorithm in Section 6.

Given the problem above, we first eliminate the equality
offset = x 4 dim * y and we obtain the new problem consisting of
two inequalitiesdim xt < offset Aoffset —dim+1 < dimxt. The
variablet is a freshly introduced integer variable and it is also the
only output variable. At this point, the synthesizer needditide a
term by the variablelim. In general it thus needs to generate code

A|FANF | FLV Ey | -F

Bi=B2 |BiC B | T =T2 | T < T» | (K|T)
z|0|U|B1UBs | BiNBs | B°
k|K|Tv+T>|K-T| |BI
.=2]=1]0]1]2...

N W o

Figure2. A Logic of Sets and Size Constraints (BAPA)

that distinguishes the cases whiim is positive, negative, or zero.
In this particular example, due to the constrdint x < dim, only
one case applies. The synthesizer returns the followingopia-
tion:

pre = [(offset— dim + 1) /dim] < | offset/dim|

It can easily be verified that this is a valid formula for allsitve
values ofdim. The synthesizer also returns the code that computes
the values for: andy

val t = (offset/dim).floor
val valueY =t
val valueX = offset — dim * t

Our general algorithm for handling parametrized Presburge
arithmetic follows the algorithm described in Section 6eThain
difference is that instead of manipulating known integeefio
cients, it manipulates arbitrary arithmetic expressioascaeffi-
cients. It therefore needs to postpone to run-time certadistbns
that involve coefficients. The key observation that makés dh
gorithm possible is that many compile-time decisions depaot
on the particular values of the coefficients, but only onrtisen
(positive, negative, or zero). In the presence of a coeffitieat de-
pends on a parameter, the synthesizer therefore geneoalesvith
multiple branches that cover the different cases of the sign

The coefficients of the invocation of the Extended Euclidean
algorithm generally also become known only at run-time psty
the generated code invokes this algorithm as a library foncThe
situation is analogous for thed function.

Finally, note that the running time of the programs in thiseca
is not uniform with respect to the values of all parametergadr-
ticular, the upper bounds of the generated for loops in Sedi2
can now be a function of parameters. Nevertheless, for eacie v
of the parameter, the generated code terminates.

8. Synthesisfor Setswith Size Constraints

In this section we define a logic of sets with cardinality doaists
and describe a synthesis procedure for it. The logic we denss
BAPA (Boolean Algebra with Presburger Arithmetic). It sopis
the standard operators union, intersection, complemelnses, and
equality. In addition, it supports the size operator on,setsvell as
integer linear arithmetic constraints over these sizessyhtax is
shown in Figure 2. Decision procedures for BAPA were conside
in a number of scenarios [FV59, Zar04, Zar05, KNR0O6, KR0OE. A
in the previous sections, we consider the problem (1)

7 = choose(Z = F(Z, a@))

where the components of vectaisZ, 7 are either set or integer
variables and is a BAPA formula.
Figure 3 describes our BAPA synthesis procedure that return

a precondition predicatpre(d@) and a solved formb. The proce-
dure is based on the quantifier elimination algorithm presbm
[KNRO6], which reduces a BAPA formula to an equisatisfialle i
teger linear arithmetic formula. The algorithm eliminases vari-
ables in two phases. In the first phase all set expressioms\ari-



a formula F(X,Y,k,1) in the logic de-
fined in Figure 2 with input variablesX;,
..., Xn, k1, ..., kxn and output variables
Yi,...,Ys, 1, ..., lt, whereX; andY; are set
variablesk; andi; are integer variables

code that computes values for the output vari-
ables from the input variables

1. Apply the first steps towards a Preshurger arithmetic @ibam
(a) Replace each atoy = S> with S1 C So A S2 C Sy
(b) Replace each atosy C S, with [S1 N S5| =0

Introduce the Venn regions of set§’s andY;’s: let v be a
binary word of the length+m. The set variablé,, represents

a Venn region where each '1’ stands for a set and '0’ stands for
a complement. To illustrate, it = 2, m = 1 andu = 001,
thenRoo1 = X7 N X3 N Y7. Rewrite each set expression as a
disjoint union of corresponding Venn regions.

. Create a Presburger arithmetic formula: an integer biaria,
denotes the cardinality of the Venn regif . Use the fact that
|S1US2| = |S1|+|S2| iff S1 andS; are disjoint to rewrite the
whole formula as the Presburger arithmetic formula. We tieno
the resulting formula by, (k. &, 1).

. Create a Presburger arithmetic formula that correspdods
quantifier elimination: letv be a binary word of lengtm. A
set variableP, denotes a Venn region of input set variables,
which means thatP, | is a known value. Create a formula that
expresses eadtP,| as a sum of correspondirtg,’s. Define the

formula Fz (hu, |15v |) as the conjunction of all those formulas.

. Create code that computes values of output vectors. iRirst
voke the linear arithmetic synthesizer described in Sedito
generate the code corresponding to:

INPUT:

OUTPUT:

2.

val (hun, In) = choose((hu, 1) = Fi(hu, k&, 1) AF2(hu, |Py))

Invoking the synthesizer returns code that computes expres
sions for the integer output variablés and for the variables

—

hu,. FOr each set output variabé, do the following: letS; be
a set containing already known or defined set variableg;let
be a Venn region of; U Y; that is contained ifY;. EachT} re-
gion is contained in the bigger Venn regidi which is a Venn
region of sets irt;. For eachl’; do: take allR, that belong to
T; and letd; be the sum of all correspondirig,,,. Based on
the value ofd;, output the following code:

e if T; C Nses; S andd; > 0, output the assignmedt’; =
fresh(d;)

e if d; = 0, output the assignmeddt; = ()

e if d; = |Uj;|, output the assignmeidt; = U;

¢ otherwise output the assignmekil = take(d;, U;)
Finally, construct; as a union of alk; sets:Y; = U; K

Figure 3. Algorithm for synthesizing a functionl such that
F[Z := ¥(d)] holds, whereF" has the syntax of Figure 2

ten as unions of disjoint Venn regions. The second phassintes
a fresh integer variable for the cardinality of each Venriaeglt
thus reduces the entire formula to an integer linear aritiniier-
mula. The input variables in this integer arithmetic foremate the
integer input variables from the original formula, as wellfeesh
integer variables denoting cardinalities of Venn regiohthe in-
put set variables. Note that all values of those input viembre
known from the program. The output variables are the orlgima

teger output variables and freshly introduced integeratdes de-
noting cardinalities of Venn regions that are containedhéndutput
set variables.

We can therefore build a synthesizer for BAPA on top of the
synthesizer for integer linear arithmetic described inti®ad. The
integer arithmetic synthesizer outputs the preconditicedicate
pre and emits the code for computing values of the new output
variables. The generated code can use the returned intelyssv
to reconstruct a model for the original formula. Notice thia
precondition predicatpre will be a Presburger arithmetic formula
with the terms built using the original integer input vateband
the cardinalities of Venn regions of the original input satiables.

As an example, ifi is an integer input variable and andb are
set input variables then the precondition predicate mighthe
following formulapre(i, a,b) = [aNb| < i Ala|] < |b|.

In the last step of the BAPA synthesis algorithm, when out-
putting code, we use functiodigesh andtake. The functiontake
takes as arguments an intedgeand a setS, and returns a subset
of S of sizek. The functionfresh(k) is invoked whenk fresh
elements need to be generated. These functions are usetdhonly
the code that computes output values of set variables (tleari
integer arithmetic synthesizer already produces the codmin-
pute the values of integer output variables). The set-gatugput
variables are computed one by one. Given an output set \@&riab
Y, the code that effectively computes the valueYofis emitted
in several steps. Witl$; we denote a set containing set variables
occurring in the original formula whose values are alreaagvwn.
Initially, S; contains only the input set variables. Our goal is to de-
scribe the construction df; in terms of sets that are already.$h.

We start by computing the Venn regions for and all the sets in

S; in order to defingy; as a union of those Venn regions. There-
fore we are interested only in those Venn regions that areetub
of ;. Let T; be one such a Venn region. It can be represented
asT; = Y; N U; whereU, has a formU; = Nses, S and
5(°) denotes eitheS or S¢. On the other hand]; can also be
represented as a disjoint union of the origidal Venn regions.
ThoseR,, are Venn regions that were constructed in the beginning
of the algorithm for all input and output set variables. As tim-

ear integer arithmetic synthesizer outputs the code thafpates

the valuesh,,, whereh,, = |R.|, we can effectively compute the
size of eachl;. If T; = Ry, U...U Ry,, then the size of is

|T;| =d; = Zf':l h., . Note thatd; is easily computed from the
linear integer arithmetic synthesizer and based on thesvaid;

we define a seK; as K; = take(d;, U;). Finally, we emit the
code that define®; as a finite union of<;'s: Y; = U; K.

Based of the values af;, we can introduce further simplifica-

tions. Ifd; = 0, none of elements di; contributes td; and thus

; = 0. On the other hand, if; = |U;|, applying a simple rule
S = take(|S|, S) results inK; = Uj. A special case is when
U; = Nses,; S¢. Ifin this case it also holds thal; > 0, we need to
taked; elements that are not contained in any of the already known
sets, i.e. we need to generate frehelements. For this purpose
we invoke the commangiresh.

Partitioning a Set. We illustrate the BAPA synthesis algorithm
through an example. Consider the following invocation o th
choose function that generalizes the example in Section 2.

val (setA, setB) = choose((a: Set[O], b: Set[O]) =
(—maxDiff < a.size — b.size && a.size — b.size < maxDiff
& & a union b == bigSet && a intersect b == empty
)

This example combines integer and set variables. Given a set
bigSet, the goal is to divide it into two partition. The previously
defined integer variableaxDiff specifies the maximum amount
by which the sizes of the two partitions may differ. We apig t



algorithm from Figure 3 step-by-step to illustrate how itrkg Af-
ter completing Step 3, we obtain the formula

Fl(ﬁu) = hioo = h110 = ho1o = hoor = h111 =0
A -maxDiff < hio1 — hoi1 A hio1 — ho11 < maxDiff

We simplify the formula obtained in Step 4 using the constgi
from Step 3 and obtain the formula

FQ(hu) = |b|gSet = hio1 + ho11 A |b|gSef| = hooo
Now we call the linear arithmetic synthesizer on the formula
Fi(hw) A Fa(hy). The only two variables whose values we need
to find are hio1 and ho11. The synthesizer first eliminates the
equation|bigSet = hio1 + hoi1: a fresh new integer variable
k is introduced such thdiior = k and ho11 = |bigSet — k.
This way there is only one output variablg: Variable & has
to be a solution of the following two inequalitiesbigSet —
maxDiff < 2k A 2k < |bigSet + maxDiff. We next check whether
[|bigSet — maxDiff/2] < ||bigSet + maxDiff/2| holds. This is
a precondition formulgre. Note thatpre is defined entirely in
terms of the input variables and can be easily checked atimen-
The synthesizer outputs the following code, which compuséises
for the output variables:

val k = ((bigSet.size + maxDiff)/2).floor
val h101 = k

val h011 = bigSet.size — k

val setA = take(h101, bigSet)

val setB = take(h011, bigSet —— setA)

In the code above,--' denotes the set difference operator. The
synthesized code first computes the gizaf one of the partitions,
as approximately one half of the sizewifgSet. It then selects
elements fronbigSet to formsetA, and selectsigSet .size—k

of the remaining elements faetB.

9. Implementation

scalac  w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiatior] 3.1 3.15 3.25
ScaleWeights 3.1 34 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.3 3.5 3.5
SplitBalanced 3.3 3.9 4.0
Coordinates 3.2 4.2 ——
All 5.75 6.35 6.75

Figure 4. Measurement of compile times: without applying syn-
thesis §calac), with synthesis but with no call to Z3n/ plu-

gin) and with both synthesis and compile-time checks activated
(w/ checks). All times are in seconds.

checked for reachability, an8etConstraintss a variant ofSplit-
Balanced There is no measurement fépordinatesvith compile-
time checks, because the formulas to check are in an undideida
fragment, as the original formula is in parameterized liregéh-
metic. We also measured the times with all benchmarks placad
single file, as an attempt to balance out the time taken by ¢h&aS
compiler to start up. Our numbers show that the additiona tie-
quired for the code synthesis is minimal. Moreover, noté tha
code we tested contained almost exclusively calls to théhsyn
sizer. The increase in compilation time in practice wouldstive
lower for code that mixes standard Scala with selechedse con-
struct invocations.

10. Related Work

Early work on synthesis [MW71, MW80] focused on synthesis us
ing expressive and undecidable logics, such as first-ooggr and
logic containing the induction principle. Consequentlyile it can
synthesize interesting programs containing recursi@ayinhot pro-
vide completeness and termination guarantees as syntheesesl

We have implemented our synthesis procedures as a Scala comen decision procedures.

piler extensior!. We chose Scala because it supports higher-order
functions that make the concept otloose function natural, and
extensible pattern matching in the form of extractors [EGQJVO
Moreover, the compiler supports plugins that work as adiditi
compilation phases. We used an off-the-shelf decisionguioe
[BO8] to handle the compile-time checks (we could, in prihe;
also use our synthesis procedure for compile-time checkause
synthesis subsumes satisfiability checking).

Our plugin supports the synthesis of integer values thrdbgh
choose function constrained by linear arithmetic predicates (in-
cluding predicates in parameterized linear arithmetis)pall as
the synthesis of set values constrained by predicates dbtlie
described in Section 8. Additionally, it can synthesize ecdar
pattern-matching expressions on integers such as the aomes p
sented in Section 2.

Figure 4 shows the compile times for a set of benchmarks, with
and without our plugin. Without the plugin, the code is of rseu
(the choose function, when not rewritten, just throws an excep-
tion), but the difference between the timings indicates mouch
time is spent generating the synthesized code. We also meeasu
how much time is used for the compile-time checks for sabifia
ity and uniqueness. The examplgscondsToTimé&astExponenti-
ation, SplitBalancedandCoordinatesvere presented in Section 2.
ScaleWeightsomputes solutions to a puzzRtimeHeuristiccon-
tains a long pattern-matching expression where every rpaise

10ur implementation source code and jar file are available fitte URL
http://lara.epfl.ch/dokuwiki/comfusy

Recent work on synthesis [SGF10] resolves some of these dif-
ficulties by decoupling the problem of inferring program toh
structure and the problem of synthesizing the computationga
the control edges. Furthermore, the work leverages veiiita
techniques that use both approximation and lattice thiesearch
along with decision procedures. This work is more ambitiand
aims to synthesize entire algorithms. By nature, it caneobdith
terminating and complete over the space of all programssiduiat
isfy an input/output specification (thus the approach otgpeg
program resource bounds). In contrast, we focus on sysstloési
program fragments with very specific control structureatiet by
the nature of the decidable logical fragment.

Our work further differs from the past ones in 1) using dexisi
procedures to guarantee the computation of synthesizexdidas
whenever a synthesized function exists, 2) bounds on tha@ngn
times of the synthesis algorithm and the synthesized cagessid
running time, and 3) deployment of synthesis in well-deledi
pieces of code of a general-purpose programming language.

Program sketching has demonstrated the practicality gfrpro
synthesis by focusing its use on particular domains [SLU&,
SLAT*07, SLJB08]. The algorithms employed in sketching are
typically focused on appropriately guided search over heax
tree of the synthesized program. Search techniques havbeds
applied to automatically derived concurrent garbage ctitla al-
gorithms [VYBRO7]. In contrast, our synthesis uses the reauidt-
ical structure of a decidable theory to explore the spacd &frec-
tions that satisfy the specification. This enables our apgrao
achieve completeness without putting any a priori boundhen t



syntax tree size. Indeed, some of the algorithms we descehe
generate fairly large yet efficient programs. We expectdhatech-
niques could be fruitfully integrated into search-basednieworks.

Synthesis of reactive systems generates programs thabrun f
ever and interact with the environment. However, known detep
algorithms for reactive synthesis work with finite-statesteyns
[PR89] or timed systems [AMP95]. Such techniques have appli
cations to control the behavior of hardware and embeddedrags
or concurrent programs [VYYQ09]. These techniques usualket
specifications in a fragment of temporal logic [PPS06] andeha
resulted in tools that can synthesize useful hardware coes
[JGWBO07, JB06]. Our work examines non-reactive prograras, b
supports infinite data without any approximation, and ipooates
the algorithms into a compiler for a general-purpose prognang
language.

Computing optimal bounds on the size and running time of the
synthesized code for Presburger Arithmetic is beyond tbpesof
this paper. Relevant results in the area of decision proesdare
automata-based decision procedures [BJWO05, Kla03], thads
on quantifier elimination [Wei97] and results on integergyeom-
ming in fixed dimensions [ES08].

the second partition. Another useful class of data strestare
algebraic data types; synthesis based on algebraic datxajen
izes pattern matching on algebraic data types with equality
inequality constraints. The starting point for such exiems are
decision procedures for algebraic data types and theinsixtes
[Opp78, BSTO7, SDK10]. Our approach can also be applied to im
perative data structures [KS93]. This idea would benefinfre-
cent advances from more efficient decision procedures based
local theory extensions [Jac10], including [WPKO09, MNO5].

Given the range of logics for which we can obtain synthesis
procedures, it is important to realize that we can asmbine
synthesis procedures similarly to the way in which we cantiom
decision procedures. We gave one example of such comhinatio
this paper, by describing our BAPA synthesis procedure baitop
of a synthesis procedure for integer arithmetic. Other doatton
approaches are possible building on the body of work in datis
procedure combinations [GHN04, WPKO9].

We have pointed out that synthesis can be viewed as a powerful
programming language extension. Such an extension carabe se
lessly introduced into popular programming languages asva n
kind of expression and a new pattern matching construcs. dur

Automata-based decision procedures, such as those imple-hope that the availability of synthesis constructs wilffistiie way

mented in the MONA tool [KMO01] could be used to synthesize
efficient (even if large) code from expressive specificatiohhe
work on graph types [KS93] proposes to synthesize fieldsngive
by definitions in monadic second-order logic. Automata halge
been applied to the synthesis of efficient code for patteaiching
expressions [SRR95].

Our approach can be viewed as sharing some of the goals of

partial evaluation [JGS93]. However, we do not need to eynplo
general-purpose partial evaluation techniques (whicttéfly pro-
vide linear speedup), because we have the knowledge ofielpart
decision procedure. We use this knowledge to devise a syistake
gorithm that, given formuld’, generates the code corresponding to
the invocation of this particular decision procedure. ®yisthesis
process checks the uniqueness and the existence of thessjut
emitting appropriate warnings. Moreover, the synthescmte can
have reduced complexity compared to invoking the decisiong»
dure at run time, especially when the number of variableyte s
thesize is bounded.

11. Conclusions

We have presented the general idea of turning decision guoes
into synthesis procedures. We have explored in greateil tieta
to do this transformation for theories admitting quantiéémina-
tion, in particular linear arithmetic. Important compligxijuestions
arise in synthesis, such as the best possible size of syrebede,
time to perform synthesis, and the worst-case running tifriteeo
synthesized code over all inputs. We have also illustratatisyn-
thesis procedures can be built even for cases for which tHerun
lying parameterized satisfiability problem is undecidatsiech as
integer multiplication), as long as the problem becomesddédte
by the time the parameters are fixed. We have also transfoamed
BAPA decision procedure into a synthesis procedure, ittisty in
the process how to layer multiple synthesis procedures oriefo
of the other.

We believe that integer arithmetic and constraints on dets a
ready make our approach interesting to programmers. THaluse
ness of the proposed approach can be further supported by inc
porating synthesis procedures based on additional ddeidain-
straints. For example, more control over the desired swiatfor
sets could be provided using decision procedures for oddese
lections that we have recently identified [PSK10]. In theraxa
ple of partitioning a set, such support would allow us to #fgec
that all elements of one partition are smaller than all elenef

we think about program development. Program propertiesaand
sertions can stop being part of the dreaded “annotatiorheael”,
but rather become a cost-effective way to build programh e
desired functionality.
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