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Abstract
Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. To inte-
grate synthesis into programming languages, synthesis algorithms
should behave in a predictable way—they should succeed for a
well-defined class of specifications. They should also support un-
bounded data types such as numbers and data structures. We pro-
pose to generalize decision procedures into predictable and com-
plete synthesis procedures. Such procedures are guaranteed to find
code that satisfies the specification if such code exists. Moreover,
we identify conditions under which synthesis will statically decide
whether the solution is guaranteed to exist, and whether it is unique.
We demonstrate our approach by starting from decision procedures
for linear arithmetic and data structures and transformingthem into
synthesis procedures. We establish results on the size and the effi-
ciency of the synthesized code. We show that such proceduresare
useful as a language extension with implicit value definitions, and
we show how to extend a compiler to support such definitions. Our
constructs provide the benefits of synthesis to programmers, with-
out requiring them to learn new concepts or give up a deterministic
execution model.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages, Verification

1. Introduction
Synthesis of software from specifications [MW71, MW80]
promises to make programmers more productive. Despite substan-
tial recent progress [SLTB+06, SLJB08, VYY09, SGF10], synthe-
sis is limited to small pieces of code. We expect that this will con-
tinue to be the case for some time in the future, for two reasons:
1) synthesis is algorithmically a difficult problem, and 2) synthesis
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requires detailed specifications, which for large programsbecome
difficult to write.

We therefore expect that practical applications of synthesis lie in
its integration into the compilers of general-purpose programming
languages. To make this integration feasible, we aim to identify
well-defined classes of expressions and synthesis algorithmsguar-
anteed to succeedfor these classes of expressions, just like a com-
pilation attempt succeeds for any well-formed program. Ourstart-
ing point for such synthesis algorithms aredecision procedures.

A decision procedure for satisfiability of a class of formulas ac-
cepts a formula in its class and checks whether the formula has a
solution. On top of this basic functionality, many decisionproce-
dure implementations provide the additional feature of generating
a satisfying assignment (a model) whenever the given formula is
satisfiable. Such a model-generation functionality has many uses,
including better error reporting in verification [Mos09] and test-
case generation [AGT08].

Model generation could also be used as an advanced computa-
tion mechanism—given a set of values for some of the variables,
a constraint solver can at run-time find the values of the remaining
variables such that a given constraint holds. A recent example of
integrating such a mechanism into a programming language are the
quotations of theF# language [SGC07] used to interface to the
Z3 satisfiability modulo theories (SMT) solver [B08]. Such mech-
anisms promise to bring the algorithmic improvements of SMT
solvers to declarative paradigms such as Constraint Logic Pro-
gramming [JM94]. However, they involve a possibly unpredictable
search at run-time, and require the deployment of the entiredeci-
sion procedure as a component of the run-time system.

Our goal is to provide the benefits of the declarative approach
in a more controlled way: we aim to run a decision procedure
at compile timeand use it to generate code. The generated code
then computes the desired values of variables at run-time. It is
thus specific to the desired constraint, and can be more efficient.
It does not require the decision procedure to be present at run-time,
and gives the developer static feedback by checking the conditions
under which the generated solution will exist and be unique.We
use the termsynthesisfor our approach because it starts from an
implicit specification, and involves compile-time precomputation.
Because it computes a function that satisfies a given input/output
relation, we call our synthesisfunctional, in contrast to reactive
synthesis approaches [PR89] (another term for the general direction
of our approach is AE-paradigm or Skolem paradigm [PR89]).
Finally, we call our approachcompletebecause it is guaranteed to
work for all specification expressions from a well-specifiedclass.

We demonstrate this approach by describing our synthesis al-
gorithms for the domains of linear arithmetic and collections of
objects. We have implemented these synthesis algorithms and de-
ployed them as a compiler extension of the Scala programminglan-
guage [OSV08]. We have found that using such constraints we were
able to express a number of program fragments in a more natural



way, stating the invariants that the program should satisfyas op-
posed to the computation details of establishing these invariants.

In the area of integer arithmetic, we obtain a language extension
that can implicitly define integer variables to satisfy given con-
straints. The applications of integer arithmetic synthesis include
conversions of quantities expressed in terms of multiple units, as
well as a substantially more general notion of pattern matching
on integers, going well beyond matching on constants or(n + k)-
patterns of Haskell.

In the area of data structures, we describe a synthesis procedure
that can compute sets of elements subject to constraints expressed
in terms of basic set operations (union, intersection, set difference,
subset, equality) as well as linear constraints on sizes of sets. We
have found these constraints to be useful for manipulating sets of
objects in high-level descriptions of algorithms, from simple oper-
ations such as choosing an element from a set or a fresh element,
or splitting sets subject to size constraints. Such constructs arise
in pseudo code notations, and they provide a useful additionto
the transformations previously developed for the SETL program-
ming language [Dew79, Sha82]. Regarding data structures, this pa-
per focuses on sets, but the approach applies to other constraints for
which decision procedures are available [KPSW10], including mul-
tisets [PK08a, PK08b, YPK10] and algebraic data types [SDK10].

Contributions. This paper makes the following contributions.

1. We describe an approach for deploying algorithms for synthe-
sis within programming languages. Our approach introducesa
higher-order library functionchoose of type(α ⇒ bool) ⇒ α,
which takes as an argument a specification, given as an expres-
sionλx.F of typeα ⇒ bool. Our compiler extension rewrites
calls tochoose into efficient code that finds a valuex of typeα
such thatF is true. The generated code computesx as a func-
tion of the free variables (parameters) of the expressionF .

This deployment is easy to understand by programmers because
it has the same semantics as invoking a constraint solver at run-
time. It does not impact the semantics or efficiency of existing
programming language constructs, because the execution out-
sidechoose remains unchanged.

2. Building on thechoose primitive, we show how to support pat-
tern matching expressions that are substantially more expres-
sive than the existing ones, using the full expressive powerof
the term language of a decidable theory.

3. We describe a methodology to convert decision proceduresfor
a class of formulas intosynthesis proceduresthat can rewrite
the corresponding class of expressions into efficient executable
code. Most existing procedures based on quantifier elimination
are directly amenable to our approach.

4. As a first illustrative example, we describe synthesis procedures
for propositional logic and rational arithmetic. We show that,
compared to invocations of constraint solvers at run-time,the
synthesized code can have better worst-case complexity in the
number of variables. This is because our synthesis procedure
converts (at compile time) a given constraint into a solved form
that can be executed, avoiding most of the run-time search. The
synthesized code is guaranteed to be correct by construction.

5. As our core implemented example, we present synthesis for
linear arithmetic over unbounded integers. Given an integer
linear arithmetic formula and a separation of variables into
output variables and parameters, our procedure constructs1) a
program that computes the values of outputs given the valuesof
inputs, and 2) the weakest possible precondition on inputs that
guarantees the existence of outputs.

6. We show that the synthesis for integer arithmetic can be ex-
tended to the non-linear case where coefficients multiplying
output variables are expressions over parameters that are known
only at run-time. We have implemented this extension and have
found that it increases the range of supported specifications. It
shows that we can have complete functional synthesis for speci-
fications for which the satisfiability over the space of all param-
eters is undecidable.

7. We also present an implemented synthesis procedure for
Boolean Algebra with Presburger Arithmetic (BAPA), a logic
of constraints on sets and their sizes. This algorithm illustrates
that complete functional synthesis applies not only to numeri-
cal computations, but also to the very important domain of data
structure manipulations. This result also illustrates theidea of
thecomposition of synthesis procedures. While the implemen-
tations of BAPA decision procedures work by reduction to in-
teger arithmetic decision procedures [KNR06, KR07], we here
show how to build a synthesis procedure for BAPA on top of
our synthesis procedure for integer linear arithmetic.

8. We describe our experience in using synthesis as a plugin for
the Scala compiler. Our implementation is publicly available
at http://lara.epfl.ch/dokuwiki/comfusy and can be
used as a starting point for the development of further synthesis
approaches.

2. Example
We first illustrate the use of a synthesis procedure for integer
linear arithmetic. Consider the following example to breakdown a
given number of seconds (stored in the variabletotsec) into hours,
minutes, and leftover seconds.

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&
0 ≤ m && m ≤ 60 &&
0 ≤ s && s ≤ 60)

Our synthesizer succeeds, because the constraint is in integer linear
arithmetic. However, the synthesizer emits the following warning:

Synthesis predicate has multiple solutions
for variable assignment: totsec = 0
Solution 1: h = 0, m = 0, s = 0
Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds onm and s are
not strict. After correcting the error in the specification,replac-
ing m ≤ 60 with m < 60 ands ≤ 60 with s < 60, the synthesizer
emits no warnings and generates code corresponding to the follow-
ing:

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)
(loc1, loc2, loc3)

}

The absence of warnings guarantees that the solution al-
ways exists and that it is unique. By writing the code in
this style, the developer directly ensures that the condition
h ∗ 3600 + m ∗ 60 + s == totsec will be satisfied, making pro-
gram understanding easier. Note that, if the developer imposes the
constraint

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&
0 ≤ h < 24 &&
0 ≤ m && m < 60 &&
0 ≤ s && s < 60)



our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when the
totsec parameter is too large.

In addition to thechoose function, programmers can use syn-
thesis for more flexible pattern matching on integers. In existing
deterministic programming languages, matching on integers either
tests on constant types, or, in the case of Haskell’s(n+k) patterns,
on some very special forms of patterns. Our approach supports a
much richer set of patterns, as illustrated by the followingfast ex-
ponentiation code that does case analysis on whether the argument
is even or odd:

def pow(base : Int, p : Int) = {
def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒ m
case 2∗j ⇒ fp(m, b∗b, j)
case 2∗j+1 ⇒ fp(m∗b, b∗b, j)

}
fp(1,base,p)

}

The correctness of the function follows from the observation that
fp(m, b, i) = mbi, which we can prove by induction. Indeed, if we
consider the case2 ∗ j + 1, we observe:

fp(m, b, i) = fp(m, b, 2j + 1) = fp(mb, b2, j)
(by induct. hypothesis) = mb(b2)j = mb2j+1 = mbi

Note how the pattern matching on integer arithmetic expressions
exposes the equations that make the inductive proof simpler. The
pattern matching compiler generates the code that decomposes i
into the appropriate new exponentj. Moreover, it checks that the
pattern matching is exhaustive. The construct supports arbitrary ex-
pressions of linear integer arithmetic, and can prove for example
that the set of patterns2 ∗ k, 3 ∗ k, 6 ∗ k − 1, 6 ∗ k + 1 is exhaus-
tive. The system also accepts implicit definitions, such as

val 42 ∗ x + 5 ∗ y = z

The system ensures that the above definition matches every integer
z, and emits the code to computex andy from z.

Our approach and implementation also work for parameterized
integer arithmetic formulas, which become linear only oncethe pa-
rameters are known. For example, our synthesizer accepts the fol-
lowing specification that decomposes an offset of a linear represen-
tation of a three-dimensional array with statically unknown dimen-
sions into indices for each coordinate:

val (x1, y1, z1) = choose((x: Int, y: Int, z: Int) ⇒
offset == x + dimX ∗ y + dimX ∗ dimY ∗ z &&
0 ≤ x && x < dimX &&
0 ≤ y && y < dimY &&
0 ≤ z && z < dimZ)

Here dimX, dimY, dimZ are variables whose value is unknown
until runtime. Note that the satisfiability of constraints that con-
tain multiplications of variables is in general undecidable. In such
parameterized case our synthesizer is complete in the sensethat
it generates code that 1) always terminates, 2) detects at run-time
whether a solution exists for current parameter values, and3) com-
putes one solution whenever a solution exists.

In addition to integer arithmetic, other theories are amenable
to synthesis and provide similar benefits. Consider the problem of
splitting a set collection in a balanced way. The following code
attempts to do that:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&
a1.size == a2.size)

It turns out that for the above code our synthesizer emits a warning
indicating that there are cases where the constraint has no solutions.
Indeed, there are no solutions when the sets is of odd size. If we
weaken the specification to

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&
a1.size − a2.size ≤ 1 &&
a2.size − a1.size ≤ 1)

then our synthesizer can prove that the code has a solution for
all possible input setss. The synthesizer emits code that, for each
input, computes one such solution. The nature of constraints on sets
is that if there is one solution, then there are many solutions. Our
synthesizer resolves these choices at compile time, which means
that the generated code is deterministic.

3. From Decision to Synthesis Procedures
We next define precisely the notion of a synthesis procedure and
describe a methodology for deriving synthesis procedures from
decision procedures.

Preliminaries. Each of our algorithms works with a set of for-
mulas, Formulas, defined in terms of terms,Terms. Formulas
denote truth values, whereas terms and variables denote values
from the domain (e.g. integers). We denote the set of variables
by Vars. FV(q) denotes the set of free variables in a formula or
a termq. If ~x = (x1, . . . , xn) then ~xs denotes the set of vari-
ables{x1, . . . , xn}. If q is a term or formula,~x = (x1, . . . , xn)
a vector of variables and~t = (t1, . . . , tn) a vector of terms, then
q[~x := ~t] denotes the result of substituting inq the free variables
x1, . . . , xn with termst1, . . . , tn, respectively. Given a substitution
σ : FV(F ) → Terms, we writeFσ for the result of substituting
eachx ∈ FV(F ) with σ(x). Formulas are interpreted over ele-
ments of a first-order structureD with a countable domainD. We
assume that for eache ∈ D there exists a ground termce whose
interpretation inD is e; let C = {ce | e ∈ D}. We further assume
that if F ∈ Formulas then alsoF [x := ce] ∈ Formulas (the class
of formulas is closed under partial grounding with constants).

The choose programming language construct.We integrate into
a programming language a construct of the form

~r = choose(~x ⇒ F ) (1)

Here F is a formula (typically represented as a boolean-valued
programming language expressions) and~x ⇒ F denotes an
anonymous function from~x to the value ofF (that is,λ~x.F ). Two
kinds of variables can appear withinF : output variables~x and
parameters~a. The parameters~a are program variables that are in
scope at the point wherechoose occurs; their values will be known
when the statement is executed. Output variables~x denote values
that need to be computed so thatF becomes true, and they will be
assigned to~r as a result of the invocation ofchoose.

We can translate the abovechoose construct into the following
sequence of commands in a guarded command language [Dij76]:

assert (∃~x.F );
havoc (~r);
assume (F [~x := ~r]);

The simplicity of the above translation indicates that it isnatu-
ral to representchoose within existing verification systems (e.g.
[FLL+02, ZKR08]) The use ofchoose can help verification be-
cause the desired propertyF is explicitly assumed and can aid in
proving the subsequent program assertions.

Model-generating decision procedures.As a starting point for
our synthesis algorithms forchoose invocations we consider a



model-generating decision procedure. GivenF ∈ Formulas we
expect this decision procedure to produce either

a) a substitutionσ : FV(F ) → C such thatFσ is a true, or

b) a special valueunsat indicating that the formula is unsatisfiable.

We assume that the decision procedure is deterministic and behaves
as a function. We writeZ(F )=σ or Z(F )=unsat to denote the
result of applying the decision procedure toF .

Baseline: invoking a decision procedure at run-time.Just like
an interpreter can be considered as a baseline implementation for
a compiler, deploying a decision procedure at run-time can be
considered as a baseline for our approach. In this scenario,we
replace the invocation of (1) with

F = makeFormulaTree(makeVars(~x), makeGroundTerms(~a));
~r = (Z(F ) match {

case σ ⇒ (σ(x1), . . . , σ(xn))
case unsat ⇒ throw new Exception(”No solution exists”)

})

The dynamic invocation approach is flexible and useful. However,
there are important performance and predictability advantages of
an alternativecompilationapproach.

Synthesis based on decision procedures.Our goal is therefore
to explore a compilation approach where a modified decision pro-
cedure is invoked at compile time, converting the formula into a
solved form.

DEFINITION 1 (Synthesis Procedure).We denote an invocation of
a synthesis procedure byJ~x, F K = (pre, ~Ψ). A synthesis procedure
takes as input a formulaF and a vector of variables~x and outputs
a pair of

1. a precondition formulapre with FV(pre) ⊆ FV(F ) \ ~xs

2. a tuple of terms~Ψ with FV(~Ψ) ⊆ FV(F ) \ ~xs

such that the following two implications are valid:

(∃~x.F ) → pre

pre → F [~x := ~Ψ]

OBSERVATION 2. Because another implication always holds:

F [~x := ~Ψ] → ∃~x.F

the above definition implies that the three formulas are all equiv-
alent: (∃~x.F ), pre, F [~x := ~Ψ]. Consequently, if we can define
a functionwitn where forwitn(~x, F ) = ~Ψ we haveFV(~Ψ) ⊆
FV(F ) \ ~xs and∃~x.F impliesF [~x := Ψ], then we can define a
synthesis procedure by

J~x, F K = (F [~x := witn(~x, F )], witn(~x, F ))

The reason we use the translation that computespre in addition to
witn(~x, F ) is that the synthesizer performs simplifications when
generatingpre, which can produce a formula faster to evaluate than
F [~x := witn(~x, F )].

The synthesizer emits the terms~Ψ in compiler intermediate
representation; the standard compiler then processes themalong
with the rest of the code. We identify the syntax tree of~Ψ with its
meaning as a function from the parameters~a to the output variables
~x. The overall compile-time processing of the choose statement (1)
involves the following:

1. emit a non-feasibility warning if the formula¬pre is satisfiable,
reporting the counterexample for which the synthesis problem
has no solutions;

2. emit a non-uniqueness warning if the formula

F ∧ F [~x := ~y] ∧ ~x 6= ~y

is satisfiable, reporting the values of all free variables asa
counterexample showing that there are at least two solutions;

3. as the compiled code, emit the code that behaves as

assert(pre); ~r = ~Ψ

The existence of a model-generating decision procedure implies
the existence of a ‘trivial’ synthesis procedure, which satisfies
Definition 1 but simply invokes the decision procedure at run-time.
The usefulness of the notion of synthesis procedure comes from
the fact that we can often create compiled code that avoids this
trivial solution. Among the potential advantages of the compilation
approach are:

• improved run-time efficiency, because part of the reasoningis
done at compile-time;

• improved error reporting: the existence and uniqueness of solu-
tions can be checked at compile time;

• simpler deployment: the emitted code can be compiled to any of
the targets of the compiler, and requires no additional run-time
support.

This paper therefore pursues the compilation approach. As for the
processing of more traditional programming language constructs,
we do believe that there is space in the future for mixed approaches,
such as ‘just-in-time synthesis’ and ‘profiling-guided synthesis’.

Efficiency of synthesis. We introduce the following measures to
quantify the behavior of synthesis procedures:

• time to synthesize the code, as a function ofF ;

• size of the synthesized code, as a function ofF ;

• running time of the synthesized code as a function ofF and a
measure of the run-time values of~a.

When usingF as the argument of the above measures, we often
consider not only the size ofF , but also the dimension of the
variable vector~x and the parameter vector~a in F .

From quantifier elimination to synthesis. The preconditionpre
can be viewed as a result of applying quantifier elimination (see
e.g. [Nip08]) to remove~x from F , with the following differences.

1. Synthesis procedures strengthen quantifier eliminationproce-
dures by identifying not onlypre but also emitting the code~Ψ
that efficiently computes awitnessfor ~x.

2. Quantifier elimination is typically applied to arbitraryquanti-
fied formulas of first-order logic and aims to successively elim-
inate all variables. To enable recursive application of variable
elimination,pre must be in the same language of formulas as
F . This condition is not required in our case.

3. Worst-case bounds on quantifier elimination algorithms mea-
sure the size of the generated formula and the time needed to
generate it, but not the size of~Ψ or the time to evaluate~Ψ.
For some domains, it can be computationally more difficult to
compute (or even ’print’) the solution than to simply check the
existence of a solution.

Despite the differences, we have found that we can naturallyex-
tend existing quantifier elimination procedures with explicit com-
putation of witnesses that constitute the program~Ψ.



4. Selected Generic Techniques
We next describe some basic observations and techniques forsyn-
thesis that are independent of a particular theory.

4.1 Synthesis for Multiple Variables

Suppose that we have a functionwitn(x,F ) that corresponds to
constructive quantifier elimination step for one variable and pro-
duces a termΨ such thatF [x := Ψ] holds iff ∃x.F holds. We can
then lift witn(x, F ) to synthesis for any number of variables, using
the following translation scheme with non-tail recursion:

J , K :
S

n

`

Varsn × Formulas → Formulas × Termsn
´

J(), F K = (F, ())

J(x1, . . . , xn), F K =
let Ψn = witn(xn, F )

F ′ = simplify(F [xn := Ψn])

(pre, (Ψ1, . . . , Ψn−1)) = J(x1, . . . , xn−1), F
′K

Ψ′
n = Ψn[x1 := Ψ1, . . . , xn−1 := Ψn−1]

in
(pre, (Ψ1, . . . , Ψn−1, Ψ

′
n))

The above translation includes the base case in which there are
no variables to eliminate, soF becomes the precondition, and the
recursive case that applies thewitn function.

In implementation we can use local variable definitions instead
of substitutions. Given (1), we generate as~Ψ a Scala code block
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>

>

>

<

>

>

>

:

val x1 = Ψ1

. . .
val xn−1 = Ψn−1

val xn = Ψn

~x
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>

>

>

=

>

>

>

;

where the variables inΨn directly refer to variables computed in
Ψ1, . . . , Ψn−1 and whereFV(Ψi) ⊆ FV(F ) \ {xi, . . . , xn}. A
consequence of this recursive translation pattern is that the synthe-
sized code computes values in reverse order compared to the steps
of a quantifier elimination procedure. This observation canbe help-
ful in understanding the output of our synthesis procedures.

4.2 One-Point Rule Synthesis

If x /∈ FV(t) we can define

witn(x, x = t ∧ F ) = t

If the formula does not have the formx = t ∧ F , we can often
rewrite it into this form using theory-specific transformations.

4.3 Output-Independent Preconditions

WheneverFV(F1)∩ ~xs = ∅, we can apply the following synthesis
rule:

J~x, F1 ∧ F2K = let (pre, ~Ψ) = J~x, F2K in

(pre ∧ F1, ~Ψ)

which moves a ‘constant’ conjunct of the specification into the
precondition. We assume that this rule is applied whenever possible
and do not explicitly mention it in the sequel.

4.4 Propositional Connectives in First-Order Theories

Consider a quantifier-free formula in some first-order theory. Con-
sider the tasks of checking formula satisfiability or applying elim-
ination of a variable. For both tasks, we can first rewrite thefor-
mula into disjunctive normal form and then process each disjunct
independently. This allows us to focus on handling conjunctions of
literals as opposed to arbitrary propositional combination.

We next show that we can similarly use disjunctive normal form
in synthesis. Consider a formulaD1 ∨ . . .∨Dn in disjunctive nor-
mal form. We can apply synthesis to eachDi yielding a precondi-
tionprei and the solved form~Ψi. We can then synthesize code with
conditionals that select the first~Ψi that applies:

J~x, D1 ∨ . . . ∨ DnK =

let (pre1,
~Ψ1) = J~x, D1K

. . .

(pren, ~Ψn) = J~x, DnK
in
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prei,
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>

>

>

>

:

if (pre1) ~Ψ1

else if (pre2)
~Ψ2

. . .

else if (pren) ~Ψn

else

throw new Exception(“No solution”)
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=

>

>

>

>

>

>

;
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Although the disjunctive normal form can be exponentially
larger than the original formula, the transformation to disjunctive
normal form is used in practice [Pug92] and has advantages in
terms of the quality of synthesized code generated for individual
disjuncts. What further justifies this approach is that we expect a
small number of disjuncts in our specifications, and may needdif-
ferent synthesized values for variables in different disjuncts.

Other methods can have better worst-case quantifier elimination
complexity [Coo72, FR79, Wei97, Nip08] than disjunctive normal
form approaches. We discuss these alternative approaches in the
sequel as well, but it is the above disjunctive normal form approach
that we currently use in our implementation.

4.5 Synthesis for Propositional Logic

Our paper focuses on synthesis for formulas overunboundeddo-
mains. Nonetheless, to illustrate the potential asymptotic gain of
precomputation in synthesis, we illustrate synthesis for the case
whenF is a propositional formula (see e.g. [KS00] for a more so-
phisticated approach to this problem). Suppose that~x are output
variables and~a are the remaining propositional variables (parame-
ters) inF .

To synthesize a function from~a to ~x, build an ordered binary
decision diagram (OBDD) [Bry86] forF , treating both~a and~x
as variables for OBDD construction, and using a variable ordering
that puts all parameters~a before all output variables~x. Then split
the OBDD graph at the point where all the decisions on~a have
been made. That is, consider the set of nodes that terminate on
some paths on which all decisions on~a have been made and no
decisions on~x have been made. For each of these OBDD nodes,
we precompute whether this node reaches thetrue sink node. As
the result of synthesis, we emit the code that consists of nested if-
then-else tests encoding the decisions on~a, followed by the code
that, for each node that reachestrue emits those values of~x that
trace one path to thetrue sink node.

Consider the code generated using the method above. Note that,
although the size of the code is bounded by a single exponential,
the code executes in time linear in the total number of variables
~a and~x. This is in contrast to NP-hardness of finding a satisfying
assignment for a propositional formulaF , which would occur in
the baseline approach of invoking a SAT solver at run-time. In
summary, for propositional logic synthesis (and, more generally,
for NP-hard constraints over bounded domains) we can precompute
solutions and generate code that computes unknown propositional
values in deterministic polynomial time in the size of inputs and
outputs.

In the next several sections, we describe synthesis procedures
for several useful decidable logics overinfinite domains (numbers



and data structures) and discuss the efficiency improvements due to
synthesis.

5. Synthesis for Linear Rational Arithmetic
We next consider synthesis for quantifier-free formulas of linear
arithmetic over rationals. In this theory, variables rangeover ratio-
nal numbers, terms are linear expressionsc0 + c1x1 + . . . + cnxn,
and the relations in the language are< and=. Synthesis for this
theory can be used to synthesize exact fractional arithmetic compu-
tations (or floating-point computations if we are willing toignore
the rounding errors). It also serves as an introduction to the more
complex problem of integer arithmetic synthesis that we describe
in the following sections.

Given a quantifier-free formula, we can efficiently transform it
to negation-normal form. Furthermore, we observe that¬(t1 < t2)
is equivalent to(t2 < t1) ∨ (t1 = t2) and that¬(t1 = t2) is
equivalent to(t1 < t2) ∨ (t2 < t1). Therefore, there is no need
to consider negations in the formula. We can also normalize the
equalities to the formt = 0 and the inequalities to the form0 < t.

5.1 Solving Conjunctions of Literals

Given the observations in Section 4.4, we consider conjunctions of
literals. The method follows Fourier-Motzkin elimination[Sch98].
Consider the elimination of a variablex.

Equalities. If x occurs in an equality constraintt = 0, then solve
the constraint forx and rewrite it asx = t′, wheret′ does not
containx. Then simply apply the one-point rule synthesis (Sec-
tion 4.2). This step amounts to Gaussian elimination. We follow
this step whenever possible, so we first eliminate those variables
that occur in some equalities and only then proceed to inequalities.

Inequalities. Next, suppose thatx occurs only in strict inequali-
ties0 < t. Depending on the sign ofx in t, we can rewrite these
inequalities intoap < x or x < bq for some termsap, bq . Consider
the more general case when there is both at least one lower bound
ap and at least one upper boundbq . We can then define:

witn(x, F ) = (max
p

{ap} + min
q

{bq})/2

As one would expect from quantifier elimination, thepre corre-
sponding to this case results fromF by replacing the conjunction
of all inequalities containingx with the conjunction

^

p,q

ap < bq

In case there are no lower boundsap, we definewitn(x,F ) =
minq{bq} − 1; if there are no upper boundsbq, we define
witn(x, F ) = maxp{ap} + 1.

Complexity of synthesis for conjunctions.We next examine the
size of the generated code for linear rational arithmetic. The elim-
ination of input variables using equalities is a polynomial-time
transformation. Suppose that after this elimination we areleft with
N inequalities andV remaining input variables. The above inequal-
ity elimination step for one variable replacesN inequalities with
(N/2)2 inequalities in the worst case. After eliminating all out-
put variables, an upper bound on the formula increase is(N/2)2

V

.
Therefore, the generated formula can be in the worst case doubly
exponential in the number of output variablesV . However, for a
fixed V , the generated code size is a (possibly high-degree) poly-
nomial of the size of the input formula. Also, if there are 4 orfewer
inequalities in the original formula, the final size is polynomial,
regardless ofV . Finally, note that the synthesis time and the exe-
cution time of synthesized code are polynomial in the size ofthe
generated formula.

5.2 Disjunctions for Linear Rational Arithmetic

We next consider linear arithmetic constraints with disjunctions,
which are constraints for which the satisfiability is NP-complete.
One way to lift synthesis for rational arithmetic from conjunctions
of literals to arbitrary propositional combinations is to apply the
disjunctive normal form method of Section 4.4. We then obtain a
complexity that is one exponential higher in formula size than the
complexity of synthesis for conjunctions.

In the rest of this section we consider an alternative to disjunc-
tive normal form. This alternative synthesizes code that can execute
exponentially faster (even though it is not smaller) compared to the
disjunctive normal form approach of Section 4.4.

The starting point of this method are quantifier elimination
techniques that avoid disjunctive normal form transformation, e.g.
[FR79], [Nip08], [BM07, Section 7.3]. To remove a variable from
negation normal form, this method finds relevant lower bounds ap

and upper boundsbq in the formula, then computes the values
mpq = (ap + bq)/2 and replaces a variablexi with the values
from the set{mpq}p,q extended with “sufficiently small” and “suf-
ficiently large” values [Nip08]. This quantifier elimination method
gives us a way to computepre.

We next present how to extend this quantifier elimination
method to synthesis, namely to the computation ofwitn(x,F ).
Consider a substitution in quantifier elimination step thatreplaces
variablexi with the termm. We then extend this step to also at-
tach to each literal a special substitution syntactic form(xi 7→ m).
When using this process to eliminate one variable, the size of the
formula can increase quadratically. After eliminating alloutput
variables, we obtain a formulapre with additional annotations; the
size of this formula is bounded byn2O(V )

wheren is the original
formula size. (Again, although it is doubly exponential inV , it is
not exponential inn.)

We can therefore build a decision tree that evaluates the values
of all n2O(V )

literals in pre. On each complete path of this tree,
we can, at synthesis time, determine whether the truth values of
literals imply thatpre is true. Indeed, such computation reduces
to evaluating the truth value of a propositional formula in agiven
assignment to all variables. In the cases when the literals imply that
pre holds, we use the attached substitution(xi 7→ m) in true literals
to recover the synthesized values of variablesxi. Such decision tree
has the depthn2O(V )

, because it tests the values of all literals in the
result of quantifier elimination. For a constant number of variables
V , this tree represents a synthesized program whose running time is
polynomial inn. Thus, we have shown that using basic methods of
quantifier elimination (without relying on detailed geometric facts
about the theory of linear rational arithmetic) we can synthesize for
each specification formula a polynomial-time function thatmaps
the parameters to the desired values of output variables.

6. Synthesis for Linear Integer Arithmetic
We next describe our main algorithm, which performs synthesis
for quantifier-free formulas of Presburger arithmetic (integer linear
arithmetic). In this theory variables range over integers.Terms are
linear expressions of the formc0 + c1x1 + . . . + cnxn, n ≥ 0, ci

is an integer constant andxi is an integer variable. Atoms are built
using the relations≥, = and|. The atomc|t is interpreted as true iff
the integer constantc divides termt. We usea < b as a shorthand
for a ≤ b∧¬(a = b). We describe a synthesis algorithm that works
for conjunction of literals.

Pre-processing. We first apply the following pre-processing steps
to eliminate negations and divisibility constraints. We remove nega-
tions by transforming a formula into its negation-normal form and
translating negative literals into equivalent positive ones:¬(t1 ≥



t2) is equivalent tot2 ≥ t1 + 1 and¬(t1 = t2) is equivalent to
(t1 ≥ t2 + 1) ∨ (t2 ≥ t1 + 1). We also normalize equalities into
the formt = 0 and inequalities into the formt ≥ 0.

We transform divisibility constraints of a formc|t into equalities
by adding a fresh variableq. The value obtained for the fresh
variableq is ignored in the final synthesized program:

J~x, (c|t) ∧ F K =

let (pre, (~Ψ, Ψn+1)) = J(~x, q), t = c q ∧ F K

in (pre, ~Ψ)

The negation of divisibility¬(c|t) can be handled in a similar way
by introducing two fresh variablesq andr:

J~x,¬(c|t) ∧ F K =

let F ′ ≡ t + r = c q ∧ 1 ≤ r ≤ c − 1 ∧ F

(pre, (~Ψ, Ψn+1, Ψn+2)) = J(~x, q, r), F ′K

in (pre, ~Ψ)

In the rest of this section we assume the input formulaF to have no
negation or divisibility constraints (these constructs can, however,
appear in the generated code and precondition).

6.1 Solving Equality Constraints for Synthesis

Because equality constraints are suitable for deterministic elimina-
tion of output variables, our procedure groups all equalities from a
conjunction and solves them first, one by one. LetE be one such
equation, so the entire formula is of the formE ∧ F . Let ~y be the
output variables that appear inE.

Given an output variabley1 andE of the formcy1 + t = 0 for
c 6= 0, a simple way to solve it would be to impose the precondition
c|t, use the witnessy1 = −t/c in synthesized code, and substitute
−t/c instead ofy1 in the remaining formula. However, to keep
the equations within linear integer arithmetic, this wouldrequire
multiplying the remaining equations and disequations inF by c,
potentially increasing the sizes of coefficients substantially.

We instead perform synthesis based on one of the improved
algorithms for solving integer equations. This algorithm avoids
the multiplication of the remaining constraints by simultaneously
replacing alln output variables~y in E with n − 1 fresh output
variables~λ. Using this algorithm we obtain the synthesis procedure
in Figure 1. An invocation ofeqSyn(~y, F ) is similar toJ~y, F K but
returns a triple(pre, ~Ψ, ~λ), which in addition to the precondition
pre and the witness term tuple~Ψ also has the fresh variables~λ.

6.1.1 The eqSyn Synthesis Algorithm

Consider the application ofeqSyn in Figure 1 to the equation
Σm

i=1βibi + Σn
j=1γjyj = 0. If there is only one output variable,

y1, we directly eliminate it from the equation. Assume therefore
n > 1. Let d = gcd(β1, . . . , βm, γ1, . . . , γn). If d > 1 we can
divide all coefficients byd, so assumed = 1.

Our goal is to derive an alternative definition of the setK =
{~y | Σm

i=1βibi + Σn
j=1γjyj = 0} which will allow a simple

and effective computation of elements inK. Note that the setK
describes the set of all solutions of a Presburger arithmetic formula.

Recall that asemilinear set[GS64] is a finite union of linear
sets. Given an integer vector~b and a finite set of integer vectorsS,
a linear setis a set{~x | ~x = ~b + ~s1 + . . . + ~sn; si ∈ S; n ≥ 0}.
Ginsburg and Spanier [GS64, GS66] showed that the set of all
solutions of a Presburger arithmetic formula is always a semilinear
set, which implies thatK is semilinear. However, we cannot apply
this result directly because the values of parameter variables are not
known until run-time. Instead, we proceed in the following steps,
as shown in Figure 1:

J , K :
S

n

`

Varsn × Formulas → Formulas × Termsn
´

J(~y, ~x), E ∧ F K =

let (preY , ~ΨY , ~λ) = eqSyn(~y, E)

F ′ = simplify(F [~y := ~ΨY ])

(pre, (~Ψλ, ~ΨX)) = J(~λ, ~x), F ′K

preY 0 = preY [~λ := ~Ψλ, ~x := ~ΨX ]
~ΨY 0 = ~ΨY [~λ := ~Ψλ, ~x := ~ΨX ]

in

(preY 0 ∧ pre, (~ΨY 0, ~ΨX))

eqSyn:
S

n

Varsn×Formulas → Formulas×Termsn×Varsn−1

eqSyn(y1, t + γ1y1 = 0) = ((γ1|t), −t/γ1, ())

eqSyn(y1, . . . , yn, t + Σn
j=1γjyj=0) = (for t = Σm

i=1βibi)

let d = gcd(β1, . . . , βm, γ1, . . . , γn)

if (d > 1) eqSyn(y1, . . . , yn, t/d + Σn
j=1(γj/d)yj=0)

else let (~s1, . . . , ~sn−1) = linearSet(γ1, . . . , γn)
(w1, . . . , wn) = particularSol(t, γ1, . . . , γn)
pre = (gcd(γ1, . . . , γn)|t)
λ1, . . . , λn−1 − fresh variable names
~Ψ = (w1, . . . , wn) + λ1~s1 + . . . + λn−1~sn−1

in (pre, ~Ψ, ~λ)

Figure 1. Algorithm for Synthesis Based on Integer Equations

1. obtain a linear set representation of the set

SH = {~y |
n

X

j=1

γjyj = 0}

of solutions for the homogeneous part using the function
linearSet (defined in Section 6.1.2 to compute~s1, . . . , ~sn−1

such that

SH = {~y | ∃λ1, . . . , λn−1 ∈ Z. ~y =

n−1
X

i=1

λi~si}

2. find one particular solution, that is, use the function
particularSol (defined in Section 6.1.3) to find a vector of terms
~w (containing the parametersbi) such thatt+

Pn

j=1 γjwj = 0
for all values of parametersbi.

3. return as the solution~w +

n−1
X

i=1

λi~si

To see that the algorithm is correct, fix the values of parameters
and let~γ = (γ1, . . . , γn). From linearity we havet + ~γ · (~w +
P

j
λj~sj) = t − t + 0 = 0, which means that each~w +

P

j
λj~sj

is a solution. Conversely, if~y is a solution of the equation then
~γ(~y− ~w) = 0, so~y − ~w ∈ SH , which means~y− ~w =

Pn

i=1 λi~si

for someλi. Therefore, the set of all solutions oft+
Pn

j=1 γjwj =

0 is the set{~w +
Pn−1

i=1 λi~si | λi ∈ Z}. It remains to define
linearSet to find~si andparticularSol to find ~w.

6.1.2 Computing a Linear Set for a Homogeneous Equation

This section describes our version of the algorithm
linearSet(γ1, . . . , γn) that computes the set of solutions of
an equationΣn

i=1γiyi = 0. A related algorithm is a component of



the Omega test [Pug92]. We define

linearSet(γ1, . . . , γn) = (~s1, . . . , ~sn−1)

where~sj = (K1j , . . . , Knj) and the integersKij are computed as
follows:

• if i < j, Kij = 0 (the matrixK is lower triangular)

• Kjj =
gcd((γk)k≥j+1)

gcd((γk)k≥j)

• for each indexj, 1 ≤ j ≤ n − 1, we computeKij as follows.
Consider the equation

γjKjj +
n

X

i=j+1

γiuij = 0

and find any solution. That is, compute

(K(j+1)j , . . . , Knj) = particularSol(−γjKjj , γj+1, . . . , γn)

whereparticularSol is given in Section 6.1.3.

Let SH = {~y | Σn
i=1γiyi = 0} and let

SL = {λ1~s1 + . . . + λn~sn | λ1, . . . , λn ∈ Z} =
8

>

<

>

:

λ1

0

B

@

K11

...
Kn1

1

C

A
+ . . . + λn−1

0

B

@

K1(n−1)

...
Kn(n−1)

1

C

A

˛

˛

˛

˛

˛

˛

˛

λi ∈ Z

9

>

=

>

;

We claimSH = SL.
First we show that each vector~sj belongs toSH . Indeed, by

definition ofKij we haveγjKjj+
Pn

i=j+1 γiKij = 0. This means
precisely that~sj ∈ SH , by definition of~sj andSH . Next, observe
thatSH is closed under linear combinations. BecauseSL is the set
of linear combinations of vectors~sj , we haveSL ⊆ SH .

To prove that the converse also holds, let~y ∈ SH . We will
show that the triangular system of equations

Pn−1
i=1 λi~si = ~y

has some solutionλ1, . . . , λn−1. We start by showing that we
can findλ1. Let G1 = gcd((γk)k≥1). From ~y ∈ SH we have
Σn

i=1γiyi = 0, that is,G1(Σ
n
i=1βiyi) = 0 for βi = γi/G1.

This implies β1y1 + Σn
i=2βiyi = 0 and gcd((βk)k≥1) = 1.

Let G2 = gcd((βk)k≥2). Fromβ1y1 + Σn
i=2βiyi = 0 we then

obtain β1y1 + G2(Σ
n
i=2β

′

iyi) = 0 for β′
i = βi/G2. Therefore

y1 = −G2(Σ
n
i=2β

′

iyi)/β1. Becausegcd(β1, G2) = 1 we have
β1|Σ

n
i=2β

′

iyi so we can define the integerλ1 = −Σn
i=2β

′

iyi/β1

and we havey1 = λ1G2. Moreover, note that

G2 = gcd((βk)k≥2) = gcd((γk)k≥2)/G1 = K11

Therefore,y1 = λ1K11, which ensures that the first equation is
satisfied.

Consider now a new vector~z = ~y−λ1~s1. Because~y ∈ SH and
and~s1 ∈ SH also~z ∈ SH . Moreover, note that the first component
of ~z is 0. We repeat the described procedure on~z and~s2. This way
we derive the value for an integerα2 and a new vector that has0 as
the first two components.

We continue with the described procedure until we obtain a
vector ~u ∈ SH that has all components set to 0 except for the
last two. From~u ∈ SH we haveγn−1un−1 + γnun = 0. Letting
βn−1 = γn−1/ gcd(γn−1, γn) andβn = γn/ gcd(γn−1, γn) we
conclude thatβn−1un−1 + βnun = 0, soun−1/βn is an integer
and we letλn−1 = un−1/βn. By definitions ofβi it follows
λn−1 = un−1 · gcd(γn−1, γn)/γn. Next, observe that~sn−1 has
the form (0, . . . , 0, γn/ gcd(γn−1, γn),−γn−1/ gcd(γn−1, γn)).
It is then easy to verify that~u = λn−1~sn−1.

This procedure shows that every element ofSH can be repre-
sented as a linear combination of vectors~sj , which showsSH ⊆
SL and concludes the proof.

6.1.3 Finding a Particular Solution of an Equation

We finally describe theparticularSol function to find a solution (as
a vector of terms) for an equationt + Σn

i=1γiui = 0. We use the
Extended Euclidean algorithm [CLRS01, Figure 31.1] that, given
the integersa1 anda2, finds their greatest common divisord and
two integersw1 andw2 such thata1w1+a2w2 = d. Our algorithm
generalizes the Extended Euclidean Algorithm to arbitrarynumber
of variables and uses it to find a solution of an equation with
parameters. We chose the algorithm presented here because of its
simplicity. Other algorithms for finding a solution of an equation
t+Σn

i=1γiui = 0 can be found in [Ban88, FH96]. They also run in
polynomial time. [Ban88] additionally allows bounded inequality
constraints, whereas [FH96] guarantees that the returned numbers
are no larger than the largest of the input coefficients divided by 2.

The equation t + Σn
i=1γiui = 0 has a solution iff

gcd((γk)k≥1)|t, and the result ofparticularSol is guaranteed to
be correct under this condition. Our synthesis procedure ensures
that when the results of this algorithm are used, the condition
gcd((γk)k≥1)|t is satisfied.

We start with the base case where there are only two variables,
t + γ1u1 + γ2u2 = 0. By the Extended Euclidean Algorithm let
v1 and v2 be integers such thatγ1v1 + γ2v2 = gcd(γ1, γ2). If
d = gcd(γ1, γ2) and r = t/d one solution is the pair of terms
(−v1r,−v2r):

particularSol(t, γ1, γ2) =
let (d, v1, v2) = ExtendedEuclid(γ1, γ2)

r = t/d
in (−v1r,−v2r)

If there are more than two variables, we observe thatΣn
i=2γiui is

a multiple ofgcd((γk)k≥2). We introduce the new variableu′ and
find a solution of the equationt+γ1u1 +gcd((γk)k≥2) ·u

′ = 0 as
described above. This way we obtain terms(w1, w

′) for (u1, w
′).

To derive values ofu2, . . . , un we solve the equationΣn
i=2γiui =

gcd((γk)k≥2) · w′. Given that the initial equation was assumed
to have a solution, the new equation can also be showed to have
a solution. Moreover, it has one variable less, so we can solve it
recursively:

particularSol(t, γ1, . . . , γn) =
let
(w1, w

′) = particularSol(t, γ1, gcd((γk)k≥2))
(w2, . . . , wn) = particularSol(− gcd((γk)k≥2)w

′, γ2, . . . , γn)
in (w1, . . . , wn)

Example. We demonstrate the process of eliminating equations on
an example. Consider the translation

J(x, y, z), 2a − b + 3x + 4y + 8z = 0 ∧ 5x + 4z ≤ y − bK

To eliminate an equation from the formula and to reduce a number
of output variables, we first invokeeqSyn((x, y, z), 2a− b + 3x +
4y+8z = 0). It works in two phases. In the first phase, it computes
the linear set describing a set of solutions of the homogeneous
equality 3x + 4y + 8z = 0. Using the algorithm described in
Section 6.1.3, it returns:

SL =

8

<

:

λ1

0

@

4
−3
0

1

A + λ2

0

@

0
2
−1

1

A

˛

˛

˛

˛

˛

˛

λ1, λ2 ∈ Z

9

=

;

The second phase computes a witness vector~w and a precondition
formula. Applying the procedure described in Section 6.1.1results
in the vector~w = (2a − b, b − 2a, 0) and the formula1|2a − b.
Finally, we compute the output ofeqSyn applied to2a− b + 3x +
4y + 8z = 0: it is a triple consisting of

1. a precondition1|2a − b



2. a list of terms denoting witnesses for(x, y, z):

Ψ1 = 2a − b + 4λ1

Ψ2 = b − 2a − 3λ1 + 2λ2

Ψ3 = −λ2

3. a list of fresh variables(λ1, λ2).

We then replace each occurrence ofx, y andz by the corresponding
terms in the rest of the formula. This results in a new formula
7a − 3b + 13λ1 ≤ 4λ2. It has the same input variables, but the
output variables are nowλ1 andλ2. To find a solution for the initial
problem, we let

(preX , (Φ1, Φ2)) = J(λ1, λ2), 7a − 3b + 13λ1 ≤ 4λ2K

Since1|2a − b is a valid formula, we do not add it to the final
precondition. Therefore, the final result has the form

(preX , (2a − b + 4Φ1, b − 2a − 3Φ1 + 2Φ2,−Φ2))

6.2 Solving Inequality Constraints for Synthesis

In the following, we assume that all equalities are already processed
and that a formula is a conjunction of inequalities. Dealingwith
inequalities in the integer case is similar to the case of rational
arithmetic: we process variables one by one and proceed further
with the resulting formula.

Let x be an output variable that we are processing. Every con-
junct can be rewritten in one of the two following forms:

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

As for rational arithmetic,x should be a value which is greater
than all lower bounds and smaller than all upper bounds. However,
this time we also need to enforce thatx must be an integer. Let
a = maxi ⌈Ai/αi⌉ andb = minj ⌊Bj/βj⌋. If b is defined (i.e.
at least one upper bound exists), we useb as the witness forx,
otherwise we usea.

The corresponding formula with which we proceed is a con-
junction stating that each lower bound is smaller than everyupper
bound:

^

i,j

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ (2)

Because of the division, floor, and ceiling operators, the above
formula is not in integer linear arithmetic. However, in theabsence
of output variables, it can be evaluated using standard programming
language constructs. On the other hand, if the termsAi and Bj

contain output variables, we convert the formula into an equivalent
linear integer arithmetic formula as follows.

With lcm we denote the least common multiple. LetL =
lcmi,j(αi, βj). We introduce new integer linear arithmetic terms
A′

i = L
αi

Ai and B′
j = L

βj
Bj . Using these terms we derive an

equivalent integer linear arithmetic formula:

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ ⇔
˚

A′
i/L

ˇ

≤
¨

B′
j/L

˝

⇔

A′
i

L
≤

B′
j − B′

j mod L

L
⇔ B′

j mod L ≤ B′
j − A′

i

⇔ B′
j = L · lj + kj ∧ kj ≤ B′

j − A′
i

Formula (2) is then equivalent to
^

j

(B′
j = L · lj + kj ∧

^

i

(kj ≤ B′
j − A′

i))

We still cannot simply apply the synthesizer on that formula. Let
{1, . . . , J} be a range ofj indices. The newly derived formula
containsJ equalities and2 · J new variables. The process of
eliminating equalities as described in Section 6.1 will at the end

result in a new formula which containsJ new output variables
and this way we cannot assure termination. Therefore, this is not
a suitable approach.

However, we observe that the value ofkj is always bounded:
kj ∈ {0, . . . , L − 1}. Thus, if the value ofkj were known, we
would have a formula with onlyJ new variables andJ additional
equations. The equation elimination procedure described before
would then result in a formula that has one variable less thanthe
original starting formula, and that would guarantee termination of
the approach.

Since the value of eachkj variable is always bounded, there are
finitely many (J · L) possible instantiations ofkj variables. There-
fore, we need to check for each instantiation of allkj variables
whether it leads to a solution. As soon as a solution is found,we
stop and proceed with the obtained values of output variables. If
no solution is found, we raise an exception, because the original
formula has no integer solution. This leads to a translationschema
that containsJ · L conditional expression. In our implementation
we generate this code as a loop with constant bounds.

We finish the description of the synthesizer with an example that
illustrates the above algorithm.

Example. Consider the formula2y − b ≤ 3x + a ∧ 2x −
a ≤ 4y + b where x and y are output variables anda and b
are input variables. If the resulting formula⌈2y − b − a/3⌉ ≤
⌊4y + a + b/2⌋ has a solution, then the synthesizer emits the value
of x to be⌊4y + a + b/2⌋. This newly derived formula has only
one output variabley, but it is not an integer linear arithmetic
formula. It is converted to an equivalent integer linear arithmetic
formula (4y + a + b) · 3 = 6l + k ∧ k ≤ 8y + 5a + 5b,
which has three variables:y, k and l. The value ofk is bounded:
0 ≤ k ≤ 5, so we treat it as a parameter. We start with elimination
of the equality: it results in the precondition6|3a + 3b− k, the list
of termsl = (3a + 3b − k)/6 + 2α, y = α and a new variable:α.
Using this, the inequality becomesk−5a−5b ≤ 8α. Becauseα is
the only output variable, we can compute it as⌈(k − 5a − 5b)/8⌉.
The synthesizer finally outputs the following code, which computes
values of the initial output variablesx andy:

val kFound = false

for k = 0 to 5 do {
val v1 = 3 ∗ a + 3 ∗ b − k
if (v1 mod 6 == 0) {

val alpha = ((k − 5 ∗ a − 5 ∗ b)/8).ceiling
val l = (v1 / 6) + 2 ∗ alpha
val y = alpha
val kFound = true

break } }
if (kFound)

val x = ((4 ∗ y + a + b)/2).floor
else

throw new Exception(”No solution exists”)

The precondition formula is∃k. 0 ≤ k ≤ 5 ∧ 6|3a + 3b − k,
which our synthesizer emits as a loop that checks6|3a + 3b − k
for k ∈ {0, . . . , 5} and throws an exception if the precondition is
false.

6.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesis for arbi-
trary propositional combinations by applying the method ofSec-
tion 4.4. We also obtain a complexity that is one exponentialhigher
than the complexity of synthesis from the previous section.Ap-
proaches that avoid disjunctive normal form can be used in this
case as well [Nip08, FR79, Wei97].



6.4 Optimizations used in the Implementation

In this section we describe some optimizations and heuristics that
we use in our implementation. Using some of them, we obtaineda
speedup of several orders of magnitude.

Merging inequalities. Whenever two inequalitiest1 ≤ t2 and
t2 ≤ t1 appear in a conjunction, we substitute them with an
equality t1 = t2. This makes the process of variable elimination
more efficient.

Heuristic for choosing the right equality for elimination. When
there are several equalities in a formula, we choose to eliminate
an equality for which the least common multiple of all the coeffi-
cients is the smallest. We observed that this reduces the number of
integers to iterate over.

Some optimizations on modulo operations.When processing in-
equalities, as described in Section 6.2, as soon as we introduce the
modulo operator, we face a potentially longer processing time. This
is because finding the suitable value of the remainder in equation B′

j

mod L ≤ B′
j − A′

i requires invoking a loop. While searching for
a witness, we might need to test all possibleL values. Therefore,
we try not to introduce the modulo operator in the first place.This
is possible in several cases. One of them is when eitherαi = 1 or
bj = 1. In that case, if for exampleαi = 1, an equivalent integer
arithmetic formula is easily derived:

⌈Ai/αi⌉ ≤ ⌊Bj/βj⌋ ⇔ Ai ≤ ⌊Bj/βj⌋ ⇔ βjAi ≤ Bj

Another example where we do not introduce the modulo operator
is whenA′

i−B′
j evaluates to a numberN such thatN > L. In that

case, it is clear thatB′
jmod L ≤ B′

j − A′
i is a valid formula and

thus the returned formula istrue.
Finally, we describe an optimization that leads to a reduction in

the number of loop executions. This is possible when there exists
an integerN such thatB′

j = N · Tj andL = N · L1. (Unless
L = βj , this is almost always the case.) In the case whereN
exists, thenkj also has to be a multiple ofN . Putting this together,
an equivalent formula ofB′

jmod L ≤ B′
j − A′

i is the formula
Tjmod L1 = kj ∧ N · kj ≤ B′

j − A′
i. This reduces the number

of loop iterations by at least a factor ofN .

7. Synthesis Algorithm for Parameterized
Presburger Arithmetic

In addition to handling the case when the specification formula is
an integer linear arithmetic formula of both parameters andoutput
variables, we have generalized our synthesizer to the case when the
coefficients of the output variables are not only integers, but can be
any arithmetic expression over the input variables. This extension
allows us to write e.g. the offset decomposition program from
Section 2 with statically unknown dimensionsdimX, dimY, dimZ.
As a slightly simpler example, consider the following invocation:

val (valueX, valueY) = choose((x: Int, y: Int) ⇒
(offset == x + dim ∗ y && 0 ≤ x && x < dim ))

Hereoffset anddim are input variables, whereasx andy are output
variables. Note that dim∗y is not a linear term. However, at run-
time we know the exact value ofdim, so the term will become
linear. Our synthesizer can handle such cases as well through a
generalization of the algorithm in Section 6.

Given the problem above, we first eliminate the equality
offset = x + dim ∗ y and we obtain the new problem consisting of
two inequalities:dim∗t ≤ offset∧offset−dim+1 ≤ dim∗t. The
variablet is a freshly introduced integer variable and it is also the
only output variable. At this point, the synthesizer needs to divide a
term by the variabledim. In general it thus needs to generate code

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | (K|T )

B ::= x | ∅ | U | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Figure 2. A Logic of Sets and Size Constraints (BAPA)

that distinguishes the cases whendim is positive, negative, or zero.
In this particular example, due to the constraint0 ≤ x < dim, only
one case applies. The synthesizer returns the following precondi-
tion:

pre ≡ ⌈(offset− dim + 1)/dim⌉ ≤ ⌊offset/dim⌋

It can easily be verified that this is a valid formula for all positive
values ofdim. The synthesizer also returns the code that computes
the values forx andy

val t = (offset/dim).floor
val valueY = t
val valueX = offset − dim ∗ t

Our general algorithm for handling parametrized Presburger
arithmetic follows the algorithm described in Section 6. The main
difference is that instead of manipulating known integer coeffi-
cients, it manipulates arbitrary arithmetic expressions as coeffi-
cients. It therefore needs to postpone to run-time certain decisions
that involve coefficients. The key observation that makes this al-
gorithm possible is that many compile-time decisions depend not
on the particular values of the coefficients, but only on their sign
(positive, negative, or zero). In the presence of a coefficient that de-
pends on a parameter, the synthesizer therefore generates code with
multiple branches that cover the different cases of the sign.

The coefficients of the invocation of the Extended Euclidean
algorithm generally also become known only at run-time only, so
the generated code invokes this algorithm as a library function. The
situation is analogous for thegcd function.

Finally, note that the running time of the programs in this case
is not uniform with respect to the values of all parameters. In par-
ticular, the upper bounds of the generated for loops in Section 6.2
can now be a function of parameters. Nevertheless, for each value
of the parameter, the generated code terminates.

8. Synthesis for Sets with Size Constraints
In this section we define a logic of sets with cardinality constraints
and describe a synthesis procedure for it. The logic we consider is
BAPA (Boolean Algebra with Presburger Arithmetic). It supports
the standard operators union, intersection, complement, subset, and
equality. In addition, it supports the size operator on sets, as well as
integer linear arithmetic constraints over these sizes. Its syntax is
shown in Figure 2. Decision procedures for BAPA were considered
in a number of scenarios [FV59, Zar04, Zar05, KNR06, KR07]. As
in the previous sections, we consider the problem (1)

~r = choose(~x ⇒ F (~x,~a))

where the components of vectors~a, ~x, ~r are either set or integer
variables andF is a BAPA formula.

Figure 3 describes our BAPA synthesis procedure that returns
a precondition predicatepre(~a) and a solved form~Ψ. The proce-
dure is based on the quantifier elimination algorithm presented in
[KNR06], which reduces a BAPA formula to an equisatisfiable in-
teger linear arithmetic formula. The algorithm eliminatesset vari-
ables in two phases. In the first phase all set expressions arerewrit-



INPUT: a formula F ( ~X, ~Y ,~k,~l) in the logic de-
fined in Figure 2 with input variablesX1,
. . . , Xn, k1, . . . , km and output variables
Y1, . . . , Ys, l1, . . . , lt, whereXi andYj are set
variables,ki andlj are integer variables

OUTPUT: code that computes values for the output vari-
ables from the input variables

1. Apply the first steps towards a Presburger arithmetic formula:

(a) Replace each atomS1 = S2 with S1 ⊆ S2 ∧ S2 ⊆ S1

(b) Replace each atomS1 ⊆ S2 with |S1 ∩ Sc
2| = 0

2. Introduce the Venn regions of setsXi’s and Yj ’s: let u be a
binary word of the lengthn+m. The set variableRu represents
a Venn region where each ’1’ stands for a set and ’0’ stands for
a complement. To illustrate, ifn = 2, m = 1 andu = 001,
thenR001 = Xc

1 ∩ Xc
2 ∩ Y1. Rewrite each set expression as a

disjoint union of corresponding Venn regions.

3. Create a Presburger arithmetic formula: an integer variable hu

denotes the cardinality of the Venn regionRu. Use the fact that
|S1 ∪S2| = |S1|+ |S2| iff S1 andS2 are disjoint to rewrite the
whole formula as the Presburger arithmetic formula. We denote
the resulting formula byF1( ~hu,~k,~l).

4. Create a Presburger arithmetic formula that correspondsto
quantifier elimination: letv be a binary word of lengthn. A
set variablePv denotes a Venn region of input set variables,
which means that|Pv | is a known value. Create a formula that
expresses each|Pv| as a sum of correspondinghu ’s. Define the
formulaF2( ~hu, ~|Pv|) as the conjunction of all those formulas.

5. Create code that computes values of output vectors. Firstin-
voke the linear arithmetic synthesizer described in Section 6 to
generate the code corresponding to:

val ( ~hun, ~ln) = choose(( ~hu, ~l) ⇒ F1( ~hu, ~k, ~l) ∧F2( ~hu, ~|Pv|))

Invoking the synthesizer returns code that computes expres-
sions for the integer output variables~ln and for the variables
~hun. For each set output variableYi, do the following: letSi be
a set containing already known or defined set variables, letTj

be a Venn region ofSi ∪ Yi that is contained inYi. EachTj re-
gion is contained in the bigger Venn regionUj which is a Venn
region of sets inYi. For eachTj do: take allRu that belong to
Tj and letdj be the sum of all correspondinghun. Based on
the value ofdj , output the following code:

• if Tj ⊆ ∩S∈Si
Sc anddj > 0, output the assignmentKj =

fresh(dj )
• if dj = 0, output the assignmentKj = ∅

• if dj = |Uj |, output the assignmentKj = Uj

• otherwise output the assignmentKj = take(dj , Uj )

Finally, constructYi as a union of allKj sets:Yi = ∪jKj

Figure 3. Algorithm for synthesizing a functionΨ such that
F [~x := Ψ(~a)] holds, whereF has the syntax of Figure 2

ten as unions of disjoint Venn regions. The second phase introduces
a fresh integer variable for the cardinality of each Venn region. It
thus reduces the entire formula to an integer linear arithmetic for-
mula. The input variables in this integer arithmetic formula are the
integer input variables from the original formula, as well as fresh
integer variables denoting cardinalities of Venn regions of the in-
put set variables. Note that all values of those input variables are
known from the program. The output variables are the original in-

teger output variables and freshly introduced integer variables de-
noting cardinalities of Venn regions that are contained in the output
set variables.

We can therefore build a synthesizer for BAPA on top of the
synthesizer for integer linear arithmetic described in Section 6. The
integer arithmetic synthesizer outputs the precondition predicate
pre and emits the code for computing values of the new output
variables. The generated code can use the returned integer values
to reconstruct a model for the original formula. Notice thatthe
precondition predicatepre will be a Presburger arithmetic formula
with the terms built using the original integer input variables and
the cardinalities of Venn regions of the original input set variables.
As an example, ifi is an integer input variable anda and b are
set input variables then the precondition predicate might be the
following formulapre(i, a, b) = |a ∩ b| < i ∧ |a| ≤ |b|.

In the last step of the BAPA synthesis algorithm, when out-
putting code, we use functionsfresh andtake. The functiontake
takes as arguments an integerk and a setS, and returns a subset
of S of sizek. The functionfresh(k) is invoked whenk fresh
elements need to be generated. These functions are used onlyin
the code that computes output values of set variables (the linear
integer arithmetic synthesizer already produces the code to com-
pute the values of integer output variables). The set-valued output
variables are computed one by one. Given an output set variable
Yi, the code that effectively computes the value ofYi is emitted
in several steps. WithSi we denote a set containing set variables
occurring in the original formula whose values are already known.
Initially, Si contains only the input set variables. Our goal is to de-
scribe the construction ofYi in terms of sets that are already inSi.
We start by computing the Venn regions forYi and all the sets in
Si in order to defineYi as a union of those Venn regions. There-
fore we are interested only in those Venn regions that are subset
of Yi. Let Tj be one such a Venn region. It can be represented
as Tj = Yi ∩ Uj whereUj has a formUj = ∩S∈Si

S(c) and
S(c) denotes eitherS or Sc. On the other hand,Tj can also be
represented as a disjoint union of the originalRu Venn regions.
ThoseRu are Venn regions that were constructed in the beginning
of the algorithm for all input and output set variables. As the lin-
ear integer arithmetic synthesizer outputs the code that computes
the valueshu, wherehu = |Ru|, we can effectively compute the
size of eachTj . If Tj = Ru1 ∪ . . . ∪ Ruk

, then the size ofTj is
|Tj | = dj =

Pk

l=1 hul
. Note thatdj is easily computed from the

linear integer arithmetic synthesizer and based on the value of dj

we define a setKj asKj = take(dj , Uj). Finally, we emit the
code that definesYi as a finite union ofKj ’s: Yi = ∪jKj .

Based of the values ofdj , we can introduce further simplifica-
tions. If dj = 0, none of elements ofUj contributes toYi and thus
Kj = ∅. On the other hand, ifdj = |Uj |, applying a simple rule
S = take(|S|, S) results inKj = Uj . A special case is when
Uj = ∩S∈Si

Sc. If in this case it also holds thatdj > 0, we need to
takedj elements that are not contained in any of the already known
sets, i.e. we need to generate freshdj elements. For this purpose
we invoke the commandfresh.

Partitioning a Set. We illustrate the BAPA synthesis algorithm
through an example. Consider the following invocation of the
choose function that generalizes the example in Section 2.

val (setA, setB) = choose((a: Set[O], b: Set[O]) ⇒
(−maxDiff ≤ a.size − b.size && a.size − b.size ≤ maxDiff

&& a union b == bigSet && a intersect b == empty
))

This example combines integer and set variables. Given a set
bigSet, the goal is to divide it into two partition. The previously
defined integer variablemaxDiff specifies the maximum amount
by which the sizes of the two partitions may differ. We apply the



algorithm from Figure 3 step-by-step to illustrate how it works. Af-
ter completing Step 3, we obtain the formula

F1(~hu) ≡ h100 = h110 = h010 = h001 = h111 = 0

∧ -maxDiff ≤ h101 − h011 ∧ h101 − h011 ≤ maxDiff

We simplify the formula obtained in Step 4 using the constraints
from Step 3 and obtain the formula

F2(~hu) ≡ |bigSet| = h101 + h011 ∧ |bigSetc| = h000

Now we call the linear arithmetic synthesizer on the formula
F1(~hu) ∧ F2(~hu). The only two variables whose values we need
to find areh101 and h011. The synthesizer first eliminates the
equation|bigSet| = h101 + h011: a fresh new integer variable
k is introduced such thath101 = k and h011 = |bigSet| − k.
This way there is only one output variable:k. Variable k has
to be a solution of the following two inequalities:|bigSet| −
maxDiff ≤ 2k∧ 2k ≤ |bigSet|+ maxDiff. We next check whether
⌈|bigSet| − maxDiff/2⌉ ≤ ⌊|bigSet| + maxDiff/2⌋ holds. This is
a precondition formulapre. Note thatpre is defined entirely in
terms of the input variables and can be easily checked at run-time.
The synthesizer outputs the following code, which computesvalues
for the output variables:

val k = ((bigSet.size + maxDiff)/2).floor
val h101 = k
val h011 = bigSet.size − k
val setA = take(h101, bigSet)
val setB = take(h011, bigSet −− setA)

In the code above, ‘--’ denotes the set difference operator. The
synthesized code first computes the sizek of one of the partitions,
as approximately one half of the size ofbigSet. It then selectsk
elements frombigSet to formsetA, and selectsbigSet.size−k
of the remaining elements forsetB.

9. Implementation
We have implemented our synthesis procedures as a Scala com-
piler extension.1 We chose Scala because it supports higher-order
functions that make the concept of achoose function natural, and
extensible pattern matching in the form of extractors [EOW07].
Moreover, the compiler supports plugins that work as additional
compilation phases. We used an off-the-shelf decision procedure
[B08] to handle the compile-time checks (we could, in principle,
also use our synthesis procedure for compile-time checks because
synthesis subsumes satisfiability checking).

Our plugin supports the synthesis of integer values throughthe
choose function constrained by linear arithmetic predicates (in-
cluding predicates in parameterized linear arithmetic), as well as
the synthesis of set values constrained by predicates of thelogic
described in Section 8. Additionally, it can synthesize code for
pattern-matching expressions on integers such as the ones pre-
sented in Section 2.

Figure 4 shows the compile times for a set of benchmarks, with
and without our plugin. Without the plugin, the code is of no use
(the choose function, when not rewritten, just throws an excep-
tion), but the difference between the timings indicates howmuch
time is spent generating the synthesized code. We also measure
how much time is used for the compile-time checks for satisfiabil-
ity and uniqueness. The examplesSecondsToTime, FastExponenti-
ation, SplitBalancedandCoordinateswere presented in Section 2.
ScaleWeightscomputes solutions to a puzzle,PrimeHeuristiccon-
tains a long pattern-matching expression where every pattern is

1 Our implementation source code and jar file are available from the URL
http://lara.epfl.ch/dokuwiki/comfusy

scalac w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.3 3.5 3.5
SplitBalanced 3.3 3.9 4.0
Coordinates 3.2 4.2 −−
All 5.75 6.35 6.75

Figure 4. Measurement of compile times: without applying syn-
thesis (scalac), with synthesis but with no call to Z3 (w/ plu-
gin) and with both synthesis and compile-time checks activated
(w/ checks). All times are in seconds.

checked for reachability, andSetConstraintsis a variant ofSplit-
Balanced. There is no measurement forCoordinateswith compile-
time checks, because the formulas to check are in an undecidable
fragment, as the original formula is in parameterized linear arith-
metic. We also measured the times with all benchmarks placedin a
single file, as an attempt to balance out the time taken by the Scala
compiler to start up. Our numbers show that the additional time re-
quired for the code synthesis is minimal. Moreover, note that the
code we tested contained almost exclusively calls to the synthe-
sizer. The increase in compilation time in practice would thus be
lower for code that mixes standard Scala with selectedchoose con-
struct invocations.

10. Related Work
Early work on synthesis [MW71, MW80] focused on synthesis us-
ing expressive and undecidable logics, such as first-order logic and
logic containing the induction principle. Consequently, while it can
synthesize interesting programs containing recursion, itcannot pro-
vide completeness and termination guarantees as synthesisbased
on decision procedures.

Recent work on synthesis [SGF10] resolves some of these dif-
ficulties by decoupling the problem of inferring program control
structure and the problem of synthesizing the computation along
the control edges. Furthermore, the work leverages verification
techniques that use both approximation and lattice theoretic search
along with decision procedures. This work is more ambitiousand
aims to synthesize entire algorithms. By nature, it cannot be both
terminating and complete over the space of all programs thatsat-
isfy an input/output specification (thus the approach of specifying
program resource bounds). In contrast, we focus on synthesis of
program fragments with very specific control structure dictated by
the nature of the decidable logical fragment.

Our work further differs from the past ones in 1) using decision
procedures to guarantee the computation of synthesized functions
whenever a synthesized function exists, 2) bounds on the running
times of the synthesis algorithm and the synthesized code size and
running time, and 3) deployment of synthesis in well-delimited
pieces of code of a general-purpose programming language.

Program sketching has demonstrated the practicality of program
synthesis by focusing its use on particular domains [SLTB+06,
SLAT+07, SLJB08]. The algorithms employed in sketching are
typically focused on appropriately guided search over the syntax
tree of the synthesized program. Search techniques have also been
applied to automatically derived concurrent garbage collection al-
gorithms [VYBR07]. In contrast, our synthesis uses the mathemat-
ical structure of a decidable theory to explore the space of all func-
tions that satisfy the specification. This enables our approach to
achieve completeness without putting any a priori bound on the



syntax tree size. Indeed, some of the algorithms we describecan
generate fairly large yet efficient programs. We expect thatour tech-
niques could be fruitfully integrated into search-based frameworks.

Synthesis of reactive systems generates programs that run for-
ever and interact with the environment. However, known complete
algorithms for reactive synthesis work with finite-state systems
[PR89] or timed systems [AMP95]. Such techniques have appli-
cations to control the behavior of hardware and embedded systems
or concurrent programs [VYY09]. These techniques usually take
specifications in a fragment of temporal logic [PPS06] and have
resulted in tools that can synthesize useful hardware components
[JGWB07, JB06]. Our work examines non-reactive programs, but
supports infinite data without any approximation, and incorporates
the algorithms into a compiler for a general-purpose programming
language.

Computing optimal bounds on the size and running time of the
synthesized code for Presburger Arithmetic is beyond the scope of
this paper. Relevant results in the area of decision procedures are
automata-based decision procedures [BJW05, Kla03], the bounds
on quantifier elimination [Wei97] and results on integer program-
ming in fixed dimensions [ES08].

Automata-based decision procedures, such as those imple-
mented in the MONA tool [KM01] could be used to synthesize
efficient (even if large) code from expressive specifications. The
work on graph types [KS93] proposes to synthesize fields given
by definitions in monadic second-order logic. Automata havealso
been applied to the synthesis of efficient code for pattern-matching
expressions [SRR95].

Our approach can be viewed as sharing some of the goals of
partial evaluation [JGS93]. However, we do not need to employ
general-purpose partial evaluation techniques (which typically pro-
vide linear speedup), because we have the knowledge of a particular
decision procedure. We use this knowledge to devise a synthesis al-
gorithm that, given formulaF , generates the code corresponding to
the invocation of this particular decision procedure. Thissynthesis
process checks the uniqueness and the existence of the solutions,
emitting appropriate warnings. Moreover, the synthesizedcode can
have reduced complexity compared to invoking the decision proce-
dure at run time, especially when the number of variables to syn-
thesize is bounded.

11. Conclusions
We have presented the general idea of turning decision procedures
into synthesis procedures. We have explored in greater detail how
to do this transformation for theories admitting quantifierelimina-
tion, in particular linear arithmetic. Important complexity questions
arise in synthesis, such as the best possible size of synthesized code,
time to perform synthesis, and the worst-case running time of the
synthesized code over all inputs. We have also illustrated that syn-
thesis procedures can be built even for cases for which the under-
lying parameterized satisfiability problem is undecidable(such as
integer multiplication), as long as the problem becomes decidable
by the time the parameters are fixed. We have also transformeda
BAPA decision procedure into a synthesis procedure, illustrating in
the process how to layer multiple synthesis procedures one on top
of the other.

We believe that integer arithmetic and constraints on sets al-
ready make our approach interesting to programmers. The useful-
ness of the proposed approach can be further supported by incor-
porating synthesis procedures based on additional decidable con-
straints. For example, more control over the desired solutions for
sets could be provided using decision procedures for ordered col-
lections that we have recently identified [PSK10]. In the exam-
ple of partitioning a set, such support would allow us to specify
that all elements of one partition are smaller than all elements of

the second partition. Another useful class of data structures are
algebraic data types; synthesis based on algebraic data general-
izes pattern matching on algebraic data types with equalityand
inequality constraints. The starting point for such extensions are
decision procedures for algebraic data types and their extensions
[Opp78, BST07, SDK10]. Our approach can also be applied to im-
perative data structures [KS93]. This idea would benefit from re-
cent advances from more efficient decision procedures basedon
local theory extensions [Jac10], including [WPK09, MN05].

Given the range of logics for which we can obtain synthesis
procedures, it is important to realize that we can alsocombine
synthesis procedures similarly to the way in which we can combine
decision procedures. We gave one example of such combination in
this paper, by describing our BAPA synthesis procedure built on top
of a synthesis procedure for integer arithmetic. Other combination
approaches are possible building on the body of work in decision
procedure combinations [GHN+04, WPK09].

We have pointed out that synthesis can be viewed as a powerful
programming language extension. Such an extension can be seam-
lessly introduced into popular programming languages as a new
kind of expression and a new pattern matching construct. It is our
hope that the availability of synthesis constructs will shift the way
we think about program development. Program properties andas-
sertions can stop being part of the dreaded “annotation overhead”,
but rather become a cost-effective way to build programs with the
desired functionality.
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