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Abstract. We describe an algorithm for deciding the first-order maltisd theory BAPA,
which combines 1) Boolean algebras of sets of uninterpreteshents (BA) and 2) Pres-
burger arithmetic operations (PA). BAPA can express thatigiship between integer vari-
ables and cardinalities of a priory unbounded finite setd,sapports arbitrary quantifica-
tion over sets and integers.

Our motivation for BAPA is deciding verification conditiortisat arise in the static anal-
ysis of data structure consistency properties. Data strestoften use an integer variable
to keep track of the number of elements they store; an invaafsuch a data structure is
that the value of the integer variable is equal to the numbetemments stored in the data
structure. When the data structure content is representedsbt, the resulting constraints
can be captured in BAPA. BAPA formulas with quantifier altrans arise when verify-
ing programs with annotations containing quantifiers, oemproving simulation relation
conditions for refinement and equivalence of program fragmd-urthermore, BAPA con-
straints can be used for proving the termination of progrdmasmanipulate data structures,
and have applications in constraint databases.

We give a formal description of a decision procedure for BARAich implies the decid-
ability of BAPA. We analyze our algorithm and obtain an elatagy upper bound on the
running time, thereby giving the first complexity bound fokBA. Because it works by a
reduction to PA, our algorithm yields the decidability of @ntbination of sets of uninter-
preted elements with any decidable extension of PA. Ouriiltgo can also be used to yield
an optimal decision procedure for BA through a reductionAamith bounded quantifiers.
We have implemented our algorithm and used it to dischargéoagion conditions in the
Jahob system for data structure consistency checking afplagrams; our experience with
the algorithm is promising.

1 Introduction

Program analysis and verification tools can greatly couteilio software reliability,
especially when used throughout the software developmenéps. Such tools are even
more valuable if their behavior is predictable, if they cargipplied to partial programs,
and if they allow the developer to communicate the desigorinétion in the form of
specifications. Combining the basic idea of [18] with deblddogics leads to analysis
tools that have these desirable properties. Such analysesecise (because formulas
represent loop-free code precisely) and predictable (sxthe checking of verification
conditions terminates either with a realizable countemga or with a sound claim that
there are no counterexamples).

A key challenge in this approach to program analysis andigation is to iden-
tify a logic that captures an interesting class of prograopprties, but is neverthe-
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less decidable. In [29] we identify the first-order theoryBaiolean algebras3A) as a
useful language for reasoning about dynamically allocatgects:BA allows express-
ing generalized typestate properties and reasoning alataisttuctures as dynamically
changing sets of objects. (We are intereste@Anof all subsets of some set; this theory
was shown decidable already in [31, 46], see [22] for theudision of other models of
Boolean algebra axioms.)

The motivation for this paper is the fact that we often neegé&son not only about
the data structure content, but also about the size of tleestiatcture. For example, we
may want to express the fact that the number of elementsdsiora data structure is
equal to the value of an integer variable that is used to ciwhdata structure size, or
we may want to introduce a decreasing integer measure orataesttucture to show
program termination. These considerations lead to a najareeralization of the first-
order theory ofBA of sets, a generalization that allows integer variablesdiditeon
to set variables, and allows stating relations of the fo#h = & meaning that the
cardinality of the setd is equal to the value of the integer varialtdleOnce we have
integer variables, a natural question arises: which matand operations on integers
should we allow? It turns out that, using only tB& operations and the cardinality
operator, we can already define all operationBAf This leads to the structuRAPA,
which properly generalizes boBA andPA.

As we explain in Section 2, a versionBAPA was shown decidable already in [14]
(which also proves the well-known Feferman-Vaught theofg®n Section 9.6] about
the products of first-order theories). Recently, a decigimtedure for a fragment of
BAPA without quantification over sets was presented in [55], east multi-sorted
theory. Starting from [29] as our motivation, we have obedrin [26] the decidability
of the full BAPA (which was initially left openin [55]). An algorithm for arsjle-sorted
version ofBAPA was presented independently in [42] as a way of evaluatiegigslin
constraint databases; [42] leaves open the complexityeogatisfiability problem.

Our paper gives the first formal description of a decisioncpdure for the full
first-order theory oBAPA. Furthermore, we analyze our decision procedure and show
that it yields an elementary upper bound on the complexitBAPA. Our result is
the first upper complexity bound dBAPA; along with a lower bound fronA, we
obtain a good estimate &APA worst-case complexity. We have also implemented our
decision procedure; we report on our initial experiencesimg the decision procedure
in the context of a system for checking data structure ctersiy.

Contributions. We summarize the contributions of our paper as follows.

1. As amotivation for BAPA, we show in Section 3 how BAPA constraints can be
used for program analysis and verification by expressingatd dtructure invari-
ants, 2) the correctness of procedures with respect tospetifications, 3) simu-
lation relations between program fragments, and 4) terti@ingonditions for pro-
grams that manipulate data structures.

2. We present amalgorithm « (Section 4) that translatd3APA sentences int®A
sentences by translating set quantifiers into integer dfieast

3. We analyze our algorithm and show that it yields aglementary upper bound on
the worst-case complexity of the validity problem ®APA sentences that is close
to the bound orPA sentences themselves (Section 5). This is the first contplexi
bound forBAPA, and is the main contribution of this paper.



4. We discuss our initial experience in using éonplementation of BAPA to dis-
charge verification conditions generated in the Jahob watiin system [23].
5. In addition, we note the following related results:
(a) PA sentences generated by translat3®y sentences without cardinalities can
be decided iroptimal alternating time (Section 5.2);
(b) Our algorithm extends tcountable sets with a predicate distinguishing finite
and infinite sets (Section 7);
(c) In contrast to the undecidability of MSOL with equicardiity operator, we
identify adecidable combination of MSOL over trees witBA (Section 7).

A preliminary version of our results, including the algbrt and complexity analysis
appear in [26], which also contains proofs and further detdiour results.

2 TheFirst-Order Theory BAPA

Figure 3 presents the syntax of Boolean Algebra with Pregsukrithmetic BAPA),
which is the focus of this paper. We next present some juatifio for the operations in
Figure 3. Our initial motivation foBAPA was the use 0BA to reason about data struc-
tures in terms of sets [28]. Our language B3 (Figure 1) allows cardinality constraints
of the form|A| = K where K is a constantinteger. Such constant cardinality con-
straints are useful and enable quantifier elimination ferrsulting language [31, 46].
However, they do not allow stating constraints suchHs= | B| for two sets4 and B,
and cannot represent constraints on changing progranblesiaConsider therefore the
equicardinality relatiom ~ B that holds iff|A| = | B|, and consideBA extended with
relation A ~ B. Define the ternary relatioplus(A4, B,C) <= (|4]| + |B| = |C|)
bythe formuIaEle. dzy. 1 Nxg = O A A~ 1 N B~x9g AN 21U =C. The
relationplus(A4, B, C) allows us to express addition using arbitrary sets as reptas
tives for natural number@;can represent the natural number zero, and any singleton set
can represent the natural number one. (The propertylzding a singleton is definable
using e.g. the first-order formuld # ) AVB.ANB =B = (B=0V B = A))
Moreover, we can represent integers as equivalence clakpags of natural numbers
under the equivalence relatidn, y) ~ (u,v) < z + v = u + y; this construction
also allows us to express the unary predicate of being ngative. The quantification
over pairs of sets represents quantification over integed quantification over inte-
gers with the addition operation and the predicate “beinymegative” can express all
PA operations, presented in Figure 2. Therefore, a naturaicbounder definable oper-
ations leads to our formulation of the langud&y&PA in Figure 3, which contains both
sets and integers.

The argument above also explains why we attribute the dettiyaof BAPA to [14,
Section 8], which showed the decidability BA over sets extended with the equicar-
dinality relation~, using the decidability of the first-order theory of the duhofi of
cardinal numbers.

The languag8APA has two kinds of quantifiers: quantifiers over integers arahgqu
tifiers over sets; we distinguish between these two kindsdmoting integer variables
with symbols such a#&,! and set variables with symbols such ag,. We use the
shorthand3™ k. F (k) to denotedk.k > 0 A F(k) and, similarlyv™k.F(k) to denote
Vk.k > 0 = F(k). In summary, the language &APA in Figure 3 subsumes the
language ofPA in Figure 2, subsumes the languageB# in Figure 3, and contains



F:2:A|F1/\F2|F1\/FQ|‘|F|
Jz.F | Va.F

Au:=By=By| B1 C By
| Bl =K | | Bl >K

B:::x|0|1|BluBg|BlﬂBg|BC
K:=:=0|1]|2]...

F:Z:A|F1/\FQ|F1\/F2|‘\F|
3k.F | Vk.F

A:::T1:T2|T1<T2|KdVdT
T:=K|Ti+Ty | K-T
Ko=...-2]-1]0|1]2...

Fig. 1. Formulas of Boolean Algebr&@) Fig. 2. Formulas of Presburger ArithmetiBA)

Fuim A|FLAF | FLVF, | -F |

3¢.F | Vo.F | 3k.F | Vk.F
A:=B1 =B | B1 C By |

Ty =Ty |Ti <Ts | KdvdT
B:=2z|0|1|BiUBy|BiNB:|B°
Tu=k|K|MAXC| Ty +T> | K-T| | Bl
Ku=...—2|-1]0]1]2...

Fig. 3. Formulas of Boolean Algebra with Presburger ArithmeBAPA)

non-trivial combination of these two languages in the foifraging the cardinality of a
set expression as an integer value.

The semantics of operations in Figure 3 is the expected oreinWdrpret integer
terms as integers, and interpret set terms as elements pbterset of a finite set. The
MAXC constant denotes the size of the finite univérseso we requirdAXC = ||
in all models. Our results generalize to the Boolean algebpawersets of a countable
set, see Section 7.

3 Applicationsof BAPA

This section illustrates the importanceRAPA constraints. Section 3.1 shows the uses
of BAPA constraints to express and verify data structure invagiastwell as proce-
dure preconditions and postconditions. Section 3.2 shaws & class of simulation
relation conditions can be proved automatically using asiee procedure foBAPA.
Section 3.3 shows hoBAPA can be used to express and prove termination conditions
for a class of programs.

3.1 Verifying Data Structure Consistency

Figure 4 presents a proceduneert in a language that directly manipulates sets. Such
languages can either be directly executed [13] or can asisdstractions of programs
in standard languages [29]. The program in Figure 4 manigsiglobal set of objects
content and an integer fieldize. The program maintains an invariahthat the size of
the setcontent is equal to the value of the variabdize. Theinsert procedure inserts
an element into the set and correspondingly updates the integer Varidbe requires
clause (precondition) of thasert procedure is that the parameteis a non-null refer-



ence to an object that is not stored in thesetent. The ensures clause (postcondition)
of the procedure is that theze variable after the insertion is positive. Note that we rep-
resent references to objects (such as the procedure parathes sets with at most
one element. An empty set represents a null reference; eetinget{o} represents a
reference to objeat. The value of a variable after procedure execution is inditay
marking the variable name with a prime.

var content : set;
var size : integer;
invariant I <= (size = |content|);

procedure insert(e : element)
maintains [

requires |e| = 1 A |e N content| =0
ensures size’ > 0

{ {|e| = 1A |eNcontent| = 0 A size = |content|}
content := content U e; content := content U e; size := size + 1;
size := size + 1; y y ,
} {S|ze > 0 A size’ = |content |}
Fig. 4. An Example Procedure Fig. 5. Hoare Triple forinsert Procedure

Ve. Vcontent. Vcontent'. Vsize. Vsize'.
(le] = 1 A |e N content| = 0 A size = |content| A
content’ = content U e A size’ = size + 1) =
size’ > 0 A size’ = |content’|

Fig. 6. Verification Condition for Figure 5

Theinsert procedure maintains an invariatt,which captures the relationship be-
tween the size of the sedntent and the integer variabkéze. The invariant is implic-
itly conjoined with the requires and the ensures clauseb@ptocedure. The Hoare
triple in Figure 5 summarizes the resulting correctnesslitimm for theinsert proce-
dure. Figure 6 presents a verification condition correspantb the Hoare triple in
Figure 5. Note that the verification condition contains bs¢h and integer variables,
contains quantification over these variables, and relatesirzes of sets to the values of
integer variables. Our small example leads to a formulaautiguantifier alternations;
in general, formulas that arise in verification may contdti@raations of existential and
universal variables over both integers and sets. This pstp@vs the decidability of
such formulas and presents the complexity of the decisioogature.

3.2 Proving Simulation Relation Conditions

BAPA constraints are also useful when proving that a given birglagion on states is a
simulation relation between two program fragments. Figushows one such example.
The concrete procedurgartl manipulates two sets: a set of running processes and
a set of suspended processes in a process scheduler. Theelymestartl inserts a
new process: into the set of running processBs unless there are already too many
running processes. The proceddtert2 is a version of the procedure that operates



in a more abstract state space: it maintains only the uRiofi all processes and the
numberk of running processes. Figure 7 shows a forward simulatilatioa » between
the transition relations fastartl andstart2. The standard simulation relation diagram
condition isVs1.Vs} .Vsa.(t1(s1, 81) Ar(s1,82)) = 3sh. (t2(s2, 85) Ar(s], s5)). Inthe
presence of preconditions,(s1, s;) = (pre;(s1) = post;(s1, 1)) andta(sa, sh) =
(prey(s2) = posty(se, s5)), and sufficient conditions for simulation relation are:

1. Vs1.Vs2.r(s1, s2) A prey(s2) = pre;(s1)
2. Vs1.Vs].Vs2.3sh. 7(s1,82) A post, (s1,s1) A prey(s2) = post,(s2,sh) A r(sh, s5)

Figure 7 show8APA formulas that correspond to the simulation relation coong in
this example. Note that the secoBAPA formula has a quantifier alternation, which
illustrates the relevance of quantifiersBAPA.

var P : set;

var R : set; .
’ var k : integer;

var S : set;

procedure start2(x)
requires x Z P A |z| = 1 A k < MAXR
ensuresP  =PUx Ak =k+1

procedure startl(z)
requires z Z RA |z| = 1 A |R] < MAXR

ensures R  =RUzAS =S (
{
P:=PUuz;
}R—RU]J, k:k-‘rl,
}

Simulation relation:
r((R,S), (P,k)) = (P=RUSAk=R|)

Simulation relation conditions iBAPA:
1.Vz,R,S,P,k.(P=RUSAk=|R)A(z ZPA|z| =1 Ak < MAXR) =
(z £ RA|z| =1 A |R| < MAXR)
2.Vz,R,S,R",S, P, kAP K. (P=RUSAk=IRD)A(R =RUzAS =S) A
(x Z PA|z] =1Ak < MAXR)) =
(PP=PUzAK =k+1)A (P =R US AK =|R'|)
Fig. 7. Proving simulation relation iBAPA

3.3 Proving Termination of Programs

We next show thaBAPA is useful for proving program termination. A standard tech-
nique for proving termination of a loop is to introduce a reagkfunction f that maps
program state into a non-negative integer, then prove tigatalue of the function de-
creases at each loop iteration. In other wordd ¢if s") denotes the relationship between
the state at the beginning and the state at the end of eaclitémapion, then the con-
dition Vs.Vs'.t(s,s’) = f(s) > f(s') holds. Figure 8 shows an example program that
processes each element of the initial value ofteetthis program can be viewed as ma-
nipulating an iterator over a data structure that implemarset. Using the the ability to
take cardinality of a set allows us to define a natural rankimgtion for this program.
Figure 9 shows the termination proof based on such rankingtifon. The resulting
termination condition can be expressed as a formula thaingsltoBAPA, and can



var iter : set;
. Ranking function:
procedure iterate() F(s) = Is|

while iter # § do Transition relation:

vare:set; t(iter,iter’) = (Fe. |e| = 1 A e C iter Aiter’ = iter \ e)

e := choose iter;

iter := iter \ e; Termination condition iBAPA:

process(e); Viter.Viter’. (Je.le| = 1 A e C iter A iter’ = iter \ ¢)
done = |iter'| < [iter|

}

) o Fig. 9. Termination proof for Figure 8
Fig. 8. Terminating program

be discharged using our decision procedure. In generalaweeaduce the termination
problem of programs that manipulate both sets and integestsdwing a simulation re-
lation with a fragment of a terminating program that manrgpes only integers, which
can be proved terminating using techniques [38]. The sitimmaelation condition can
be proved correct using oBAPA decision procedure whenever the simulation relation
is expressible with BAPA formula.

4 Decision Procedure for BAPA

This section presents our algorithm, denotedvhich decides the validity oBAPA
sentences. The algorithm reduceBAPA sentence to an equivalePf sentence with
the same number of quantifier alternations and an expotherntiaase in the total size
of the formula. This algorithm has several desirable priogsr

1. Given the space and time bounds Rk sentences [41], the algorithm yields
reasonable space and time bounds for deci8iABA sentences (Section 5).

2. The algorithmy does not eliminate integer variables, but instead prodarcesjuiv-
alent quantified®A sentence. The resultirRA sentence can therefore be decided
usingany decision procedure fdPA, including the decision procedures based on
automata [21, 30].

3. The algorithmx can eliminate set quantifiers from any extensiorPAf We thus
obtain a technique for adding a particular form of set reampto every extension
of PA, and the technique preserves the decidability of the ektien®ne example
of decidable theory that exten&8 is MSOL over strings, see See Section 7.

4. For simplicity we present the algorithm as a decision procedure for formulas
with no free variables, but the algorithm can be used to fomnsand simplify
formulas with free variables as well, because it transfoonmes quantifier at a time
starting from the innermost one. Because of this feature;ameuse the algorithm
« to project out local state components from formulas thatidles invariants and
transition relations, and simplify the resulting formulas

We next describe the algorithm for transforming aBAPA sentenceF; into a PA
sentence. As the first step of the algorithm, transfégnnto prenex form

QpUp....Q1v1. F(v1,...,vp)



whereF' is quantifier-free, and each quantifi@fv; is of one the formsk, vk, 3y, Vy
wherek denotes an integer variable apdenotes a set variable.

The next step of the algorithm is to separateto BA part andPA part. To achieve
this, replace each formula = y wherexz andy are sets, with the conjunction C
y Ay C x, and replace each formulaC y with the equivalent formula: N y¢| = 0.
In the resulting formula, each setoccurs in some tern(x)|. Next, use the same
reasoning as when generating disjunctive normal form fopgsitional logic to write
each set expressiafr) as a union of cubes (regions in Venn diagram). The cubes have
the form A\, =" wherex{" is eitherz; or z¢; there aren = 2" cubess, ..., s,.
Suppose that(z) = s;,U...Us;,; thenreplace the tertn(z)| with the termd_¢_, |s;, |.
In the resulting formula, each seappears in an expression of the fosy] wheres; is
a cube. For each; introduce a new variablg. Then the resulting formula is equivalent
to

vap....lel. (1)
E|+l1,...,lm. /\Zil [si| =1; N G

where G, is a PA formula. Formula (1) is the starting point of the main phage o
algorithm «. The main phase of the algorithm successively eliminateantifiers

Q1v1, ..., Qpu, while maintaining a formula of the form
Qpup ... Qrup. @)
3+l1 .. .lq. /\?:1 |SZ| =1Ul; N Gr

whereG,. is aPA formula,r grows froml top + 1, andg = 2¢ whereefor0 < e <n
is the number of set variables amonyg. .., v,. The listsy, ..., s, is the list of all2¢
partitions formed from the set variables amang. . . , v;.

We next show how to eliminate the innermost quantifler,. from the formula (2).
During this process, the algorithm replaces the forndjlavith a formulaG,..; which
has more integer quantifiers.df is an integer variable then the number of sgte-
mains the same, and if. is a set variable, theq reduces fron2¢ to 2¢~1. We next
consider each of the four possibilitiég, vk, Jy, Vy for the quantifiei, v,

Consider first the casg. Because: does not occur if\?_, |s;| = l;, simply move
the existential quantifier t&,. and letG,; = 3k.G,., which completes the step.

For universal quantifiers, it suffices to I8t = Vk.G,., again becauske does not
occurin A\, |si| = ;.

We next show how to eliminate an existential set quantifiefrom

q
Jy.- Il Nlsil =1 A Gy ®3)
i=1

which is equivalent tad* i ... 1. (3y. AL, |si| = ;) A G,. This'is the key step of
the algorithm and relies on the following lemma (see [26]darof).

Lemmal. Letbdy,...,b, be finite disjoint sets, and, ..., l,, k1,. .., k, be natural
numbers. Then the following two statements are equivalent:

1. There exists a finite sgtsuch that\!"_, |b; Ny| = k; A [b; Ny°| = 1;



In the quantifier elimination step, assume without loss okgality that the set variables
$1,...,84 are numbered such tha;,_; = s; N y° andsq; = s} Ny for some cube’.
Then apply Lemma 1 and replace each pair of conjuncts

lsi Ny =loic1 A |siNy| =1lo;

with the conjuncts’| = l2;_1 + l2;, yielding formula

q
I, /\|s;| =loi1 412 A G, 4

=1

for ¢ = 2¢~L. Finally, to obtain a formula of the form (2) for+ 1, introduce fresh
variabled! constrained by, = lz;_1 + l2;, rewrite (4) as

’ ’

q q
Iy NIsil =1 A Gl N =loioa + 12 A Gy)
=1 =1

and let

’

q
Gri1 =30y \l=loics +12 A Gy
=1

This completes the description of elimination of an exidtdiset quantifieBy.
To eliminate a set quantifigty, observe that

q
(3l Nsil =1 A Gy)
=1

is equivalent tad ™y ... 1. AL, |s;| = ; A —G,, because the existential quantifier
is used as a let-binding, so we may first substitute all valyego G,., then perform
the negation, and then extract back the definitions of aliesd;. By expressing/y
as—Jy—, we can show that the elimination ®f is analogous to elimination afy:
introduce fresh variabld$ = l5;_1 + lo; and let

q/
Gr+1 = V+l1 - lq. (/\ l; =loi_1 + lgi) = G,
i=1

After eliminating all quantifiers as described above, weba formula of the form
31 JU| = L AGpy1(1). We define the result of the algorithm, denoted ), to be the
PA sentencéz, 1 (MAXC).

This completes the description of the algorithirGiven that the validity oPA sen-
tences is decidable [39], the algorithiris a decision procedure f&APA sentences.

Theorem 2. The algorithma described above maps eaBiPA-sentencéer into an
equivalentPA-sentencex(Fy).

Formalization of the algorithm «. To formalize the algorithnar, we wrote a concise
implementation in O’Caml, see [26]. As an illustration, whee run the implemen-
tation on theBAPA formula in Figure 6 which represents a verification conditiove
immediately obtain th@A formula in Figure 10. Note that the structure of the resgltin



formula mimics the structure of the original formula: evegt quantifier is replaced by
the corresponding block of quantifiers over non-negatitegears constrained to parti-
tion the previously introduced integer variables. Figutepflesents the correspondence
between the set variables of tBAPA formula and the integer variables of the translated
PA formula. Note that the relationshipntent’ = content U ¢ translates into the con-
junction of the constraintgontent’N(contentUe)¢| = 0 A |(contentUe)Ncontent’“| =

0, which reduces to the conjunctiéfyy = 0 A lp11 + lgo1 + lo1o = 0 using the trans-
lation of set expressions into the disjoint union of pastis, and the correspondence in
Figure 11.

general relationship: A
liv,...i,, = |seté1 n setﬁf+1 N...Nsetd
g=S—-(k—1)
(S is number of set variablgs

V+l1.v+lo. MAXC =11 + g =

Y YT o1 YT 0.V T oo.

li =l +lo1 ANlo = lio + loo =
V1. Vo011, V101 Vo1

Y l110. VT l010. VT 100. Y 000. in thisexample:
l11 = li11 + loir Alor = lior + loor A set; = content’
l1o = l110 + lo10 Aloo = li00 + looo = setz = content
Vsize.Vsize'. sets = ¢
(l111 + lo11 + 1101 + loor = 1 A looo = |content’ N content® N e°]
liir +loin =0 A loo1 = |content’® N content® N ¢]
1111 + lo11 + l110 + lo10 = size A lo1o = |content’c M content N eC|
lioo =0 A lo11 = |content’ N content N e
lo11 + loo1 +lo1o =0 A li00 = |content’ N content® N eC|
size’ = size + 1) = l101 = |content’ N content® N e]
(0 < size’ A l110 = |content’ N content N €|
i1 + lion + Lo + Lioo = size’) l111 = |content’ N content N e|

Fig.10. The translation of theBAPA sentence Fig.11. The Correspondence between In-
from Figure 6 into &A sentence teger Variables in Figure 10 and Set Vari-
ables in Figure 6

5 Complexity

In this section we analyze the algorithimfrom Section 4 and obtain space bounds on
BAPA from the corresponding space boundsitar We then show that the new decision
procedure is optimal foBA if applied toBA formulas. Moreover, by construction, our
procedure reduces to the procedureRérformulas if there are no set quantifiers. In
summary, our decision procedure is optimal B#, does not impose any overhead for
purePA formulas, and the complexity of the geneBalPA validity has the same height
of the tower of exponentials as the complexityR# itself.

5.1 An Elementary Upper Bound
We next show that the algorithm in Section 4 transforrB&\®A sentence into aPA

sentence whose size is at most exponential and which haartteersumber of quantifier
alternations.

10



If F'is a formula in prenex form, lafize(F") denote the size of', and letalts(F')
denote the number of quantifier alternationstin Define the iterated exponentiation
functionexp, () by expy () = = andexp,,  (z) = 25P+(®).

Lemma 3. For the algorithma from Section 4 there is a constant> 0 such that
size(a(Fp)) < 2¢17(F0) andalts(a(Fp)) = alts(Fy). Moreover, the algorithna runs
in 20(ize(F)) time and space.

We next consider the worst-case space boun8ABA. Recall first the following
bound on space complexity f6A.

Fact 1 [15, Chapter 3] The validity of &A sentence of length can be decided in
spaceexp,(0(n)).

From Lemma 3 and Fact 1 we conclude that the validityBaPA formulas can be
decided in spacexp;(O(n)). It turns out, however, that we obtain better bounds on
BAPA validity by analyzing the number of quantifier alternationsBA and BAPA
formulas.

Fact 2 [41] The validity of aPA sentence of length and the number of quantifier
alternationsm can be decided in spagg”™ .

From Lemma 3 and Fact 2 we obtain our space upper bound, whiglies the upper
bound on deterministic time.

Theorem 4. The validity of aBAPA sentence of length and the number of quantifier
alternationsm can be decided in spaegp,(O(mn)), and, consequently, in determin-
istic timeexp;(O(mn)).

If we approximate quantifier alternations by formula size,a@nclude thaBAPA va-
lidity can be decided in spacep,(O(n?)) compared toexp,(O(n)) bound forPA
from Fact 1. Therefore, despite the exponential explosiahé size of the formula in
the algorithmea;, thanks to the same number of quantifier alternations, ounthdas
the same number of exponentials as the boun&Aor

5.2 BA asa Special Case

We next analyze the result of applying the algorithnto a pureBA sentencer. By

a pureBA sentence we meanBA sentence without cardinality constraints, containing
only the standard operations U, ¢ and the relations_, =. At first, it might seem that
the algorithma: is not a reasonable approach to decidB¥y formulas given that the
best upper bounds fd?A [15, Chapter 3] are worse than the corresponding bounds
for BA [22]. However, we identify a special form &%A sentence®Agp = {a(Fp) |

F, is in BA} and show that such sentences can be decided in alternatiagoptimal

for BA [22].

Let Fy be a puréBA formula and letS be the number of set variables i (the set
variables are the only variablesiy). Let!y, .. ., [, be the free variables of the formula
Gr(l1,...,ly) inthe algorithma. Theng = 2¢fore = S+ 1 —r. Letwy,...,w, be
integers specifying the values &f . . ., [,. We then have the following lemma.

Lemmab. For eachr wherel < r < S, formulaG, (w1, ...,w,) iS equivalent to
formulaG, (w1, ..., w,) wherew; = min(w;, 2"~ 1).
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Consider a formuldy of sizen with S variables. Them(Fy) = Gs4+1. By Lemma 3,
size(a(Fp)) is O(nS2%). By Lemma 5, it suffices for the outermost quantified vari-
able of a(Fy) to range over the integer intervil, 2°], and the range of subsequent
variables is even smaller. Therefore, the value of eachefti' — 1 variables can
be represented i@ (S) space. Because(Fy) hasS quantifier alternationsy(Fp) the
values of all bound variables can be guessed in alternatirg@(S). The truth value

of a PA formula for given values of variables can be evaluated iretpolynomial in
the size of the formula, so deciding F;) can be done in alternating time bounded by
n®2% for some constants, b. BecauseS < n, we conclude that the algorithm can

be used to decide a puBA formula by alternating Turing machine running in time
2¢™ for somec > 0 and performingr alternations. The class of all such problems is
called Berman complexity classTA(x, 2, n). Theorem 5.6 in [22] shows th&A
(even if interpreted only over all finite Boolean algebras)n fact complete for the
classSTA(x, 2™, n). Therefore, our algorithry allows optimal decision procedure for
BA, if the PA decision procedure exploits the special structure of timegded formula
a(Fy); this special structure is given by Lemma 5. Note that thesdaA(x, 2", n) is
contained in the deterministic exponential space, whiggisal to alternating exponen-
tial time, the only difference being that the number of atgions inSTA(x, 2¢", n) is
restricted to be linear.

6 Experience Using Our Decision Procedure for BAPA

We have experimented witBAPA in the context of Jahob system [23] for verifying data
structure consistency of Java programs. Jahob parsesaaree £ode annotated with
formulas in Isabelle syntax written in comments, genereg¢esication conditions, and
uses decision procedures and theorem provers to disclmage\erification conditions.
Jahob currently contains interfaces to the Isabelle iote@atheorem prover [36], the
Simplify theorem prover [12] as well as the Omega Calculpt6f and the LASH [30]
decision procedures f&A.

Using Jahob, we have generated verification conditionsdeersl Java program
fragments that require reasoning about sets and theinitiés, for example, to prove
the equality between the set representing the number ofegienin a list and the in-
teger fieldsize after they have been updated. The formulas arising from plesrin
Section 3 have also been discharged using our current ingpition. By comparing
different decision procedures, we have found that Simgdifgble to deal with some
of the formulas involving only sets or only integers, but math formulas that relate
cardinalities of operations on sets to cardinalities ofitlavidual sets. These formulas
can be proved in Isabelle, but require user interactionrimsenf auxiliary lemmas. On
the other hand, our implementation of the decision procedutomatically discharges
these formulas.

Our initial experience indicates that the direct implenaginh of the basic algorithm
works fast as long as the number of set variables is smalkaypmings are fractions
of a second for 4 or less set variables, less than 10 secon@s/friables. More than
5 set variables cause tfi& decision procedure to run out of memory. (We have used
the Omega Calculator to decid® formulas because we found that it outperforms
LASH in the formulas generated from our examples.) On thertiand, the decision
procedure is much less sensitive to the number of integéhlas inBAPA formulas,
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because they translate into the same number of integeblesian the generateléA
formula.

Our currentimplementation makes use of certain formulasfiamations to reduce
the size of the generatdth formula. We found that eliminating set variables by sub-
stitution of equals for equals is an effective optimizatidfe also observed that lifting
quantifiers to the top level noticeably improves the perfamoe of the Omega Calcu-
lator. These transformations extend the range of formilasthe current system can
handle. A possible alternative to the current approachiistévleave the elimination of
integer variables with the elimination of the set variatded perform formula simpli-
fications during this process [26, Section 5.2]; this aldixe approach does not yield
good worse-case complexity bounds but could be useful foclagses oBAPA for-
mulas.

7 Further Observations

We next sketch some further observations atlBARA, see [26] for details.

Countable sets. A generalization oBAPA where set variables range over subets of an
arbitrary (not necessarily finite) set is decidable, whiglofvs from the decidability of
the first-order theory of the addition of cardinals [14]. Wardaconsider the case of all
subsets of a countable set, and argue that the complexitigese have developed so
far still apply. We first generalize the languageB#PA and the interpretation &§APA
operations, as follows. Introduce functiorf(b) which returns 0 ifb is a finite set and
1if bis a countable set. Defirjg| to be some arbitrary integer (for concreteness, zero)
if bis infinite, and the cardinality df if b is finite. A countable or finite cardinal can
therefore be represented using a pair(k, ;) of an integerk and an infinity flag:.
The relation representing the addition of cardin(@ls i1) + (ko, i2) = (ks, i3) is then
definable by formula

(i1 =0A12=0A13=0Ak1 + ko :kg) V ((Z1 #0Vis 7&0)/\1‘3 :1Ak3:0)
Moreover, we have the following generalization of Lemma 1.

Lemma®6. Letby,...,b, be disjoint sets]y, ..., l,, k1, .., k, be natural numbers,
andp1,...,pn,q1,---,qn € {0,1}. Then the following two statements are equivalent:

1. There exists a sgtsuch that

/\ |b1 N y| =k; A |nf(b1 N y) =pi N |b1 N ycl =0l A |nf(b1 N yc) =q;
i=1
2. n
J\@i=0Ag=0=[bi| = ki +1) A (inf(bi) =0(pi =0 A g =0))
=1
The algorithm for the case of countable set then generalizegsy Lemma 6 in the
natural way; the resultingfA formulas are at most polynomially larger than for the
finite case, so we obtain the same complexity bounds.
Relationship to MSOL. The monadic second-order logic (MSOL) over strings is a
decidable logic that can encode Presburger arithmetic bgding addition using one
successor symbol and quantification over sets. There arertpartant differences be-
tween MSOL over strings arlBAPA: (1) BAPA can express relationships of the form
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|A|] = k where A is a set variable and is an integer variable; such relation is not
definable in MSOL over strings; (2) when MSOL over stringssedi to represerRA
operations, the sets contain binary integer digits whereB#&PA the sets contain un-
interpreted elements. Note also that MSOL extended withrestcoct that takes a set
of elements and returns an encoding of the size of that setdeaidabe, because it
could express MSOL with equicardinality, which is undebigaby a reduction from
Post correspondence problem. Despite this differencealt@ithma gives a way to
combine MSOL over strings witBA yielding a decidable theory. Namely,does not
impose any upper bound on the complexity of the theory fosaaing about integers,
so it implies the decidability of thBAPA extension where the constraints on cardinal-
ities of sets are expressed using relations on integersadhddiin MSOL over strings;
these relations go beyorA [48, Page 400], [7].

8 Redated Work

Our paper is the first result that shows a complexity boundHerfirst-order theory
of BAPA. The decidability foBAPA, presented aBA with equicardinality constraints
was shown in [14] (see Section 2). A decision procedure fguexial case 0BAPA
was presented in [55], which allows only quantification oglementdut not oversets
of elements. [42] shows the decidability of a single-sosersion ofBAPA that only
contains the set sort. Note that bound integer variablebeasimulated using bound
set variables, but there are notational and efficiency resasmallow integer variables.

Presburger arithmetic. The original result on decidability dPA is [39]. The best
known bound on formula size is [15]. An analysis based on timabrer of quantifier
alternations is presented in [41]. Our implementation ugestifer-elimination based
Omega test [40]. Among the decision procedures for R4l [9] is the only proof-

generating version, and is based on [11]. Decidable fraggngiarithmetic that go
beyondPA include [6, 21].

Boolean Algebras. The first results on decidability dA are from [31], [1, Chap-
ter 4] and use quantifier elimination, from which one can\desmall model prop-
erty; [22] gives the complexity of the satisfiability probie[33] studies unification in
Boolean rings. The quantifier-free fragment®A is shown NP-complete in [32]; see
[27] for a generalization of this result using parametaticemplexity of the Bernays-
Schonfinkel-Ramsey class of first-order logic [5, Page 2f]gives an overview of
several fragments of set theory including theories withngjfiars but no cardinality
constraints and theories with cardinality constraints toitquantification over sets.
Among the systems for interactively reasoning about richeories of sets are Is-
abelle [36], HOL [17], PVS [37], TPS [2]; first-order framevks such as Athena [3]
can use axiomatizations of sets along with calls to resmidliased theorem provers
such as Vampire [51] to reason about sets.

Combinations of Decidable Theories. The techniques for combininguantifier-free
theories [35,43] and their generalizations such as [48%84] are of great importance
for program verification. Our paper shows a particular coration result foquantified
formulas which add additional expressive power in writing spectfaas. Among the
general results for quantified formulas are the Fefermaugkitheorem for products
[14] and term powers [24, 25]. While we have found quantifterbe useful in several
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contexts, many problems can be encoded in quantifier-freeUfi@s, so it is interesting
to consider a combination &APA with solvers for quantifier-free formulas [16, 47],
which would likely improve the efficiency on common verifiiwat conditions compared
to the current direct use of Omega decision procedure. ipgiser logics [4] support
sets with cardinalities as well as relations, but do not sujguantification over sets.

Analyses of Dynamic Data Structures. In addition to the new technical results, one
of the contributions of our paper is to identify the uses of decision procedure for
verifying data structure consistency. We have shown BéWA enables the verifica-
tion tools to reason about sets and their sizes. This cayabiparticularly important
for analyses that handle dynamically allocated data strastwhere the number of ob-
jects is statically unbounded [34, 45, 52]. Recently, theggeroaches were extended to
handle the combinations of the constraints representitegsdiaicture contents and con-
straints representing numerical properties of data stras{10,44]. Our result provides
a systematic mechanism for building precise and predietadisions of such analyses.
Among other constraints used for data structure anal#A$A is unique in being a
complete algorithm for an expressive theory that suppobitrary quantifiers. In addi-
tion to applications in Section 3, possible applicationswfdecision procedure include
query evaluation in constraint databases [42] and loogriartinference [20].

9 Conclusion

Motivated by static analysis and verification of relatioe$vieen data structure content
and size, we have presented an algorithm for deciding theofider theory of Boolean
algebras with Presburger arithmetBAPA), showed an elementary upper bound on
the worst-case complexity, implemented the algorithm gulied it to discharge ver-
ification conditions. Our experience indicates that theoalgm will be useful as a
component of a decision procedure of our data structurécation system.

AcknowledgementsWe thank Alexis Bes, Chin Wei-Ngan, Calogero Zarba, Peter
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