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Abstract. We present Leon, a system for developing functional Scala
programs annotated with contracts. Contracts in Leon can themselves
refer to recursively defined functions. Leon aims to find counterexam-
ples when functions do not meet the specifications, and proofs when
they do. Moreover, it can optimize run-time checks by eliminating stati-
cally checked parts of contracts and doing memoization. For verification
Leon uses an incremental function unfolding algorithm (which could be
viewed as k-induction) and SMT solvers. For counterexample finding it
uses these techniques and additionally specification-based test genera-
tion. Leon can also execute specifications (e.g. functions given only by
postconditions), by invoking a constraint solver at run time. To make this
process more efficient and predictable, Leon supports deductive synthesis
of functions from specifications, both interactively and in an automated
mode. Synthesis in Leon is currently based on a custom deductive syn-
thesis framework incorporating, for example, syntax-driven rules, rules
supporting synthesis procedures, and a form of counterexample-guided
synthesis. We have also developed resource bound invariant inference for
Leon and used it to check abstract worst-case execution time. We have
also explored within Leon a compilation technique that transforms real-
valued program specifications into finite-precision code while enforcing
the desired end-to-end error bounds. Recent work enables Leon to per-
form program repair when the program does not meet the specification,
using error localization, synthesis guided by the original expression, and
counterexample-guided synthesis of expressions similar to a given one.
Leon is open source and can also be tried from its web environment at
leon.epfl.ch .

1 Overview

We present Leon, a system supporting the development of functional Scala [21]
programs. We illustrate the flavor of program development in Leon, and present
techniques deployed in it. Leon supports a functional subset of Scala. It has
been observed time and again that one of the most effective ways of writing
software that needs to be proved correct is to write it in a purely functional
language. ACL2 [8] and its predecessors have demonstrated the success of this
approach, resulting in verification of a number of hardware and software systems.
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Unlike ACL2, the input language supported by Leon has Hindley-Milner style
type system [6, 19]. Leon currently delegates parsing and type analysis to the
existing Scala compiler front end; a Leon program is a valid Scala program.
For convenience, Leon also supports local functions, local mutable variables and
while loops, which are expanded into recursive functions [1]. Among related
tools to Leon as far as verification functionality is concerned are liquid types
[27], though Leon has a real model checking flavor in that it returns only valid
counterexamples.

Leon functions are annotated with preconditions and postconditions using
Scala syntax for contracts [20]. They manipulate unbounded integer and bitvec-
tor numerical quantities, algebraic data types expressed as case classes, lists,
functional arrays, and maps. An ambitious research direction introduces a Real
data type that compiles into a desired finite-precision data type that meets given
precision guarantees [2,3]. The main challenge in this work is automatically com-
puting the accumulation of worst-case error bounds though non-linear compu-
tations, which requires also precisely computing ranges of variables in programs
using constraint solving.

Contracts in Leon can themselves refer to recursively defined functions, which
makes them very expressive. Leon aims to find counterexamples when functions
do not meet the specifications, and proofs when they do. For verification Leon
uses an incremental function unfolding algorithm (which could be viewed as k-
induction) and SMT solvers. The foundations of this work have been presented
in [25], with first presentation of experimental results appearing in [26]. This
algorithm simultaneously searches for proofs and counterexamples and has many
desirable properties [24]. To speed up search for counterexamples, Leon also
makes use of specification-based test generation, though this direction could be
pushed further using, for example, techniques deployed in the domain-specific
Scala language for test generation [17].

Leon has so far primarily relied on the Z3 SMT solver [4]; its performance and
support for numerous theories including algebraic data types has proven to be
very useful for automating a functional program verifier such a Leon. Particularly
convenient have been extended array operations in Z3 [5] which have allowed us
to encode Leon’s sets, arrays, and maps efficiently. More recently we have built a
more generic SMT-LIB interface and are exploring the possibility of using other
solvers, as well as many of the unique features of CVC4, such as its increasingly
sophisticated support for quantifiers [23] and automated mathematical induction
[22].

We have also developed resource bound invariant inference for Leon by en-
coding the inference problem into non-linear arithmetic, and used this approach
to check abstract worst-case execution time [18]. In this approach we have also
shown that function postconditions can be inferred or strengthened automati-
cally.

Constructs for preconditions (require) and postconditions (ensuring) have
run-time checking semantics in standard Scala; they are simply particular asser-
tions. Executing precise specifications at run time may change not only constant
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factors but also asymptotic complexity of the original program, changing, for
example, insertion into a balanced tree from logarithmtic into quadratic opera-
tion. In Leon, even when contracts cannot be checked fully statically, they can be
optimized by eliminating statically checked parts of contracts and doing mem-
oization [12]. Using these techniques, it is often possible to speed up runtime
checks and recover the asymptotic behavior of the original program.

Leon can also execute specifications alone (e.g. functions without body, given
only by postconditions), by invoking a constraint solver at run time [13]. This
mechanism reuses counterexample-finding ability as a computation mechanism
[11]. Leon thus supports an expressive form of constraint programming with com-
putable functions as constraints. While convenient for prototyping, constraint
programming can be slow and unpredictable, often involving exponential search
for solutions.

As a step towards more efficient and predictable approach, Leon supports
deductive synthesis of functions form specifications. This functionality was orig-
inally aimed at being fully automated [10]. Synthesis in Leon is based on a custom
deductive synthesis framework incorporating, for example, syntax-driven rules,
rules supporting synthesis procedures [7,14–16], and a form of counterexample-
guided synthesis [10]. Subsequently we have worked on interfaces to perform
this synthesis interactively, which allows the developer both to explore different
alternatives if the solution is not unique, and to guide synthesis using manual
steps.

Recent work enables Leon to perform program repair when the program
does not meet the specification, using error localization, synthesis guided by the
original expression, and counterexample-guided synthesis of expressions similar
to a given one [9].

Leon is under active development and has been used in teaching courses at
EPFL. It is open source and can also be tried from its web environment at the
URL http://leon.epfl.ch.

References

1. R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the Leon
verification system: Verification by translation to recursive functions. In Scala
Workshop, 2013.

2. E. Darulova. Programming with Numerical Uncertainties. PhD thesis, EPFL, 2014.

3. E. Darulova and V. Kuncak. Sound compilation of reals. In ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 2014.

4. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

5. L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In
Formal Methods in Computer-Aided Design, Nov. 2009.

6. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:pp. 29–60, 1969.

7. S. Jacobs, V. Kuncak, and P. Suter. Reductions for synthesis procedures. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2013.

http://leon.epfl.ch


4 Viktor Kuncak

8. M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

9. E. Kneuss, M. Koukoutos, and V. Kuncak. On deductive program repair in Leon.
Technical Report EPFL-REPORT-205054, EPFL, February 2014.

10. E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. Synthesis modulo recursive func-
tions. In OOPSLA, 2013.
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