
Verifying and Synthesizing Software with
Recursive Functions

(Invited Contribution)

Viktor Kuncak?

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. Our goal is to help people construct software that does what
they wish. We develop tools and algorithms that span static and dynamic
verification, constraint solving, and program synthesis. I will outline the
current state our verification and synthesis system, Leon, which trans-
lates software into a functional language and uses SMT solvers to reason
about paths in programs and specifications. Certain completeness results
partly explain the effectiveness of verification and synthesis procedures
implemented within Leon, in particular results on decidability of suffi-
ciently surjective abstraction functions, and the framework of complete
functional synthesis.

1 Introduction

Software is more widespread than ever, thanks to trends such as mass adoption
of smartphones and tablets, as well as complex software controllers in, e.g. per-
sonal vehicles. At the same time, it is still too difficult to construct software
that does something meaningful, let alone enforcing that software conforms to
rigorous correctness standards. This motivates our current research on making
software construction more accessible to large user bases, as well as increasing
the confidence in software artifacts being constructed. These tasks require auto-
mated reasoning about requirements, specifications, and implementations. A core
problem is automatically mapping users’ requirements into efficiently executing
systems. The problem has traditionally found home in programming languages,
formal methods, software engineering, and design automation, but is also re-
lated to automated reasoning, human-computer interaction, machine learning,
and natural language processing. We can evaluate our progress on addressing
this problem by building software development tools that help software devel-
opers and users. Their development often required new algorithms for program
verification, analysis, program synthesis, and new decision procedures.

In the sequel I use an example to illustrate several usage scenarios of interest
and define the corresponding algorithmic questions. The examples use the syntax

? This work is supported in part by the European Research Council (ERC) Project
Implicit Programming and the Swiss National Science Proposal Constraint Solving
Infrastructure for Program Analysis

2 Viktor Kuncak

of the Scala programming language (http://scala-lang.org/, [59,60]) and are
mostly based on the capabilities of the Leon verification and synthesis system
for a subset of Scala (http://leon.epfl.ch) on which we have been working
for the past few years [10,17,35,40,45–47,52,74–76], but we have also explored
related ideas in several other works [15, 16, 24, 26–28, 31, 32, 34, 41–44, 49, 50, 56,
63,64,67,70,71,77–81].

2 Problem Definitions through Examples

Consider computations that take inputs i ∈ I and produce outputs o ∈ O. We
view a program as a function f : I → O from inputs to outputs. We view a spec-
ification P : (I × O) → {false, true} as a predicate that takes a potential input
and a potential output and returns true iff the output is considered acceptable
for the given input. We fix this notation throughout this section.

2.1 Four Types of Problems

We consider the following categories of problems:

(RV) Runtime Verification: given P, f and a specific input i1 ∈ I, compute the
value f(i1), then compute whether P (i1, f(i1)) holds.

(SV) Static Verification: given P, f , either prove ∀i ∈ I. P (i, f(i)), or find a
counterexample i1 ∈ I such that ¬P (i1, f(i1)).

(RC) Runtime Constraint solving: given P and an input i1 ∈ I, find one cor-
responding output o1 ∈ O such that P (i1, o1). This succeeds iff ∃o. P (i1, o).

(SC) Static Constraint solving: given P , find a computable function f such
that ∀i ∈ I. P (i, f(i)). This is a form of program synthesis [46, 54].

The classification uses two criteria. The first criterion (R/S) is whether the prob-
lem being solved takes place at runtime (R), that is, during program execution,
or statically (S), at compile time, before the program runs. The second criterion
(V/C) is whether the task is verification (V), when both the program and the
specification are given, or constraint solving (C), when only the specification is
given, and we aim to compute values that satisfy it.

A list definition in Scala. To make the discussion more concrete, con-
sider the simple example of describing operations on sorted lists of integers.
We choose a purely functional subset of the Scala to implement these operations
(http://scala-lang.org/, [59, 60]). We rely only on a small subset of Scala,
so our functions correspond to the mathematical notion of mutually recursive
functions defined over discrete domains. Listing 1 shows the definition of lists as
an algebraic data type with a zero-arity constructor Nil and a binary constructor
Cons : (Int× List) → List. We define an algebraic data type in Scala using class
inheritance; for pure functions this corresponds to a term algebra [30, 53] with
the corresponding constructors (here: Nil and Cons) and selectors (here: head and
tail). The domain thus represents finite sequences of integers.

http://scala-lang.org/
http://leon.epfl.ch
http://scala-lang.org/

Verifying and Synthesizing Software with Recursive Functions 3

Insertion into the list. Listing 2 defines a recursive function sortedIns that
inserts a given integer into the sorted list, while preserving the property of being
sorted. This is a concrete example of a program denoted f above. The match

construct performs the usual case analysis on whether the list is empty or not,
and, in the non-empty case, binds the provided variables x, xs to the head and tail
of the list. Such code follows a standard approach for defining recursively defined
structures and functions. Our methodology uses this same executable language
of recursive functions to also describe the desired properties P of programs.

abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

Listing 1. List of Integers Defined Using Custom Case Classes

def sortedIns(e: Int, l: List): List = l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l) }

Listing 2. Conventional Implementation of Insertion into a Sorted List

def sortedIns(e: Int, l: List): List = {
require(isSorted(l))
l match {
case Nil ⇒ Cons(e,Nil)
case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l) }

} ensuring(result ⇒ isSorted(res) && content(result) == content(l) ++ Set(e))

Listing 3. The Insertion into a Sorted List together with its Specification

Writing specifications for functions. Suppose that we wish to specify that
sortedIns indeed inserts the given element into the set of elements it stores, and
that it maintains the ordering of the elements in the list. Listing 3 shows how
to write such specification in Scala. We indicate that the input list needs to be
sorted using the require operator, which takes a predicate that should hold for
function arguments (function precondition). In this example we use the isSorted

predicate to define the precondition. Listing 4 shows the definition of isSorted as
a recursive function. To specify the postcondition, we use the ensuring clause,
which also takes a predicate, but this time involving not only parameters of the
function, but also its result, here bound to the result variable. The specification
in Listing 3 indicates that the result should also be a sorted list. Moreover, it says
that the set of elements stored in the resulting list, content(result), should be equal

4 Viktor Kuncak

to the union of the content of the argument list content(l) and the singleton set
{e}, denoted in Scala as Set(e). Listing 5 defines the content function recursively.
We call such function an abstraction function; it abstracts away from the list
ordering and computes a set. Algebraically, it is a homomorphism, mapping
values of the list algebraic data type with constructor operations into finite sets
with union. The property P that we would like to ensure about the result of
sortedIns when invoked with arguments e and l is thus:

isSorted(l)→ (isSorted(result) ∧ content(result) = content(l) ∪ {e})

In the terminology of our classification, the above predicate is the specification P .
the input i is the tuple of arguments (e, l), the output o is result, and the function
f is sortedIns. The overall correctness condition P ((e, l), f(e, l)) is therefore:

isSorted(l)→ (isSorted(sortedIns(e,l)) ∧ content(sortedIns(e,l)) = content(l) ∪ {e})
(1)

Runtime verification. Runtime verification checks the above correctness con-
dition when the values of arguments (in our example, e and l) are known. In
addition, before invoking the function isSorted, the program system checks its
precondition, so the function body only executes when the assumption of the
above implication is true. In general, we assume that both f and P are expressed
in a language of computable recursive functions. Therefore, the applications of
f and P to their arguments are simply computations according to the semantics
of the language. As a result, runtime verification RV is a computable problem in
our context. In fact, the require and ensuring are simply library functions of the
Scala programming language [58], and runtime checking in principle requires no
further support. Runtime checking is nonetheless not a trivial problem, because
the specification P is often written aiming for clarity and provability, and not
aiming for efficiency of evaluation. A naturally written specification often leads
to naive and repeated computation if executed at runtime. Leon can substan-
tially improve the predictability and performance of runtime checks using static
techniques, as we discuss below.

def isSorted(l: List): Boolean = l match {
case Cons(x, Cons(y, ys)) ⇒ x ≤ y && isSorted(Cons(y, ys))
case ⇒ true }

Listing 4. Sortedness Property of a List

def content(l: List): Set[Int] = l match {
case Cons(x, xs) ⇒ Set(x) ++ content(xs)
case Nil ⇒ Set() }

Listing 5. Set of Elements Stored in a List

Verifying and Synthesizing Software with Recursive Functions 5

Static verification. Whereas runtime verification checks (1) for the particular
e, l, static verification attempts to prove it for all e, l. The Leon verifier takes
the same input as for runtime checking, and attempts to either prove correctness
of (1) or find a counterexample for its correctness. For this purpose, we build on
the field of Satisfiability Modulo Theory (SMT) solvers [2,19,22], which contain
decision procedures for many theories that support useful combinations of oper-
ations present in programs. For property (1), the unfolding of isSorted requires
reasoning about algebraic data types, handled by the theory of recursive data
types [3] and reasoning about the ordering on integers, handled by integer linear
arithmetic on integers within Z3 [36]. Reasoning about operations on sets is han-
dled using array combinators [20] although more expressive theories of sets with
cardinalities were evaluated in previous versions of Leon [76]. A careful reader
will observe that a specification using sets may be weaker than desired, because
it allows a sorting routing to remove or introduce duplicates. A more precise
specification can naturally be written using multisets, whose simple fragments
can be also encoded using arrays combinators [20], and for which the develop-
ment of decision procedures of optimal complexity is a result of relatively recent
developments [62–64].

In contrast to operators built into Leon’s language subset, recursively defined
functions are not directly supported in SMT solvers, so Leon implements its own
algorithm to handle them [73–75]. Leon’s algorithm [75] is related to bounded
model checking ideas [1,7] and k-induction [23,37], but applies to recursive func-
tions. In our example, when proving correctness of the condition (1), the system
performs satisfiability checks while increasingly unfolding the definitions. For a
relatively small unfolding depth, in this example the formula becomes unsatisfi-
able. In other examples, the system finds a counterexample for certain unfolding
depth. In general, it need not terminate because the problem is undecidable.

However, there are interesting classes of recursive functions for which the
system is a decision procedure [73,74]. The class that we have considered have the
form of homomorphism functions, such as the content function in Listing 5. We
have identified a number of such functions, which we call “sufficiently surjective
abstracts” in [74], thus deriving several families of extensions of term algebras
for which satisfiability of quantifier-free formulas is decidable.

The work can also be viewed [34] from the point of view of Ψ -local theory
extensions [33], where further decidable extensions of term algebras have been
identified [68].

In general, particular recursive functions may require reasoning specialized
to this class. What is remarkable is that for a class of sufficiently surjective
abstraction functions, the unrolling (a form of bounded model checking for re-
cursive functions) becomes a uniform decision procedure [73]. Therefore, we have
a series of decidability results, but the underlying algorithm need not be aware
of them, they simply ensure its completeness in some cases. Our experience sug-
gests that the algorithm works in practice for many other cases as well, which
suggests that there may be further completeness results to be discovered.

6 Viktor Kuncak

Function unfolding is justified for terminating functions, and corresponds to
inductive reasoning according to the well-founded relation that implies termina-
tion of functions. Leon currently does not check termination by default; for some
approaches to check termination, see [13, 65]. Sufficiently surjective abstraction
functions are, however, terminating by their syntactic structure. Note also that
the properties that we are checking are safety properties, which means that we
could generate logical encoding that uses relations instead functions and is not
sensitive to termination. It remains to be investigated how much we would lose
in practice by using relations instead of functions.

Inductive generalization. In our experience, more properties turned out to be
k-inductive than what we initially expected. The general-purpose algorithm of
Leon, based on function unfolding, is therefore surprisingly effective in practice.
For some cases, though, it fails to perform the required generalization and find
an invariant that implies the desired property. To address these cases, we have
started incorporating some of the ideas from model checking and constraint-
based static analysis.

One approach is to search for invariants of a particular template form [6]. We
have recently also implemented a refinement of such an approach in Leon and
showed that it is able to compute worst-case execution bounds for sequential
and parallel execution of functional programs [52], which often involve difficult-
to-find numerical constants.

An alternative approach is to generalize predicate abstraction to recursive
functions. State of the art methods use counterexample-guided refinement of the
set of predicates, often based on interpolation. We have applied this approach
to linear integer arithmetic models of programs [67]. The technique requires tree
interpolants [29, 57], which generalizes interpolation problem to more complex
cases of proving consistency of Horn clauses [8, 25,66].

In both of these approaches to verification with inductive invariant inference,
we were greatly influenced by the works of Andrey Rybalchenko.

Why an executable specification language. The choice of executable pred-
icates for specifications (as opposed to, for example, logic with quantifiers or dy-
namic logic) is somewhat restrictive but very practical. First, the class of prop-
erties is rather large, because we are allowed to use a Turing-complete language
for predicates. Second, it is not an obscure language that happens to be Turing
complete, but a functional language that is already used for implementations,
and which many schools teach to undergraduates. Whereas software developers
may be hesitant to use logical notation, here they just use assertions. Third, it is
an executable language, which immediately enables runtime checking in program
runs and test runs, as discussed above. It also leads to automated generate-and
test approaches to bug finding, which are as complete as theoretically possible,
given that the problem of finding counterexamples is recursively enumerable.
The computable specifications approach is also related to reasons why bounded
model checking is effective for such specifications. Finally, as we have seen, the
absence of counterexamples can also be automated through inductive reasoning.
For many of these reasons this has been a popular choice in other verification

Verifying and Synthesizing Software with Recursive Functions 7

tools as well, most notably the ACL2 prover and its predecessors [12, 38, 39].
That said, given numerous other heavier-weight specification and verification
approaches, we feel that the elegance and the advantages of the approach of
using executable functions can never be emphasized enough.

Runtime constraints solving (constraint programming). Using the ab-
straction function and the invariant, we can concisely specify an insert operation
for sorted lists using a constraint as in Listing 6.

def insert(l: List, v: Int) = {
require(isSorted(l))
choose{ (x: List) ⇒ isSorted(x) && (content(x) == content(l) ++ Set(v)) }
}

Listing 6. Insertion Specified using Constraint

Runtime constraint solving allows the developer to describe computations
using predicates alone, avoiding the need to write an explicit function from inputs
to inputs. In other words, they allow programming with “implicit” functions.

Observe that, given f we can define P that characterizes it by defining
P (x, y) ⇐⇒ (f(x) = y). Therefore, input/output specifications (which are re-
lations) subsume implementations (which we consider to be functions). They are
more expressive because they can describe the desired properties of the output,
without specifying it uniquely. This allows us to specify orthogonal properties
separately and then combine them using conjunction to obtain a function as an
intersection of several relations.

The advantages of specifications become even more apparent for more com-
plex examples. The following method describes the insertion into a red-black
tree.1

def insert(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) ++ Set(v)) }
}

In such scenario, the run-time waits until the argument t and the value v are
known, and finds a new tree value x such that the constraint holds. Thanks to our
constraint solver, which has a support recursive functions and also leverages the
Z3 SMT solver, this approach works well for small red-black trees. It is therefore
extremely useful for prototyping and testing and we have previously explored it
as a stand-alone technique for constraint programming in Scala [43].

If we now considered writing a removal operation for trees, an approach based
on conventional imperative or functional code would require writing a separate

1 We omit here the definition of the tree invariant for brevity, which is non-trivial
[14, 61], but still rather natural to describe using recursive functions.

8 Viktor Kuncak

removal algorithm, which is non-trivial for red-black trees. Using specifications,
the desired behavior is given simply by replacing ++ sign with -- sign:

def remove(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) -- Set(v)) }
}

Static constraint solving (synthesis). Analogously to verification, we would
like to obtain efficiency and predictability advantages of static computation also
in the case of implicitly defined computations. For this purpose, we aim to stat-
ically solve specifications and convert them into directly executable functions.
This process is typically referred to as program synthesis [46,54]. The synthesis
techniques in Leon [40] heavily rely on the underlying verification techniques, but
also on complete functional synthesis [35,46–48]. Our current implementation of
synthesis in Leon [40] is able to translate the specification into the complete
implementation shown in Listing 7.

def insert(l: List, v: Int) = {
require(isSorted(l))
l match {
case Cons(head, tail) ⇒
if (v == head) {

l
} elseif (v < head) {

Cons(v, l)
} else {

insert(t, v)
}

case Nil ⇒
Cons(v, Nil)

}
}

Listing 7. Result of Synthesis of Code Shown in Listing 6

Theoretical questions of completeness for synthesis have interesting connec-
tion to logic and automata. For example, synthesis for Presburger arithmetic
turns out to be related to constructive quantifier elimination [46–48]. On the
other hand, we can obtain better theoretical bounds for synthesized code us-
ing automata techniques [28,70]. Parameterized complexity of problems is likely
to be important when theoretically characterizing when synthesis is useful, be-
cause we wish to consider the specification P and the input i as two distinct
input parameters.

Verifying and Synthesizing Software with Recursive Functions 9

Our implemented technique [40] also builds on counterexample-guided ap-
proaches [69]. Techniques for learning representations in logic and automata [51]
are a likely to have further fruitful applications in software synthesis.

In addition to synthesis over discrete domains, an important problem is syn-
thesis of numerical computations that conform to the desired precision guaran-
tees [17,18].

2.2 Relationship Between Different Problems

This classification gives an overview of typical different tasks, though some of the
most interesting questions arise by considering combinations and relationships
between these four problems.

Optimizing runtime checks using static verification. The Leon verifier
can remove the runtime checks that are provable statically, and transform the
programs to avoid duplicate checks. This allows automatic static verification for
as many properties as possible, but still allows the resulting programs to run
and to detect if any leftover checks fail for the values arising during program
use and testing. This is part of an ongoing work with Emmanouil Koukoutos at
EPFL.

Invoking static verification at runtime for complex programs. When
program state is complex, static verification techniques face their limitations.
It is therefore interesting to invoke static analyzers at runtime, in parallel with
actual program executions. We have done this in the context of distributed sys-
tem implementations [80] and Java programs (EPFL MSc thesis of Sebastian
Gfeller), and it could also be done to perform eager checks of higher-order func-
tion contracts in functional programs.

Using counterexamples of static verification for constraint solving. A
very important connection shows that runtime constraint solving is a dual to
static verification. We perform static verification in Leon, showing validity of
∀i.P (i, f(i)), by proving unsatisfiability of C(x) defined as ¬P (x, f(x)). A satis-
fying assignment for C(x) is a counterexample to the validity. Counterexample
search is thus search for values that satisfy a constraint C(x), expressed in logics
that contain operations from theories, as well as recursive function invocations.
On the other hand, runtime constraint solving tries to find, for a given i1 a value
o such that P (i1, o) holds. If we define C ′(x) as P (i1, x), then runtime constraint
solving also corresponds to solving the constraints C ′(x) expressed in the same
language as before. Therefore, in our work on constraint programming for Scala,
we were able to use the same constraint solving implementation to solve con-
straints [43]. This mechanism is also avaible in the current Leon system [45], and
allows us to execute very expressive specifications between inputs and outputs.

Combining constraint solving and synthesis. Our deductive synthesis
framework performs a search over different steps that transform specification
into a set of potentially simpler ones. This architecture allows us to combine
synthesis and run-time constraint solving. We illustrate this using an example

10 Viktor Kuncak

of a red-black tree with a cache. Such a tree contains a red-black tree, but also
redundantly stores one of its elements.

case class CTree(cache: Int, data: Tree)

The specification of the invariant inv formalizes the desired property: the cache
value must be contained in the tree unless the tree is empty.

def inv(ct: CTree) = {
isRedBlack(ct.data) &&

(ct.cache ∈ content(ct.data)) || (ct.data == Empty)
}

The contains operation tests membership in the tree.

def contains(ct: CTree, v: Int): Boolean = {
require(inv(ct))
choose{ (x: Boolean) ⇒ x == (v ∈ content(ct)) }
}

While not being able to fully synthesize it, the deductive synthesis procedure
decomposes the problem and partially synthesizes the constraint. One of its
possible results is the following partial implementation that combines actual
code and a sub-constraint:

def contains(ct: CTree, v: Int): Boolean = ct.data match {
case n: Node ⇒
if (ct.cache == v) {
true
} else {

choose { (x: Boolean) ⇒ x == (v ∈ content(n)) }
}

case Empty ⇒
false

}

We notice that this partial implementation makes use of the cache in accordance
with the invariant. The code accurately reflects the fact that the cache may not
be trusted if the tree is empty. The remaining constraint is in fact a simpler
problem that only relates to standard red-black trees. Our system can then
compile the resulting code, where the fast path is compiled as the usual Scala
code, and the choose construct is compiled using the run-time solving approach.

Using synthesis to verify existential statements. Note that constraint
solving by itself does not have static guarantees that the synthesized value can
be produced. By successfully solving a synthesis problem, the system establishes
the truth of an existentially quantified statement. Therefore, such synthesis ca-
pability can be used to prove quantified statements. Here we do not mean to
imply that constructive interpretation of quantifiers is the only one possible, nor
that it should be built into the semantics. We merely observe that synthesis is
an interesting method for proving existential statements containing, for example

Verifying and Synthesizing Software with Recursive Functions 11

recursive functions. It is interesting to note that the authors of classical deduc-
tive synthesis [54,55] concluded that better inductive theorem proving is needed
to enable synthesis of recursive programs. Given recent advances in software
synthesis including ours and others [11, 72], it is interesting to re-examine the
use of synthesis algorithms for theorem proving.

3 Towards Case Studies as Mathematical Statements

One challenge in this research is that software manipulates inputs from very
large or infinite domains, with rich algebraic structure. Examples include nu-
merical domains such as integers or approximations of real numbers, as well
symbolic domains, such as algebraic data types, sequences, sets, multisets, and
maps. To handle this complexity, it is essential to further advance the field of
Satisfiability Modulo Theories, including the development of new decision pro-
cedures for structures such as multisets and algebraic data types. Moreover, the
applications in embedded and cyber-physical systems call for systematic support
for reasoning about approximations of real numbers, something that we have re-
cently started exploring as well [17], and that connects the area of verification to
numerical analysis and to decision procedures for theories of real numbers [21].

Another challenge is that programs have complex control and language struc-
ture, including conditionals, recursion, higher-order functions, dynamic dispatch,
and concurrency. Much of this complexity can be handled by translation into
first-order side-effect-free functional or logic programming language. This sup-
ports the use of standardized formats for software analysis and program synthesis
problems using either Horn clauses in the language of SMT-LIB theories [8], or
pure subsets of popular programming languages such as Scala.

The format of Horn clauses has a particularly promising future as a way of
taming the complexity of programming languages as well as the methodological
complexity of precise and automated verification algorithms, as witnessed by a
number of successful approaches in this direction. Apart from those mentioned
already, exciting new work includes addressing more complex quantification pat-
terns that go beyond verification of safety properties [4, 5, 9].

When Horn clauses are expressed in SMT-LIB2 format (http://www.smt-lib.
org), rich theories present in the format, combined with the ability to encode
complex control flow, result in a versatile format for precisely stating mathe-
matical problems about software. Building tools that handle such benchmarks
requires new theoretical insights as well as important software development and
experimental work.

Acknowledgements. The authors would like to thank his group members, his
collaborators. The author also thanks researchers gathered around the EU COST
Action “Rich Model Toolkit” (http://richmodels.epfl.ch), 2009-2013.

References

1. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers. In SPIN, pages 146–162, 2006.

http://www.smt-lib.org
http://www.smt-lib.org
http://richmodels.epfl.ch

12 Viktor Kuncak

2. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, ed-
itors, CAV, volume 6806 of LNCS, pages 171–177. Springer, 2011.

3. C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for sat-
isfiability in the theory of recursive data types. Electronic Notes in Theoretical
Computer Science, 174(8):23–37, 2007.

4. T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based
approach to solving games on infinite graphs. In POPL, pages 221–234, 2014.

5. T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified
Horn clauses. In CAV, pages 869–882, 2013.

6. D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis
for combined theories. In VMCAI, pages 378–394, 2007.

7. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In TACAS, pages 193–207, 1999.

8. N. Bjørner, K. L. McMillan, and A. Rybalchenko. Program verification as satisfi-
ability modulo theories. In SMT@IJCAR, pages 3–11, 2012.

9. N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. In SAS, pages 105–125, 2013.

10. R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the Leon
verification system: Verification by translation to recursive functions. In Scala
Workshop, 2013.

11. R. Bod́ık. Algorithmic program synthesis with partial programs and decision pro-
cedures. In SAS, page 1, 2009.

12. R. S. Boyer and J. S. Moore. Proving theorems about LISP functions. J. ACM,
22(1):129–144, 1975.

13. M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for ter-
mination proofs with recursive path orders and dependency pairs. J. Autom. Rea-
soning, 49(1):53–93, 2012.

14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms (Second Edition). MIT Press and McGraw-Hill, 2001.

15. E. Darulová and V. Kuncak. Trustworthy numerical computation in scala. In
OOPSLA, 2011.

16. E. Darulova and V. Kuncak. Certifying solutions for numerical constraints. In
Runtime Verification (RV), 2012.

17. E. Darulova and V. Kuncak. Sound compilation for reals. In ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 2014.

18. E. Darulova, V. Kuncak, R. Majumdar, and I. Saha. Synthesis of fixed-point
programs. In Embedded Software (EMSOFT), 2013.

19. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

20. L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In
Formal Methods in Computer-Aided Design, Nov. 2009.

21. L. M. de Moura and G. O. Passmore. Computation in real closed infinitesimal and
transcendental extensions of the rationals. In CADE, pages 178–192, 2013.

22. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

23. A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. Software verification
using k-induction. In SAS, pages 351–368, 2011.

24. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov.
Test generation through programming in UDITA. In International Conference on
Software Engineering (ICSE), 2010.

Verifying and Synthesizing Software with Recursive Functions 13

25. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, pages 405–416, 2012.

26. T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types
and weights. In PLDI, 2013.

27. T. Gvero, V. Kuncak, and R. Piskac. Interactive synthesis of code snippets. In
Computer Aided Verification (CAV) Tool Demo, 2011.

28. J. Hamza, B. Jobstmann, and V. Kuncak. Synthesis for regular specifications over
unbounded domains. In FMCAD, 2010.

29. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, 2010.

30. W. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1993.

31. H. Hojjat, R. Iosif, F. Konečný, V. Kuncak, and P. Rümmer. Accelerating inter-
polants. In Automated Technology for Verification and Analysis (ATVA), 2012.

32. H. Hojjat, F. Konecny, F. Garnier, R. Iosif, V. Kuncak, and P. Ruemmer. A verifi-
cation toolkit for numerical transition systems (tool paper). In 16th International
Symposium on Formal Methods (FM). Springer, 2012.

33. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-
fication. In TACAS, pages 265–281, 2008.

34. S. Jacobs and V. Kuncak. Towards complete reasoning about axiomatic specifi-
cations. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
2011.

35. S. Jacobs, V. Kuncak, and P. Suter. Reductions for synthesis procedures. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2013.

36. D. Jovanovic and L. M. de Moura. Cutting to the chase - solving linear integer
arithmetic. J. Autom. Reasoning, 51(1):79–108, 2013.

37. T. Kahsai and C. Tinelli. Pkind: A parallel k-induction based model checker. In
PDMC, pages 55–62, 2011.

38. M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers, 2000.

39. M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

40. E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. Synthesis modulo recursive func-
tions. In OOPSLA, 2013.

41. E. Kneuss, V. Kuncak, and P. Suter. Effect analysis for programs with callbacks. In
Fifth Working Conference on Verified Software: Theories, Tools and Experiments,
2013.

42. E. Kneuss, P. Suter, and V. Kuncak. Runtime instrumentation for precise flow-
sensitive type analysis. In International Conference on Runtime Verification, 2010.

43. A. Köksal, V. Kuncak, and P. Suter. Constraints as control. In ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 2012.

44. V. Kuncak and R. Blanc. Interpolation for synthesis on unbounded domains. In
Formal Methods in Computer-Aided Design (FMCAD), 2013.

45. V. Kuncak, E. Kneuss, and P. Suter. Executing specifications using synthesis and
constraint solving (invited talk). In Runtime Verification (RV), 2013.

46. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthe-
sis. In ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI), 2010.

47. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Software synthesis procedures.
Communications of the ACM, 2012.

14 Viktor Kuncak

48. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Functional synthesis for linear
arithmetic and sets. Software Tools for Technology Transfer (STTT), 15(5-6):455–
474, 2013.

49. V. Kuncak, R. Piskac, and P. Suter. Ordered sets in the calculus of data structures
(invited paper). In CSL, 2010.

50. V. Kuncak, R. Piskac, P. Suter, and T. Wies. Building a calculus of data struc-
tures (invited paper). In Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2010.

51. A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for top-down xml
transformations. In PODS, pages 285–296, 2010.

52. R. Madhavan and V. Kuncak. Symbolic resource bound inference for functional
programs. In Computer Aided Verification (CAV), 2014.

53. A. I. Mal’cev. Axiomatizable classes of locally free algebras of various types. In
The Metamathematics of Algebraic Systems. North-Holland, 1971. (Translation,
original in Doklady, 1961).

54. Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst., 2(1):90–121, 1980.

55. Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun.
ACM, 14(3):151–165, 1971.

56. M. Mayer and V. Kuncak. Game programming by demonstration. In SPLASH
Onward!, 2013.

57. K. L. McMillan and A. Rybalchenko. Solving constrained Horn clauses using
interpolation. Technical Report MSR-TR-2013-6, Microsoft Research, Jan. 2013.

58. M. Odersky. Contracts for Scala. In Int. Conf. Runtime Verification, 2010.
59. M. Odersky and T. Rompf. Unifying functional and object-oriented programming

with Scala. Commun. ACM, 57(4):76–86, 2014.
60. M. Odersky, L. Spoon, and B. Venners. Programming in Scala: a comprehensive

step-by-step guide. Artima Press, 2008.
61. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
62. R. Piskac and V. Kuncak. Fractional collections with cardinality bounds, and

mixed integer linear arithmetic with stars. In Computer Science Logic (CSL),
2008.

63. R. Piskac and V. Kuncak. Linear arithmetic with stars. In Computed-Aided Veri-
fication (CAV), volume 5123 of LNCS, 2008.

64. R. Piskac and V. Kuncak. Munch - automated reasoner for sets and multisets
(system description). In IJCAR, 2010.

65. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termi-
nation. ACM Trans. Program. Lang. Syst., 29(3), 2007.

66. P. Rümmer, H. Hojjat, and V. Kuncak. Classifying and solving horn clauses for
verification. In Fifth Working Conference on Verified Software: Theories, Tools
and Experiments, 2013.

67. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause
verification. In Computer Aided Verification (CAV), 2013.

68. V. Sofronie-Stokkermans. Locality results for certain extensions of theories with
bridging functions. In CADE, pages 67–83, 2009.

69. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-
natorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

70. A. Spielmann and V. Kuncak. Synthesis for unbounded bitvector arithmetic. In In-
ternational Joint Conference on Automated Reasoning (IJCAR), LNAI. Springer,
2012.

Verifying and Synthesizing Software with Recursive Functions 15

71. A. Spielmann, A. Nötzli, C. Koch, V. Kuncak, and Y. Klonatos. Automatic syn-
thesis of out-of-core algorithms. In SIGMOD, 2013.

72. S. Srivastava, S. Gulwani, and J. Foster. From program verification to program
synthesis. In POPL, 2010.

73. P. Suter. Programming with Specifications. PhD thesis, EPFL, December 2012.
74. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types

with abstractions. In ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL), 2010.

75. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.
In Static Analysis Symposium (SAS), 2011.

76. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfiabil-
ity modulo theories. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2011.

77. T. Wies, M. Muñiz, and V. Kuncak. An efficient decision procedure for imperative
tree data structures. In Computer-Aideded Deduction (CADE), 2011.

78. T. Wies, M. M. niz, and V. Kuncak. Deciding functional lists with sublist sets. In
Verified Software: Theories, Tools and Experiments (VSTTE), LNCS, 2012.

79. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set operations.
In FroCoS: Frontiers in Combining Systems, 2009.

80. M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak. Predicting and preventing
inconsistencies in deployed distributed systems. ACM Transactions on Computer
Systems, 28(1), 2010.

81. K. Yessenov, R. Piskac, and V. Kuncak. Collections, cardinalities, and relations.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), 2010.

	Verifying and Synthesizing Software with Recursive Functions
	Introduction
	Problem Definitions through Examples
	Four Types of Problems
	Relationship Between Different Problems

	Towards Case Studies as Mathematical Statements

