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Abstract
We present an extension of Scala that supports constraint program-
ming over bounded and unbounded domains. The resulting lan-
guage, Kaplan, provides the benefits of constraint programming
while preserving the existing features of Scala. Kaplan integrates
constraint and imperative programming by using constraints as an
advanced control structure; the developers use the monadic ’for’
construct to iterate over the solutions of constraints or branch on
the existence of a solution. The constructs we introduce have simple
semantics that can be understood as explicit enumeration of values,
but are implemented more efficiently using symbolic reasoning.

Kaplan programs can manipulate constraints at run-time, with
the combined benefits of type-safe syntax trees and first-class func-
tions. The language of constraints is a functional subset of Scala,
supporting arbitrary recursive function definitions over algebraic
data types, sets, maps, and integers.

Our implementation runs on a platform combining a constraint
solver with a standard virtual machine. For constraint solving we
use an algorithm that handles recursive function definitions through
fair function unrolling and builds upon the state-of-the art SMT
solver Z3. We evaluate Kaplan on examples ranging from enumer-
ation of data structures to execution of declarative specifications.
We found Kaplan promising because it is expressive, supporting a
range of problem domains, while enabling full-speed execution of
programs that do not rely on constraint programming.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords Constraint Programming, Satisfiability Modulo Theo-
ries, Executable Specifications, Scala, Embedded Domain-Specific
Languages, Non-determinism

1. Introduction
Modern mainstream programming languages incorporate advances
in memory safety, type systems, meta-programming and modular-
ity. However, the sequential control in widely used systems remains
largely unchanged compared to some of the earliest imperative and
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functional language designs. Although this simplicity has advan-
tages in terms of predictable compilation, it prevents languages
from approaching the abstraction level used in software design.
In design we often encounter a conjunction of multiple orthogo-
nal requirements that we need to meet simultaneously [29]. When
conjoining multiple requirements, each of them needs to be a par-
tial specification of possible executions, otherwise the conjunc-
tion would be contradictory. The desire to use partial constraints
leads to non-deterministic specification constructs. Examples in-
clude guarded commands [18], wide-spectrum languages [6, 43],
intermediate verification languages [15], Temporal Logic of Ac-
tions [36], Alloy [30], as well as models in proof assistants Coq
[62] and Isabelle [52]. In contrast to specification languages, most
mainstream executable languages have difficulty in implementing a
conjunction of programs; their sequential commands tightly spec-
ify the set of possible behaviors.

The idea of Logic Programming [14, 34] is to allow programs
that are non-deterministic and specify relations (predicates) be-
tween values. The original inspiration came from a restricted form
of resolution as the execution mechanisms, which uses unification
of logical variables ranging over finite trees. Functional logic pro-
gramming extends logic programming with the narrowing tech-
nique and with benefits of functional programming [3]. Constraint
Logic Programming, CLP [31] and later generations of Prolog [14]
extend logic programming with the ability to perform constraint
solving not only over trees but also over numerical domains. These
paradigms hold great promise to raise the abstraction level of soft-
ware. They are related to program synthesis research [26, 35, 39,
53, 58], which can be viewed as a compilation mechanism for
declarative specifications.

We believe that key obstacles preventing broader use of non-de-
terministic declarative programming constructs include:

• the difficulty of solving declarative constraints and
• the difficulty of incorporating these constructs into existing

languages and platforms.

We next briefly outline the approach that our system uses to meet
these challenges.

Efficient interoperability with existing platforms. In this paper
we present Kaplan, a system that supports Constraint Programming
on top of the Scala language [50]. We address the difficulty of in-
corporating into existing platforms by choosing not to modify the
semantics of the core Scala language, but instead use the flexibil-
ity of for-comprehensions in Scala. Because for-comprehensions
present a syntax for monads in Scala, this aspect of our approach is
related to using non-determinism monads in Haskell [21]. An im-
portant difference is that our starting language is not purely func-
tional, but can have side effects.

Our solution is therefore to identify a functional Turing-complete
sublanguage for constraints, and use it locally for declarative pro-
gramming within the full Scala language (which has features of



object-oriented, imperative and functional languages). The declar-
ative control that we explore is based on describing iterations as a
search process. The iteration ranges are specified as the set of so-
lutions to constraints. Our constraints are declared using first-class
functions and familiar combinators, such as &&. From a language
point of view the integration is appealing because users hardly need
to learn any new notation.

One approach to implementation of non-deterministic lan-
guages is to implement a virtual machine that supports backtrack-
ing, such as Warren’s Abstract Machine for Prolog [1] or the Java
Pathfinder model checker and its extensions [24]. Unfortunately,
such an approach is costly in terms of both performance and en-
gineering effort. We propose instead to encapsulate any need for
backtracking into a for-comprehension that iterates over solution
spaces. In addition, we allow constraint programming in code out-
side of loops. In such cases, logical variables and a constraint store
help ensure that a program can find a solution without backtracking
over the host imperative program, keeping backtracking within a
specialized constraint solver.

Efficient solving of declarative constraints. The first imple-
mentations of declarative paradigms predate algorithmic advances
of modern SAT solvers [57, 66]. The advances in SAT led to a
paradigm shift in solving combinatorial problems, where it became
often profitable to outsource constraint solving tasks to dedicated
implementations, instead of relying on a programmer to hard-code
a search strategy.

Fueled by the developments of SAT solvers, a more expressive
technology emerged as the field of Satisfiability Modulo Theories
(SMT), with a number of efficient implementations available today
[8, 19, 44]. SMT techniques combine SAT solvers with decision
procedures and their combination methods [17, 22, 46] that were
and remain motivated by program verification tasks [32, 45].

Our aim is to leverage the remarkable progress in dedicated
constraint solvers by deploying an SMT solver as a part of the
run-time of a programming language. Whereas the developers of
Prolog were influenced by the state-of-the-art theorem proving
technology of their time (resolution for first-order logic), we aim
to explore the potential of SMT. The fact that SMT solvers were
developed to model programming language constructs makes them
a particularly appropriate choice. However, the original motivation
for SMT solvers was program verification, whereas we aim to use
them as an execution mechanism for declarative constraints.

Many logical theories are natively supported by modern solvers,
including algebraic data types, uninterpreted functions, linear arith-
metic, and arrays. Nonetheless, we believe that constraint solving
can reach its full potential only if users can define their own classes
of constraints. We therefore choose to work with a solver for a rich
logic in which users can define their own recursive functions and
recursive data types [60]. We thus trade performance and decidabil-
ity for greater expressive power and flexibility.

Contributions. This paper makes a concrete and implemented pro-
posal for incorporating constraint programming into an underlying
stateful language through several individual contributions:

• first-class constraints, which can be generated at run-time and
which carry type and free-variable information; the constraints
can use unrestricted operations on booleans (including nega-
tion), as well as built-in and user-defined recursive operations
on integers, sets, maps, and trees;
• a programming model for constraint programming based on

creating and iterating over a stream of solutions of a constraint
using explicit control constructs; our programming model (un-
like most solutions with backtrackable virtual machines) has no
penalty for the code that does not use constraint solving;

• logical variables of numeric and symbolic types that postpone
constraint solving steps, often substantially reducing the size of
the search space;
• the use of fair function unrolling and SMT solving technology

to provide expressive power, predictability, and efficiency of
solving in many domains of interest;
• implementation of the system (Kaplan is publicly available

from http://lara.epfl.ch);
• evaluation of the system on examples from several domains,

such as executing declaratively specified data structure opera-
tions, software testing, and counterexample-driven construction
of functions of a given template and a given specification.

Paper outline. The rest of this paper is organized as follows. The
next section presents features of Kaplan through an extensive set
of examples. Section 3 presents in more detail the Turing-complete
language that we use to describe constraints. Section 4 gives the
semantics of key Kaplan constructs. Section 5 outlines main im-
plementation aspects of Kaplan. We present further evaluation and
illustrate use cases of Kaplan in Section 6. We finally review the
remaining related work and conclude.

2. Examples and Features
We present some of the features of Kaplan through examples. The
simpler examples can be tried out directly in a Scala shell, provided
that it is launched with the Kaplan plugin. Throughout the paper,
we assume basic familiarity with Scala, but explain more advanced
concepts and constructs as needed.

2.1 First-class Constraints

val c1: Constraint2[Int,Int] =
((x: Int, y: Int) ⇒ 2∗x + 3∗y == 10 && x ≥ 0 && y ≥ 0)

This first command declares a constraint with two free variables.
Note that the representation of the constraint is a lambda term.
The only difference between a declaration of a constraint and an
anonymous function is the type of the expression. As an alternative
to explicitly declaring the value to be of a constraint type, one can
also append to the function literal a method call .c, so the following
declaration is identical to the previous one:

val c1 =
((x: Int, y: Int) ⇒ 2∗x + 3∗y == 10 && x ≥ 0 && y ≥ 0).c

The type of c1 is in this case determined by type inference, and this
second way is generally shorter. In Kaplan, constraints are in fact
extensions (in the object-oriented sense) of functions, and can thus
be evaluated, given some values for their argument variables:

scala> c1(2,1)
result: false
scala> c1(5,0)
result: true

As is common in lambda calculus, the names given to the bound
variables play no role; the constraint ((x: Int) ⇒ x ≥ 0) is
equivalent to the constraint ((y: Int) ⇒ y ≥ 0). One should think
of constraints being defined over (typed) De Bruijn indices rather
than named variables.

Constraints can be queried for a single solution or for a stream
of solutions by calling appropriate methods:

scala> c1.solve
result: (5,0)
scala> c1.findAll
result: non−empty iterator



The solve method computes a single solution to the constraint,
while findAll returns an iterator over all solutions. The iterator com-
putes and returns solutions on demand. (As a result of displaying
the iterator in the console, a search for the first solution is trig-
gered.) When the set of solutions is finite, one can compute it for
instance as follows:

scala> c1.findAll.toList
result: List((5,0),(2,2))

The most general way to iterate over solutions is using a for-
comprehension:

for(s ← c1.findAll) {
println(s)
}

Constraints are first-class members of Kaplan, and can be cre-
ated and manipulated as such. The following function, for instance,
generates constraints describing an integer within bounds; if the
second argument is true, the bounds are given by [−m;m], else by
[0;m].

def bounded(m: Int, neg: Boolean = true) = {
val basis: Constraint1[Int] = ((x: Int) ⇒ x ≤ m)
basis && (if(neg)

((x: Int) ⇒ x ≥ −m)
else

((x: Int) ⇒ x ≥ 0))
}

In this example, && is a call to a method defined as part of
constraint classes, and which expects as argument a constraint
of the same arity and with the same types of parameters as the
receiver. This ensures that constraints can only be combined when
the number and the types of their De Bruijn indices are compatible.
Note that, thanks to type inference, we need not explicitly state that
the two anonymous functions represent constraints. We can now
use the function bounded to produce constraints:

scala> bounded(3, true).findAll.toList
result: List(0, −1, −2, −3, 1, 2, 3)
scala> bounded(3, false).findAll.toList
result: List(0, 1, 2, 3)

Another convenient constraint combinator is the product method,
which combines two constraints into a new one whose solution set
is the Cartesian product of the original two:

scala> (bounded(1, true) product bounded(1,false)).findAll.toList
result: List((−1,0),(0,0),(1,1),(−1,1),(1,0),(0,1))

Constructing constraints using combinators is a very concise
way to solve general problems. For instance, consider the problem
of solving a CNF SAT instance defined in a way similar to the
standard DIMACS format, where the input

val p1 = Seq(Seq(1,−2,−3), Seq(2,3,4), Seq(−1,−4))

represents the problem

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x4)
The following function defines a solver for such problems:

def satSolve(problem : Seq[Seq[Int]]) : Option[Map[Int,Boolean]] =
problem.map(l ⇒ l.map(i ⇒ {

val id = scala.math.abs(i)
val isPos = i > 0
((m : Map[Int,Boolean]) ⇒ m(id) == isPos).c
}).reduceLeft( || )).reduceLeft( && ).find
}

Note that in this case we used the find method on the final constraint
rather than solve. They provide the same functionality, but find

returns its result in an Option[ ] type, where None corresponds
to an unsolvable constraint, while solve throws an exception if the
constraint has no solution. Another observation is that we use here a
constraint over a single variable of Map type to encode a constraint
over an unknown number of boolean variables. We found this to
be a convenient pattern when the more rigid syntax of anonymous
functions with explicit variable naming does not apply. Because all
variables are of the same type, the approach works in our type-safe
framework. We can now solve SAT problems:

scala> satSolve(p1)
result: Some(Map(2 → true, 3 → false, 1 → false, 4 → false)))
scala> satSolve(Seq(Seq(1,2), Seq(−1), Seq(−2)))
result: None

2.2 Ordering Solutions
As illustrated by some of the previous examples, the findAll method
generates solutions in no particular order. This corresponds to the
intuition that it enumerates the unordered set of solutions to a
constraint. Similarly, the semantics of calls to solve or find are
simply that if a value is produced, then it is an element of that
solution set. Two invocations of solve on the same constraint may
or may not result in the same solution.

It is sometimes desirable, though, to enumerate solutions in a
defined order. To this end, Kaplan constraints support two methods;
minimizing and maximizing. These methods take as argument an
objective function. Just like constraints, objective functions are rep-
resented using an anonymous function, in this case one that returns
an integer. The minimizing and maximizing methods ensure that
the De Bruijn indices’ types match those of the constraint. From
the user’s point of view, these functions are typed as IntTerms.1

Consider the knapsack problem: given a maximum weight and a
set of items, each with an associated value and weight, find a subset
of the items for which the sum of values is maximal while the sum
of weights is less or equal to the maximum. The following code
produces and solves an instance of the problem, where the solution
is represented as a map from the item indices to booleans indicating
which should be picked.

def solveKnapsack(vals : List[Int], weights : List[Int], max : Int) = {
def conditionalSumTerm(vs : List[Int]) = {

vs.zipWithIndex.map(pair ⇒ {
val (v,i) = pair
((m : Map[Int,Boolean]) ⇒ (if(m(i)) v else 0)).i
}).reduceLeft( + )
}
val valueTerm = conditionalSumTerm(vals)
val weightTerm = conditionalSumTerm(weights)
val answer = ((x : Int) ⇒ x ≤ max).compose0(weightTerm)

.maximizing(valueTerm)

.solve
}

We briefly explain the code. A solution to a knapsack instance
is a map indicating a choice of which objects should be picked.
The conditionalSumTerm function builds, from a list of integers,
an integer term parameterized by a choice map and representing
a sum of values. The map defines whether each element in the
list participates or not to the sum. We use this function twice, to
produce the two terms that, given a choice of items, encode the total
value and the weight respectively. Observe that we build the final
constraint using a function composition: we start the construction
of the constraint as (x : Int) ⇒ x ≤ max and compose it with the
weight term to produce the constraint that the weight should not
exceed the maximum. Function composition is a general and type-
safe way to build constraints from smaller terms, as demonstrated

1 The relationship from an implementation point of view between con-
straints and terms is explained in more details in Section 5.



in this example. We can now find optimal choices for instances of
the knapsack problem:

scala> val vals : List[Int] = List(4, 2, 2, 1, 10)
scala> val weights : List[Int] = List(12, 1, 2, 1, 4)
scala> val max : Int = 15
scala> solveKnapsack(vals, weights, max)
result: Map(0 → false, 1 → true, 2 → true, 3 → true, 4 → true)

2.3 User-defined Functions and Datatypes
An important feature of Kaplan is the ability to perform constraint
solving in the presence of user-defined functions and data types.
Consider the following functions which compute, for a 2×2 matrix
[ a b
c d ] represented as a tuple(a, b, c, d), its determinant and whether

it is unimodular, respectively:

@spec def det(a: Int, b: Int, c: Int, d: Int): Int = a∗d − b∗c
@spec def unimodular(a: Int, b: Int, c: Int, d: Int): Boolean = {

val dt = det(a, b, c, d)
dt == 1 || dt == −1
}

The @spec annotation indicates that the user wishes to use the func-
tions as part of constraints, and the Kaplan compiler enforces that
such functions are written in the subset of Scala supported within
constraints (see Section 3). We can now characterize unimodular
matrices with small elements as

def boundedUnimodular(m: Int) = {
val b = bounded(m, false)
(b product b product b product b) && (unimodular )
}

(The underscore after unimodular indicates to the Scala compiler
that it should apply an η-conversion to produce an anonymous
function, and ultimately a constraint, from the definition.) We can
use these new definitions to generate unimodular matrices:

scala> boundedUnimodular(2).findAll.take(4).toList
result: List((0,1,1,0), (0,1,1,2), (0,1,1,1), (1,1,2,1))

Perhaps more interestingly, the @spec functions can be mutu-
ally recursive. As an example, consider the following declarative
definition of prime numbers:

@spec def noneDivides(from : Int, j : Int) : Boolean = {
from == j || (j % from != 0 && noneDivides(from+1, j))
}
@spec def isPrime(i : Int) : Boolean = (i ≥ 2 && noneDivides(2, i))
val primes = ((isPrime( :Int)) minimizing ((x:Int) ⇒ x)).findAll

which we can subsequently enumerate:

scala> primes.take(10).toList
result: List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

Kaplan users can also define their own recursive data types (also
known as algebraic data types). The following code declares two
such types for red-black trees:

@spec sealed abstract class Color
@spec case class Black() extends Color
@spec case class Red() extends Color
@spec sealed abstract class Tree
@spec case class Node(c : Color, l : Tree, v : Int, r : Tree) extends Tree
@spec case class Leaf() extends Tree

Algebraic data types are best manipulated using recursive functions
and pattern-matching. Kaplan supports such function definitions:

@spec def size(tree : Tree) : Int = (tree match {
case Leaf() ⇒ 0
case Node( , l, , r) ⇒ 1 + size(l) + size(r)
}) ensuring(result ⇒ result ≥ 0)

This function also illustrates the use of post-conditions, written in
Scala as anonymous functions in an ensuring clause [49]. In this
case, the post-condition states that the result of size can never be
negative. Such annotations can help the constraint solver discard
parts of the search space. Kaplan uses the Leon verification system
[60] to prove, at compile time, that the annotations are valid, so that
it can then rely on them at run-time for constraint solving. We can
similarly define recursive functions that compute whether a red-
black tree contains sorted keys or has the right coloring properties.
In the interest of space, we omit the complete definitions.

@spec def orderedKeys(t : Tree) : Boolean = . . .
@spec def validColoring(t : Tree) : Boolean = . . .
@spec def validTree(t : Tree) = orderedKeys(t) && validColoring(t)
@spec def valsWithin(t : Tree, min : Int, max : Int) : Boolean = . . .

We expect that what these functions compute is clear from their
name. With them, we can for instance count the number of red-
black trees with a given number of elements:

scala> (for(i ← (0 to 7)) yield ((t : Tree) ⇒ validTree(t) &&
valsWithin(t, 0, i) && size(t) == i ).findAll.size).toList

result: List(1, 1, 2, 2, 4, 8, 16, 33)

More advanced applications of data structure enumeration are pre-
sented in Section 6, including testcase generation for sorted list and
tree manipulations.

2.4 Timeouts
The language of constraints supported in Kaplan is very expressive.
For that reason, one cannot expect that any constraint will be
solvable. As an example, given the definition (valid in Kaplan)

@spec def pow(x : Int, y : Int) : Int =
if(y == 0) 1 else x ∗ pow(x, y − 1)

it would be unreasonable to expect the system to find a solution to
the constraint

val fermat = ((x : Int, y : Int, z : Int, b : Int) ⇒ b > 2 &&
pow(x,b) + pow(y,b) == pow(z,b)).c

The search algorithm at the core of Kaplan is a semi-decision
procedure: if a solution exists, then that solution will be found
eventually. If there are no solutions, the procedure can discover this
fact and stop [59, 60], or loop forever. The solve, find and findAll
methods all take a parameter describing the timeout strategy. That
parameter is optional, so by default no timeout is used. Because it is
also implicit, a timeout strategy can be defined for an entire scope
by a single definition that the Scala compiler then automatically
inserts at each call site:

implicit val timeoutStrategy = Timeout(1.0)

Given the above declarations, the following attempt to confirm
Fermat’s last theorem results in an exception after 1 second:

scala> fermat.find
result: TimeoutReachedException: No solution after 1.0 second(s)

at .solve(<console>)
at .<init>(<console>)
. . .

2.5 Logical Variables
All the examples so far have illustrated eager solution enumeration,
where solving constraints immediately produces concrete values.
While this by itself is a convenient facility, much of the power
of constraint programming in general and of Kaplan in our case
comes from the ability to produce logical variables, which represent
the promise of a solution. Logical variables in turn can be used
to control the execution flow of the program in novel ways. We



start by describing some of their basic properties. More advanced
examples of programming with logical variables follow.

In Kaplan, logical variables are always produced as the result
of lazily solving a constraint. This is done by calling lazySolve,
lazyFind or lazyFindAll instead of solve, find or findAll respec-
tively. Consider the constraint we defined earlier:

val c1 =
((x: Int, y: Int) ⇒ 2∗x + 3∗y == 10 && x ≥ 0 && y ≥ 0).c

We produce logical variables representing a solution as follows:

scala> val (x,y) = c1.lazySolve; println((x,y))
result: (L(?),L(?))

Notice that the result is not a pair of integers, as in the case of
solve, but a pair of objects of type L[Int] representing the promise
of integers. The question mark indicates that the value has not yet
been fixed.

Logical variables in Kaplan have singular semantics [54],
meaning that a given logical variable will always represent the
same concrete value, even when it is copied or passed as an argu-
ment to a function. The identity of a logical variable is determined
by the identity of the instance of the L[ ] class. The value of a logi-
cal variable is fixed as soon as it is queried, which can be done with
the .value method:

scala> x.value
result: 5
scala> println((x,y))
result: (L(5),L(?))

(Note that even though the y can at this point only hold the value
0, the solver has not necessarily detected that the solution is unique
and thus still considers the value not to be fixed.) Fixing a value
needs not always be done explicitly. The Kaplan library defines
two implicit conversions between concrete and logical values:

implicit def concretize[T](l : L[T]) : T = l.value
implicit def lift[T](v : T) : L[T] = new FixedL[T](v)

The first one simply fixes the value whenever a function expects a
concrete value and receives a logical variable. The second one con-
verts a concrete value into a specialized representation of a logical
variable. It is used to provide a common representation for concrete
and logical values: because Kaplan is built as a thin layer over Scala
and most code must execute as usual, we cannot afford to treat ev-
ery value as logical. Instead, users decide which function can han-
dle logical values by using L[ ] types in their signature. Because
concrete values can be lifted to logical status, such functions work
indifferently with standard and logical variables. Logical variables
created through this lifting mechanism are treated specially and do
not add any complexity to the solving process.

2.6 Imperative Constraint Programming
Scala being a multi-paradigm language, users can alternate be-
tween different programming styles depending on their preferences
and on the task at hand. The same is true for Kaplan; while ea-
ger solution enumeration is best used within functional style for-
comprehensions, logical variables can be used rather naturally in
an imperative style, thanks to novel control constructs. The Kaplan
library defines the assuming-otherwise branching construct. It is
similar in nature to if-then-else, except for an important difference:
rather than strictly evaluating the branching condition, assuming-
otherwise blocks check whether the condition is feasible and, if so,
constrain the logical variables in the environment so that their val-
ues satisfy the branching constraint. If the condition contains no
logical variable (or only logical variables that have already been
fixed), then assuming-otherwise behaves exactly like if-then-else.

As an example, consider the classical puzzle that consists in
finding distinct values for the letters representing digits in the
following addition such that the sum is valid:

s e n d
+ m o r e
= m o n e y

We now present a solution in Kaplan written in an imperative style.

val anyInt = ((x : Int) ⇒ true).c
val letters @ Seq(s,e,n,d,m,o,r,y) = Seq.fill(8)(anyInt.lazySolve)

This second line uses pattern-matching syntax to achieve two things
at once: 1) the eight letter variables are bound to eight independent
(lazy) representations of a solution to the trivial anyInt constraint
and 2) the variable letters is bound to the sequence of all letter
variables. At this point, we have 8 unconstrained integer logical
variables. We can imperatively add constraints:

for(l ← letters) asserting(l ≥ 0 && l ≤ 9)

If this loop terminates without any error, then at the end of it, the
8 variables each represent a number between 0 and 9. (Calling as-
serting(cond) is equivalent to assuming(cond) {} otherwise {
error }, just like assert(cond) is (conceptually at least) equiv-
alent to if(cond) {} else { error }. More details are given in
Section 5.1.) We further constrain the letters representing most-
significant digits:

asserting(s > 0 && m > 0)

We can now perform symbolic arithmetic using the existing and
new logical variables. We define a new variable for the sum of each
line and constrain it to the expected value:

val fstLine = anyInt.lazySolve
asserting(fstLine == 1000∗s + 100∗e + 10∗n + d)
val sndLine = anyInt.lazySolve
asserting(sndLine == 1000∗m + 100∗o + 10∗r + e)
val total = anyInt.lazySolve
asserting(total == 10000∗m + 1000∗o + 100∗n + 10∗e + y)

At this point, the value of the letters is still not fixed, however
Kaplan ensures that all variables admit solutions satisfying the
asserted constraints. Finally, we check for a solution to the puzzle
using one last assuming-otherwise block:

scala> assuming(
distinct(s,e,n,d,m,o,r,y) && fstLine + sndLine == total) {

println(”Solution: ” + letters.map( .value))
} otherwise {

println(”The puzzle has no solution.”)
}

result: Solution: List(9, 5, 6, 7, 1, 0, 8, 2)

We mentioned that assuming-otherwise is conceptually close to if-
then-else, and in fact equivalent in the absence of logical variables.
One important difference is that the construct is asymmetrical;
while

if(cond) thenExpr else elseExpr

is equivalent to

if(!cond) elseExpr else thenExpr

the same transformation cannot be applied to assuming-otherwise
blocks; indeed, the semantics are that the control will attempt to
satisfy the branching condition, so whether the positive or negative
condition is tested has an impact on the rest of the execution.
Section 5.1 discusses the implementation of assuming-otherwise
blocks in terms of lazyFind.



Int ∈ T Boolean ∈ T
T ∈ T

Set[T ] ∈ T

T1 ∈ T T2 ∈ T
Map[T1,T2] ∈ T

T1 ∈ T T2 ∈ T
T1 ⇒ T2 ∈ T

sealed abstract class C

C ∈ T

case class C(n : D) extends E D ∈ T E ∈ T
C ∈ T

Figure 1. Inductive definition of PureScala types, where
Set and Map are the types defined in the package
scala.collection.immutable.

3. Constraint Sublanguage
In this section, we describe the subset of Scala in which we
can specify constraints in Kaplan, and which we call PureScala.
PureScala is an extension of the language supported by the pub-
licly available Leon verification system [60]. Since it is a subset of
Scala, the language is executable and deterministic.

3.1 Language

Data types. Figure 1 presents an inductive definition of the data
types supported in PureScala. An important feature is the ability
to define (recursive) algebraic data types. In Scala, these types are
defined using a hierarchy of special case classes. Algebraic data
types are typically manipulated with pattern-matching, as shown
in some of the examples in Section 2. A current limitation is that
these user-defined types cannot take type parameters. The Map
type represents finite, immutable maps, which can thus be viewed
as partial functions. Because it supports unbounded data types
and arbitrary recursive functions, the constraint language is itself
Turing-complete. This can be viewed both as an advantage and
an inconvenience: on one hand, this expressive power guarantees
that just about any constraint is expressible, but on the other hand,
standard incompleteness theorems predict that some constraints
cannot be shown to have no solutions. In practice, we have found
that constraints that come up in programming tasks such as the ones
presented in this paper and in the context of functional software
verification [60] (as opposed to theoretically hard ones) are handled
well.

Expressions and function definitions. PureScala expressions can
contain all standard arithmetic operators, map applications and up-
dates, set operators and membership tests, function applications (of
user-defined or anonymous functions), and constructor and selec-
tors from user-defined data types. Expression can also contain vals
to factor out common subexpressions. Indeed, a Scala block

{ val x1 = e2
. . .
val xn = en
e }

is to be understood as let x1 = e2 in . . . in let xn = en in
e. Expressions can contain pattern-matching on user-defined data
types. Any sub-pattern can be bound to a variable and used accord-
ingly on the right-hand side of patterns. Furthermore, patterns can
contain arbitrary guards. At compile-time, Kaplan relies on Leon
to prove that pattern-matching expressions are exhaustive, and thus
rules out any possibility of a run-time match error in @spec func-
tions. This exhaustiveness check goes beyond the capabilities of

the standard Scala compiler, in that it takes into account the path
conditions leading to the match expression.

A PureScala function body is defined by a single expression
whose free variables are the arguments of the function. Func-
tions can optionally be annotated with a post-condition, which
can in some cases help the run-time constraint solver. These
post-conditions are proved at compile-time, just like the pattern-
matching expressions. Kaplan can thus be used purely as a verifi-
cation system, and therefore strictly subsumes Leon.

3.2 Solver
Kaplan invokes Leon’s core solving procedure both at compile-
time, to validate post-conditions and prove that pattern-matching
expressions are exhaustive, and at run-time, to find solutions to con-
straints. The procedure is based on a refinement loop that expands
function definitions in a fair way, to guarantee that no valid solution
is ever ignored. One can think of this search procedure as a form of
bounded model-checking for functional programs. We have found
that in practice it is fast in finding counter-examples. The details of
the procedure are presented in [60].

Conceptually, Leon is the only solver used in the implementa-
tion of Kaplan. Because it is built as a layer on top of Z3, though,
we will sometimes refer to Z3 directly when we discuss implemen-
tation details in Section 5. In particular, in the absence of user-
defined recursive functions, Leon behaves exactly as Z3.

4. Semantics
In this section, we present an overview of the semantic aspects of
Kaplan through operational semantic rules, shown in Figure 2. All
features of Kaplan can be implemented in terms of the two con-
structs find and lazyFind, as well as conversions between concrete
values and logical variables (denoted by l). Section 5 describes how
to use the host language (Scala) to reduce other constructs (includ-
ing solve, findAll, lazyFindAll) to this core.

A state consists of a triple expr|〈µ, κ〉, where expr is the ex-
pression under evaluation, µ encodes the part of the state that is
proper to Scala, and κ is a constraint store. A constraint store is
conceptually a formula whose free variables correspond to all log-
ical variables used since the beginning of the computation.

The HOST rule captures the intuition that in the absence of invo-
cations to the constraint solver, Kaplan behaves exactly like Scala:
we assume the existence of a transition relation →H describing
the execution of normal Scala code, and which is lifted to Kaplan
through the HOST rule. As one would expect, applying such transi-
tions leaves the constraint store unchanged.

The rules S-SAT and S-UNSAT describe the possible results of
an invocation of find, the simplest form of constraint solving. We
use (λx.φ(x)) to denote a constraint that ranges over the variables
x and that does not refer to logical variables. ByM we denote a
map from variables to constants. The condition M |= φ denotes
that M is a valid model of φ, i.e., a mapping of variables x of φ
to constants such that φ[x 7→ M(x)] holds. Examining the rules
for find, S-SAT and S-UNSAT, we note that find has no impact and
no dependency on the constraint store, which is consistent with its
eager semantics.

The rules L-SAT and L-UNSAT for lazyFind are analogous, but
with crucial differences: 1) logical variables can be present in the
constraints to solve, which we therefore denote (λx.φ(x, l)), and
2) the L-SAT rule does not produce concrete values, but rather fresh
logical variables.

The LIFT rule applies whenever a constant value needs to be
used in place of a logical variable. Conceptually, it adds to the
constraint store a new logical variable whose value is immediately
constrained to be the constant. Finally, the VALUE rule specifies
how concrete values can be extracted from a satisfying assignment



HOST
t1 | µ1 →H t2 | µ2

t1 | 〈µ1, κ〉 → t2 | 〈µ2, κ〉

S-SAT
M |= φ

(λx.φ(x)).find | 〈µ, κ〉 → Some(M(x)) | 〈µ, κ〉 S-UNSAT
¬∃M .M |= φ

(λx.φ(x)).find | 〈µ, κ〉 → None | 〈µ, κ〉

L-SAT
M |= κ ∧ φ[x 7→ lf ] lf fresh in κ

(λx.φ(x, l)).lazyFind | 〈µ, κ〉 → Some(lf ) | 〈µ, κ ∧ φ[x 7→ lf ]〉

L-UNSAT
¬∃M .M |= κ ∧ φ[x 7→ lf ] lf fresh in κ

(λx.φ(x, l)).lazyFind | 〈µ, κ〉 → None | 〈µ, κ〉

VALUE
M |= κ

l.value | 〈µ, κ〉 → M(l) | 〈µ, κ ∧ (l =M(l))〉 LIFT
c is a constant lf fresh in κ

c.lift | 〈µ, κ〉 → lf | 〈µ, κ ∧ (lf = c)〉

Figure 2. Small-step semantics of Kaplan-specific constructs.

(model) for the constraint store. Observe that when the rule ap-
plies, the value of the logical variable is then fixed for the rest of
the program execution by the added equality to κ. This ensures sin-
gular semantics [54]: in any execution trace, all applications of the
VALUE rule for a given logical variable l will produce the same
value; a different value would contradict the premise that M is a
valid model for the store.

We now show that execution never gets stuck in one of the
Kaplan-specific rules. Because we are examining the behavior of
our constructs taking a constraint solver as a parameter, we delib-
erately ignore termination properties of the constraint solver and
assume that the outcome of the constraint solver call, denoted |=,
becomes immediately available to test the applicability of a rule.

Theorem. Suppose the constraint store is satisfiable in the initial
state and that the→H relation is total. Then the transition relation
given by Figure 2 is also total.
Proof. The case of HOST is clear from the hypothesis that →H

is total. For evaluations of find, we observe that the rules S-SAT
and S-UNSAT have complementary premises, and therefore one
of them necessarily applies. Similarly for lazyFind, L-SAT and
L-UNSAT are complementary, regardless of the value of κ. LIFT
has no precondition, so it remains to show that VALUE cannot get
stuck, i.e. that it cannot be the case that there is no modelM for
the constraint store κ.

Using the assumption that in the initial state the constraint
store is satisfiable, it is sufficient to show that no transition will
make it unsatisfiable. Observe that only three rules affect the con-
straint store; VALUE, LIFT, and L-SAT. The addition of the equality
(lf = c) in LIFT clearly does not affect satisfiability, because lf is
fresh. Similarly, the addition of (l = M(l)) in VALUE preserves
the modelM by definition. Finally, L-SAT is guarded by a satisfi-
ability check on precisely the next state of the store, so the model
obtained in the premise is a valid model for the next state. �

The proof suggests an implementation strategy: preserve at all
times, alongside the constraint store, a satisfying assignment. When
L-SAT is applied, cache the modelM obtained from the satisfia-
bility check. When LIFT applies, augment the cached model with
the appropriate value for lf . Finally, to apply VALUE, useM from
the cache.

It is not hard to see that this strategy is a valid refinement of the
presented rules, and it is, in fact, the strategy we have implemented
in Kaplan, as explained in the next section.

5. Implementation
We implemented our extension to Scala as a combination of a run-
time library and a compiler plugin, both implemented in Scala. In
this section, we present the implementation aspect of these parts,
along with the interaction with the underlying SMT solver Z3.

5.1 Run-Time Library

First-class constraints. In Kaplan, first-class constraints are imple-
mented as a hierarchy of Term classes, as shown in Figure 3. The
base Term class represents a lambda expression and is parameter-
ized by its argument types and return type. A constraint is simply a
Term instance where the return type is instantiated as boolean. We
define subclasses of Term for each arity, generating them automat-
ically, as it is the case for the tuple and function definitions in the
Scala library. The base class defines methods common to terms of
all arities, such as the solve, find and findAll methods for query-
ing constraints. We ensure that these methods are only applicable
when the return type is boolean by constraining it using an implicit
parameter asBool. We use the same technique to guarantee that
term instances are combined in a fully type safe way. We use the c
method to trigger an implicit conversion from lambda expressions
to Term instances.

Each term subclass extends the corresponding function class in
Scala, and uses the original Scala code for the lambda expression
to define function application. These classes define optimization
methods (minimizing and maximizing) to obtain optimization con-
straints. The implementation of the optimization procedures is dis-
cussed later in this section.

The creation of terms from Scala lambda expressions relies
on compile-time transformations. The transformations are imple-
mented in a plugin for the official Scala compiler. We describe how
the compile-time transformations work in Section 5.2.

Logical variables. In Kaplan, logical variables are instances of
the L class, which is parameterized by the type of the symbolic
value that it encapsulates. We define LIterator classes that extend
the Iterator trait of Scala and that enumerate tuples of L values. We
discuss the implementation of logical variables in Section 5.3.

The assuming-otherwise construct. We can define the assuming-
otherwise construct naturally at the library level in Kaplan: it boils
down to checking the satisfiability of a constraint of arity 0, and can
therefore be implemented in terms of lazyFind. Figure 4 shows the
code for this construct in Kaplan. The assuming block creates an
Assuming instance. We rely on the implicit conversion mechanism



abstract class Term[T,R] { self ⇒
def find(implicit isBool: R =:= Boolean): Option[T] = ...
def solve(implicit isBool: R =:= Boolean): T =

this.find.getOrElse(throw new UnsatException)
def findAll(implicit isBool: R =:= Boolean) : Iterator[T] = ...
def c(implicit isBool: R =:= Boolean): self.type = this
...
}

class Term0[R] extends Term[Unit,R] with Function0[R] {
...
}
class Term1[T1,R] extends Term[T1,R] with Function1[T1,R] {

...
}
class Term2[T1,T2,R] extends Term[(T1,T2),R]

with Function2[T1,T2,R] {
def ||(other: Term2[T1,T2,Boolean])

(implicit isBool: R =:= Boolean): Term2[T1,T2,Boolean] = ...
def &&(other: Term2[T1,T2,Boolean])

(implicit isBool: R =:= Boolean): Term2[T1,T2,Boolean] = ...
def unary !(implicit isBool: R =:= Boolean):

Term2[T1,T2,Boolean] = ...

def compose0[A1](other: Term1[A1,T1]): Term2[A1,T2,R] = ...
def compose1[A1](other: Term1[A1,T2]): Term2[T1,A1,R] = ...
def compose0[A1,A2](other: Term2[A1,A2,T1]):

Term3[A1,A2,T2,R] = ...
def compose1[A1,A2](other: Term2[A1,A2,T2]):

Term3[T1,A1,A2,R] = ...
...
def product1[A1](other: Term1[A1,Boolean])

(implicit isBool: R =:= Boolean):
Term3[T1,T2,A1,Boolean] = ...

def product2[A1,A2](other: Term2[A1,A2,Boolean])
(implicit isBool: R =:= Boolean):

Term4[T1,T2,A1,A2,Boolean] = ...

def minimizing(objective: Term2[T1,T2,Int])
(implicit asBool : R =:= Boolean):

MinConstraint2[T1,T2] = ...
...
}
...
type Constraint[T] = Term[T,Boolean]
type Constraint0 = Term0[Boolean]
type Constraint1[T1] = Term1[T1,Boolean]
...

Figure 3. Term class hierarchy.

of Scala for implementing the construct: if the optional otherwise
block is not defined, the type checking phase will insert a call to as-
suming2value, which will trigger a conversion from the Assuming
instance to the value it encapsulates.

There exists a difference in the treatment of the optional second
part of the built-in if-then-else construct and our library extension
for assuming-otherwise: without an optional else block, an if(...) {
... } block is always type-checked as Unit. This is built in in the
Scala compiler. We cannot achieve the same effect with assuming-
otherwise without making deep changes to the compiler, so in our
case, an assuming(...) { ... } block will throw an exception at run-
time if the following three conditions occur: 1) the assuming test
fails, 2) no otherwise block is defined, and 3) an expression of a
type different from Unit is required.

5.2 Scala Compiler Plugin
The compile-time transformations of Kaplan programs include the
following:

def assuming[A](cond: Constraint0)(block: ⇒ A): Assuming[A] = {
val v: Option[A] = cond.lazyFind match {

case Some( ) ⇒ Some(block)
case None ⇒ None
}
new Assuming(v)
}

final class Assuming[A](val thenResult: Option[A]) {
def otherwise(elseBlock: ⇒ A): A = thenResult match {

case None ⇒ elseBlock
case Some(tr) ⇒ tr
}
}

implicit def assuming2value[A](a: Assuming[A]): A = {
a.thenResult match {

case Some(tr) ⇒ tr
case None ⇒

throw new Exception(”otherwise block not defined”)
}
}

Figure 4. Implementation of assuming-otherwise in terms of
lazyFind.

1. extracting user-defined specification functions and algebraic
data types;

2. generating methods to allow conversion between values of these
data types and their representation in our solver Leon;

3. transforming implicit calls to conversion methods in order to
instantiate Term instances.

These transformations are implemented as a compiler plugin
that constitutes a compiler phase that follows the type checking
phase. Functions and classes that carry the @spec annotation are
expected to be in the PureScala constraint sublanguage, presented
in Section 3. Alternatively, developers can group these specifica-
tion functions and data types in annotated Scala objects, instead of
annotating each of them. These specifications are extracted during
compilation to obtain a representation that we use in solving. In ad-
dition, method definitions are generated and inserted into the code
in order to convert between these types and their representation.

We rely on the Scala compiler to signal to us the locations where
a function literal needs to be lifted to a constraint literal. The type
checking phase, which runs before ours, does so by surrounding
such function literals by a call to an implicit function2term con-
version function. These functions are defined in the Kaplan library
but have no implementation: they simply serve as a guide to in-
dicate to the type checker that the conversion is legal. (The effect
of compiling code written for Kaplan without the Kaplan plugin is
thus that all constraint manipulation operations result in a run-time
NotImplemented exception.)

5.3 Implementation of the Core Solving Algorithms
Our implementation leverages the SMT solver Z3 through its ex-
tension, Leon [60]. In the following we refer simply to Z3, as the
algorithms we cover in this section would remain the same if we
used Z3 alone; what we gain by using Leon is the additional ex-
pressive power of recursive functions within constraints. We now
describe the interactions with the solver that allow us to put into
practice features such as enumeration, minimization, and logical
variables.

Solution enumeration. find and lazyFind are used to implement
findAll and lazyFindAll, respectively, through the use of an iterator.



def solveMinimizing(φ, tm) {
solve(φ) match {

case (”SAT”, m) ⇒
model = m
v = modelValue(m, tm)
pivot = v − 1
lo = null
hi = v + 1
while (lo == null ∨ hi− lo > 2) {

solve(φ ∧ tm ≤ pivot) match {
case (”SAT”, m) ⇒
model = m
if (lo == null) {
pivot = pivot ≥ 0 ? −1 : pivot× 2
hi = pivot + 1
} else {
lv = modelValue(m, tm)
pivot = lv + (pivot+ 1− lv)/2
hi = pivot+ 1
}

case (”UNSAT”, ) ⇒
pivot = pivot+ (hi− pivot)/2
lo = pivot

}
}
return (”SAT”, model)

case (”UNSAT”, ) ⇒ return (”UNSAT”, null)
}
}

Figure 5. Pseudo-code of the solving algorithm with minimiza-
tion. We invoke our base satisfiability procedure via calls to solve.

The iterator maintains a constraint at all times, starting with the
original one. Each time a new solution is required, the iterator
destructively updates the constraint by adding to it the negation
of the previous solution, thus ensuring that all following solutions
will be different. To make this process efficient, Kaplan relies on
the incremental reasoning capabilities of Z3 (and thus Leon) to
avoid solving the entire constraint each time. The implementation
of lazyFindAll is conceptually identical, with the difference that it
returns logical variables instead of concrete values. These logical
variables are constrained in the store to be all-different. For an
enumeration using lazyFindAll to terminate, Leon must therefore
prove that the constraint has finitely many solutions.

Optimization constraints. Our procedure for optimizing a con-
straint with respect to an objective function can be seen as a gen-
eralization of binary search over the range of values that the objec-
tive can take. Let us consider the case of minimization (the max-
imization procedure is analogous). The pseudo-code for the algo-
rithm can be seen in Figure 5.2 It starts by attempting to find a
satisfying assignment for the constraint. It then repeatedly looks
for a model in which the objective is smaller than the last satisfy-
ing value, by exponentially increasing the difference until a lower
bound is found. It further reduces the interval until the optimal
value for the objective is found. The procedure maintains the in-
variants that: 1) lo is always less than any satisfying assignment to
tm; and 2) there always exists a satisfying assignment to tm which
is less than hi.

Ordered enumeration. Having defined the solving procedure
that minimizes a given term, we can now compose it with solution
enumeration to obtain ordered enumeration. We present in Figure 6,

2 We use pseudo-code for clarity, but it is not hard to see that it can be
implemented using only standard Scala along with find or lazyFind.

def orderedEnum(φ, tm) {
solveMinimizing(φ) match {

case (”SAT”, m) ⇒
vm = modelValue(m, tm)
findAll(φ ∧ tm = vm) ++ orderedEnum(φ ∧ tm > vm, tm)

case (”UNSAT”, ) ⇒ return Iterator.empty
}
}

Figure 6. Pseudo-code of the ordered enumeration algorithm.

a recursive algorithm that will enumerate solutions to φ, ordered by
the value of tm, which should be minimized.

In this pseudo-code, we use findAll to get an iterator of all val-
ues satisfying the given predicate, and ++ to concatenate iterators.

Handling logical variables. We use a global context to keep
track of the constraints associated with logical variables. Given a
logical variable l and the constraint cl associated with it, we create
a guard (a boolean literal) gl, denoting the liveness of the logical
variable, i.e. whether its value has not been fixed yet. Throughout
the execution, we maintain in the global context the set of guards
that are still alive. Upon creation of the variable l, we add gl to the
set of alive variables and we assert cl, guarded by the disjunction of
all the guards in the set G, defined as the set containing gl and the
guards associated with all the logical variables that appear in cl:∨

g∈G

g ⇒ cl

The reason for considering the guards associated with the other
logical variables is to ensure the single value semantics of these.
Consider the following simple example that illustrates the situation:

for (x ← ((x: Int) ⇒ x ≥ 0 && x < 4).lazyFindAll) {
val y = ((y : Int) ⇒ y == x).lazyFind
assuming (x ≥ 2) {

... // first block
}
assuming (y < 2) {

... // second block
}
}

In each iteration of the outer for-comprehension, if the first
block is entered, we do not want to enter the second one, as this
would violate the single value semantics for the variable x. Since
the constraint y == x will be enforced as long as either x or y has
not been fixed, the conflicting situation is correctly avoided.

In the terminology of Section 4, gl denotes whether the VALUE
rule has been used for l (true means it has not), cl is the constraint
on which L-SAT was applied to introduce l into κ (as part of lf ) and
the logical variables represented by the set of guards G are those
that contributed to the constraint (the l variables in L-SAT). Note
that using individual guards for logical variables is not required by
the semantics, but rather is an optimization that allows us to reduce
the size of the constraint store when some values become known.
When the value vl of the variable l is set, we remove gl from the
set of alive guards, and we assert the following:

¬gl ∧ l = vl

When all of the literals guarding a constraint cl are removed
from the alive set, the formula

∨
g∈G g ⇒ cl that was asserted

becomes trivially true, and the constraint can be discarded by Z3.
Another source of optimization is that we override the finalize
method of the L instances such that, even if their value is never
fixed, their guard is removed from the set of alive variables when
they are being considered for garbage collection by the JVM. This



example time (s)
first examples 0.16
unimodular matrices 0.76
sat solving 0.05
knapsack 0.18
prime numbers 0.80
all red-black trees up to 7 nodes 27.45
send+more=money 1.17

Figure 7. Evaluation results for the examples presented in Sec-
tion 2.

is again not strictly speaking required by the semantics, but helps
reducing the overhead of tracking all logical variables.

Invocations of the solver. We summarize this section by presenting
a list of all the places where an invocation of the solver occurs:

• calls to find, as they search for a solution eagerly,
• calls to lazyFind, as they check whether a satisfying assignment

exists for logical variables,
• calls to the hasNext method of the iterators returned by calls to

findAll and lazyFindAll, which are then translated into calls to
find and lazyFind respectively, and
• evaluation of the constraint of assuming blocks, as they indi-

rectly invoke the solver by invoking lazyFind on the constraint.

Note that, as the proof in Section 4 suggested, calls to the value
method of logical variables do not trigger a solver invocation.

6. Advanced Usage Scenarios and Evaluation
In this section, we present an experimental evaluation of our con-
straint programming system by considering a number of examples.

As a first overview of the performance of our implementation,
we present the running times for the examples that were introduced
in Section 2. The results of our evaluation can be seen in Figure 7.
We observe that most problems are solved almost instantly, with
the exception of the red-black tree enumeration. We discuss the
difficulty of enumerating data structures satisfying an invariant in
the subsequent examples.

6.1 Enumerating Data Structures for Testing
One use of the findAll construct consists in enumerating data
structures that satisfy given invariants. This is a problem that has
been studied previously, and was motivated by [11]. Subsequent
work [24] presents a Java-based language with non-deterministic
choice operators that can be used for enumerating linked data struc-
tures.

We describe our experience in using Kaplan to enumerate func-
tional data structures to find input values that violate function con-
tracts. We consider a functional specification of red-black trees. We
enumerate solutions to function preconditions and check whether
the postconditions hold. As in [11, 24], we enumerate the data
structures while bounding the range of values than can be stored
in nodes. A red-black tree is a binary search tree characterized by
the following additional properties: 1) each node is either red or
black; 2) all leaves are black; 3) both children of every red node are
black; and 4) every simple path from the root to any leaf contains
the same number of black nodes.

The first method we consider is balance, which defines one of
the cases erroneously to duplicate one of the subtrees and forgetting
another while rebalancing the tree. This results in violating the
post-condition of the add method as the result tree does not have
the expected content. In this case, an example violating the post-
condition is found after enumerating twelve trees. Our test harness

list size 20 40 60 80 100
time (s) 0.24 0.45 0.56 0.72 0.98

Figure 8. Evaluation results for declarative last method.

consists of enumerating trees that satisfy the precondition of add
and calling the method in the body of the loop.

We then consider the case where the add method has a missing
precondition, namely that the tree must be black-balanced. In this
case, the precondition to a method that is called within add fails,
and we find a bug-producing value using a similar harness after
enumerating four trees, in 0.187 seconds. We argue that a random
test-case generation approach would be insufficient in enumerating
such data structures that satisfy complex invariants. While the re-
sults using constraint solving is not as fast as the specialized solving
in UDITA [24], we should keep in mind that this is an experiment
in using a general-purpose constraint solving engine. The gener-
ality of Kaplan is in contrast to previously proposed solutions for
data structure enumeration, which rely on specialized techniques
for linked heap data structures, or even techniques specialized to
a particular data structure [7]. In the light of the generality of our
technique and the overall difficulty of the problem, we consider
these to be good results.

6.2 Executable Specifications
As another application of implicit computation, we now explore ex-
amples that consist of the “execution” of declarative specifications
instead of explicit computation. Execution of specifications is the
approach taken in Plan B [55], in which specifications are used as
a fallback mechanism upon contract violations.

Consider, for instance, a function that computes the last element
of a given list. We can define this function declaratively, by stating
that the input list is equal to some list concatenated with the list that
has only the element that we are looking for:

def last(list : List) : Int = {
val (elem, ) = ((e: Int, zs: List) ⇒

concat(zs, Cons(e, Nil())) == list).solve
elem }

As a more elaborate example, consider adding an element to (or
removing an element from) a red-black tree. The explicit insertion
and removal have to consider multiple cases in order to keep the
invariants that red-black trees should satisfy, and are known to
be tricky to implement. On the other hand, these methods can
be stated succinctly in a declarative manner, using functions that
check if a given tree is indeed a red-black tree, along with functions
computing the content of the tree as a set:

def addDeclarative(x: Int, tree: Tree) : Tree =
((t: Tree) ⇒ isRedBlackTree(t) &&

content(t) == content(tree) ++ Set(x)).solve
def removeDeclarative(x: Int, tree: Tree) : Tree =

((t: Tree) ⇒ isRedBlackTree(t) &&
content(t) == content(tree) −− Set(x)).solve

The performance of the above methods is presented in Figure 9.
We also show the results for the similar case of inserting into and
removing from a sorted list. Note that we encounter essentially the
same running times for the problem of declaratively sorting a list,
by asking for a sorted list of the same content as a given list.

The above examples show that it is possible to replace the ex-
plicit computation for a method by its purely declarative specifica-
tion, even for sophisticated contracts such as the ones on red-black
trees. The declarative variants are notably slower than the imper-
ative implementations, but it is likely preferable to rely on these
executable specifications instead of simply crashing when the im-
perative version violates the contract.



size list add list remove RBT add RBT remove
0 0.07 0.02 0.03 0.02
1 0.08 0.02 0.10 0.05
2 0.12 0.05 0.14 0.09
3 0.16 0.10 0.55 0.41
4 0.24 0.18 0.66 0.76
5 0.39 0.38 1.07 0.91
6 0.55 0.45 1.51 1.56
7 0.97 0.67 9.32 13.09
8 1.48 1.09 11.13 18.80
9 2.27 1.80 24.49 25.79
10 3.32 2.22 11.51 20.55

Figure 9. Evaluation results for declarative add and remove, for
red-black trees and for sorted lists. “size” is the size of the structure
without the element. All times are in seconds.

As a final example, let us consider the implicit computation that
gives the integer square root b

√
ic of a positive integer i. This is

concisely stated as following:

def sqrt(i : Int) : Int =
((res: Int) ⇒ res > 0 &&

res ∗ res ≤ i &&
(res + 1) ∗ (res + 1) > i).solve

Our implementation can handle numbers as large as hundreds
of thousands, performing under 0.3 seconds in all cases.

6.3 Counter-example Guided Inductive Synthesis
Counter-example guided inductive synthesis (CEGIS) is a method
for effectively solving ∃∀ constraints using SMT solvers. Such con-
straints are particularly important for program synthesis, identified
as the class of ∀∃ synthesis problems in [53]. The counter-example
guided approach for this problem was successfully applied to soft-
ware synthesis in the algorithm for combinatorial sketching using
SAT solvers [58]. This technique was later applied with an SMT
solver as the satisfiability engine to synthesize loop-free bit-vector
code fragments [26].

The technique starts by choosing some initial set of values for
the universally quantified variables, then solving the constraint for
the existentially quantified variables. If the values for the existen-
tially quantified variables work for all values of the universally
quantified variables, a solution has been found. Otherwise, there is
a counterexample which is some valuation of the universally quan-
tified variables. This counterexample is added to the set of values
for universally quantified variables and the procedure is repeated
until a solution is found.

This synthesis loop can be expressed in our system succinctly,
using first-class constraints. As an example we consider the fol-
lowing: Are there integers a and b such that, for every integer x,
a · (x − 1) < b · x ? In Kaplan we can describe the CEGIS ap-
proach as in Figure 10. When executed, the program finds correct
values for a and b in two iterations of the loop. The output of the
program is:

Initial x: 0
candidate parameters a = 1, b = 0
counterexample for x: 1
candidate parameters a = 1, b = 1
proved!

The example generalizes to arbitrary constraints (which, in this
example, are cnstrGivenX and cnstrGivenParams), keeping the
same simple structure. Note that we here explicitly constructed
increasingly stronger first-class constraints; we can instead use
logical variables and incrementally augment the constraint store.

var continue = true
val initialX = ((x: Int) ⇒ true).solve
def cnstrGivenX(x0: Int): Constraint2[Int,Int] =

((a: Int, b: Int) ⇒ a ∗ (x0 − 1) < b ∗ x0)
def cnstrGivenParams(a0: Int, b0: Int): Constraint1[Int] =

((x: Int) ⇒ a0 ∗ (x − 1) < b0 ∗ x)
var currentCnstr = cnstrGivenX(initialX)
while (continue) {

currentCnstr.find match {
case Some((a, b)) ⇒ {

println(”candidate parameters a = ” + a + ”, b = ” + b)
(! cnstrGivenParams(a, b)).find match {

case None ⇒
println(”proved!”)
continue = false

case Some(ce) ⇒
println(”counterexample for x: ” + ce)
currentCnstr = currentCnstr && cnstrGivenX(ce)

}
}
case None ⇒

println(”cannot prove property!”)
continue = false

}
}

Figure 10. Counter-example guided inductive synthesis in Kaplan

list size time in Kaplan (s) time in Curry (s)
10000 < 0.01 0.21

100000 < 0.01 2.41
1000000 < 0.01 23.88

Figure 11. Evaluation results for functional last method.

6.4 Comparison to Other Systems
Providing a fair comparison of running times of Kaplan against
competing systems is difficult because Kaplan covers many areas
for which specialized tools have been developed. We do not expect
to match performance of each of these specialized systems. At the
same time, there is no single system that subsumes Kaplan. This
section illustrates how other tools can solve some of the problems
we presented in this paper and solved using Kaplan. The running
times should not be taken as a definitive statement of the relative
merits of the systems, but rather as a guide to understanding key
differences of the underlying constraint solving techniques.

Last element of the list. We first compare the performance of
Kaplan and Curry on computing the last element of a list, both
in a declarative way as presented in Section 6.2, and as a tail-
recursive functional method. In Curry, the declarative version can
be expressed as:

last xs | concat ys [x] =:= xs
= x where x,ys free

The performance of the Curry implementation surpasses the
performance of Kaplan that we reported in Figure 8, running under
0.01 seconds in lists of size up to 100. However, in Kaplan we also
have the freedom of writing the constraint directly as a functional
program. In such style, Curry performs at about the same speed as
for a constraint-based definition, so Kaplan outperforms Curry on
longer lists. Figure 11 shows the evaluation results for this case. It is
of course the Scala compiler and the Java Virtual Machine that take
credit for the good performance of the functional implementation;
to the credit of Kaplan is simply that it does not lose any of this
underlying efficiency. This basic consequence of Kaplan design



is very important from a practical point of view. In principle, a
static analysis could be used to recognize among logical constraints
special classes that do not require constraint solving (consider, for
example, mode analysis of Mercury [51]). However, this approach
clearly requires significant compilation effort to merely recover the
baseline performance of a functional or imperative code, whereas
in Kaplan it follows by construction.

Generating data structures with complex invariants. We now re-
port on our experience in comparing Kaplan with ScalaCheck [48]
for generating red-black trees (results were similar for sorted lists).
ScalaCheck is a tool for producing test cases using random test gen-
eration, similar to QuickCheck [13] for Haskell. We implemented
basic generators for lists and trees using generator combinators in
ScalaCheck. The problem with random generation is that, for many
classes of properties, the probability of a random structure satisfy-
ing it may tend to zero as the structure size grows [10], making test
cases vacuous for larger structures. To see this in practice, consider
first our own performance: Figure 7 shows that Kaplan takes 27.45
seconds in total to generate all red-black trees of size n containing
elements 1 to n, for all n from 0 to 7. We therefore defined a ba-
sic ScalaCheck generator that, with equal probability, generates an
empty or a non-empty tree. We ran it for 29.1 seconds, generating
200’000 trees. Although 62% of all of them were red-black, that is
because 104’544 were, in fact, empty. Of the rest, 18’191 had size
one, 934 size two, and there were no red-black trees of larger size.
In this experiment, we gave both Kaplan and ScalaCheck only the
constraints, without any additional insight, which makes the com-
parison fair. Experienced users could write better ScalaCheck gen-
erators, but they could similarly write better Kaplan checkers. Like
UDITA [24], Kaplan supports a full spectrum of intermediate ap-
proaches, where one puts more attention into either writing better
generators, to increase the ratio of valid testcases, or into manually
decomposing the implicit computation to reduce the search space.

Constraint satisfaction problems. Tools for constraint solving
and optimization over finite domains have developed somewhat
independently of SMT and the related technologies [4, 23, 47, 61].
Our anecdotal experience suggests that, for problems of moderate
size over finite domains, the two technologies yield comparable
results. A full experimental comparison between the state of the
art of these two communities is beyond the scope of this paper.
Note that we could incorporate into Kaplan solvers from either
class, as long as they support our domains of interest (including,
for example, algebraic data types).

7. Related Work

Existing languages. Functional logic programming [3] amal-
gamates the functional programming and logic programming
paradigms into a single language. Functional logic languages, such
as Curry [41], benefit from efficient demand-driven term reduc-
tion strategies proper to functional languages, as well as non-
deterministic operations of logic languages, by using a technique
called narrowing, a combination of term reduction and variable
instantiation. Instantiation of unbound logic variables occur in con-
structive guessing steps, only to sustain computation when a re-
duction needs their values. The performance of non-deterministic
computations depends on the evaluation strategy, which are for-
malized using definitional trees [2]. Applications using functional
logic languages include programming of graphical and web user
interfaces [27, 28] as well as providing high-level APIs for access-
ing and manipulating databases [12]. Our work can be seen as the
practical experiment of building from existing components a sys-
tem close in functionality to Curry: we proceeded by extending
an existing language while preserving its execution model, rather

than starting from scratch. As such, we lose the luxury of a to-
tal integration of paradigms; for instance, users of Kaplan need to
specify which functions can handle logical variables. On the other
hand, such a separation of features comes with benefits: we can
readily use the full power of Z3 and the Leon verification system
for constraint solving, and the execution efficiency of the Java vir-
tual machine for regular code. Implementations of functional logic
languages, on the other hand, must typically focus on efficiently
executing either the logical or the functional components of the
code.

The Oz language and the associated Mozart Programming Sys-
tem is another admirable combination of multiple paradigms [64],
with applications in functional, concurrent, and logic program-
ming. In particular, Oz supports a form of logical variables, and
logic programming is enabled through unification. One limitation
is that one cannot perform arithmetic operations with logical vari-
ables (which we have demonstrated in several of our examples),
because unification only applies to constructor terms.

Some of the earlier efforts to integrate constraint and imper-
ative programming resulted in the languages Kaleidoscope [37],
Alma-0 [5] and Turtle [25]. This line of research put emphasis
on designing novel ways to define constraints, ideally to resem-
ble imperative-style programming. Kaleidoscope, for instance, pro-
motes the integration of constraints with objects; programmers can
define instance constraints that relate various members of an object,
and constraints can be reassigned, just like mutable variables. Con-
straints are also associated to a duration (once or always), specify-
ing intuitively the scope in which they can affect variables. Kaplan
currently does not support constraints over mutable data types and
could benefit from the integration of such features.

The integration of constraints as first-class members of the lan-
guage is tighter in Kaplan than in any of the languages discussed
above. For example, in Curry programmers can define constraints
as functions that return the special type Success (which is not iden-
tical to Boolean). However, such functions (or rather predicates)
in Curry can only be built from equality predicates and cannot be
combined freely: while conjunction and disjunction are valid com-
binators, negation, for instance, is not. In Kaplan, on the other hand,
any predicate expressed in PureScala can be used as a constraint,
and terms of other types can also be manipulated and composed
freely.

Another distinguishing feature of Kaplan is the native support
for many theories (integers, sets, maps, data types) that comes from
using Leon [60] and Z3 as the underlying constraint solver.

Language design. Monadic constraint programming [56] inte-
grates constraint programming into purely functional languages by
using monads to define solvers. The authors define monadic search
trees, corresponding to a base search, that can be transformed by
the use of search transformers in a composable fashion to increase
performance. Our system differs from this work in its use of SMT
solvers for search, and a more flexible way of mixing constraints
with imperative programming.

Localized code synthesis techniques have been proposed to turn
implicit declarations into explicit code [35]. The main limitation
of that approach is the requirement that the theory should be de-
cidable. We have shown that using a powerful, undecidable, logic
for constraints can be beneficial. Ideally, compile-time techniques
such as [35] should be combined with the run-time approach of
constraint solving.

The work on uniform reduction to bit-vector arithmetic [40]
(URBIVA) proposes a C-like language for specifying constraints. It
uses symbolic execution to encode problems into bit-vector arith-
metic and invokes one of the underlying bit-vector and SAT solvers.
The system allows for the comparison of different solvers on ex-
amples involving solution enumeration and functional equivalence



checking. The use of symbolic values in conditional statements and
array indexing is not permitted. Because it uses native enumera-
tion capability of solvers such as CLASP, it can be faster than our
system on some of the benchmarks. URBIVA does not support un-
bounded domains; we are aware of no techniques to enumerate so-
lutions for unbounded domains more efficiently than in Kaplan.

SMT as a programming platform. The Dminor language [9]
introduces the idea of using an SMT solver to check subtyping re-
lations between refinement types; in Dminor, all types are defined
as logical predicates, and subtyping thus consists of proving an im-
plication between two such predicates. The authors show that an
impressive number of common types (including for instance alge-
braic data types) can be encoded using this formalism. In this con-
text, generating values satisfying a predicate is framed as the type
inhabitation problem, and the authors introduce the expression ele-
mentof T to that end. It is evaluated by invoking Z3 at run-time and
is thus conceptually comparable to our find construct but without
support for recursive function unfolding. We have previously found
that recursive function unfolding works better as a mechanism for
satisfiability checking than using quantified axiomatization of re-
cursive functions [60]. In general, we believe that our examples are
substantially more complex than the experiences with elementof in
the context of Dminor.

The ScalaZ3 library [33] is our earlier effort to integrate invo-
cations to Z3 into a programming language. Because it is imple-
mented purely as a library, we were then not able to integrate user-
defined recursive functions and data types into constraints, so the
main application is to provide an embedded domain-specific lan-
guage to access the constraint language of Z3 (but not to extend it).
A similar approach has been taken by others to invoke the Yices
SMT solver [19] from Haskell.3

Applications of declarative programming. One approach in
using specifications for software reliability is data structure repair
[16, 20], where the goal is to recover from corrupted data structures
by transforming states that are erroneous with respect to integrity
constraints into valid ones, performing local heuristic search. [65]
uses method contracts instead of data structure integrity constraints
to be able to support rich behavioral specifications. While the pri-
mary goal is to perform run-time recovery of data structures, re-
cent work [38] extends the technique for debugging purposes, by
abstracting concrete repair actions to program statements perform-
ing the same actions. Data structure repair differs from our system
in that it can perform local search to modify existing states, while
we do not currently do so. We do not expect that a general-purpose
constraint solving such as ours can immediately compare with these
dedicated techniques.

The idea to use specifications as a fall-back mechanism, as in
one of our application examples, was adopted in [55]. Similarly to
our setting, dynamic contract checking is applied and, upon vio-
lations, specifications can be executed. The technique ignores the
erroneous state and computes output values for methods given con-
crete input values and the method contract. The implementation
uses a relational logic similar to Alloy [30] for specifications, and
deploys the Kodkod model finder [63]. A related tight integration
between Java and the Kodkod engine is presented in [42]. In both
cases, due to the finite bound on the search space, a satisfying an-
swer may not always be found, which makes the techniques in-
complete. We have shown that executing declarative specifications
is possible in our setting. We expect that a constraint solver such as
the one deployed in Leon will ultimately be better suited than an
approach based on KodKod, due to the presence of unbounded or
large data types such as integers and recursive structures.

3 http://hackage.haskell.org/package/yices-easy

8. Conclusion
We presented Kaplan, an extension of the multi-paradigm Scala
language that integrates constraint programming while preserving
the existing functional and object-oriented features of Scala. The
behavior and performance of Kaplan is identical to Scala in the
absence of declarative constraint solving. Kaplan integrates con-
straints as first-class objects in Scala, and logical variables for solv-
ing constraints lazily. It allows for solving optimization problems,
as well as enumerating solutions in a user-specified order. Kaplan
is implemented as a combination of a compiler plugin and a run-
time library, and allows users to express constraints in a powerful
and expressive logic. Kaplan relies on a procedure for satisfiability
modulo recursive functions [59, 60] to solve these constraints.

We evaluated our system by considering applications such as
solution enumeration, execution of declarative specifications, test-
case generation for bug-finding and counterexample guided induc-
tive synthesis, as well as numerous smaller, yet expressive, snip-
pets. We observed that our model for introducing non-determinism
using for-comprehensions integrates well with Scala.

Based on our experience with the Z3 SMT solver and the Leon
verification system in constraint programming, we found that a
number of features, if natively supported by solvers, could directly
bring benefits to constraint programming. These include 1) support
for enumeration of theory models and 2) solving constraints while
minimizing/maximizing a given term. Overall, we believe there
is great potential in extending standard programming languages
with constraint solving capabilities. Many interesting problems are
left open, both in language design and in constraint solving; a
system such as Kaplan that integrates state-of-the-art tools from
both domains is likely to benefit from progress made in each of
them.
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