
Scala to the Power of Z3

Integrating SMT and Programming

Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter⋆

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. We describe a system that integrates the SMT solver Z3 with
the Scala programming language. The system supports the use of the
SMT solver for checking satisfiability, unsatisfiability, as well as solution
enumeration. The embedding of formula trees into Scala uses the host
type system of Scala to prevent the construction of certain ill-typed con-
straints. The solution enumeration feature integrates into the iteration
constructions of Scala and supports writing non-deterministic programs.
Using Z3’s mechanism of theory extensions, our system also helps users
construct custom constraint solvers where the interpretation of predi-
cates and functions is given as Scala code. The resulting system pre-
serves the productivity advantages of Scala while simplifying tasks such
as combinatorial search.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers have in the past few years become
very powerful tools. Their efficient search heuristics have made them applicable
to a wide variety of problems. However, they are still primarily used by expert

users that have substantial understanding of constraint solvers, their languages
and interfaces. Our aim is to make SMT solving accessible to a wider audience
by integrating it into a familiar programming language.

This paper presents ScalaZ3, a library to bring the power of the SMT solver
Z3 [3] to users of the Scala programming language [4]. We identify two types of
clients for our system:

– general programmers, who are not necessarily familiar with SMT, but who
may want to use constraint solving as a library;

– SMT power users, who can use it in a way similar to how they would in C,
yet will still benefit from a concise language with a strong type system.

2 Implicit Computation using Z3

Our system enables programmers to state the properties that the values should
satisfy instead of how to compute them. In that sense, it supports a form of
implicit computation. We illustrate this approach through several examples.

⋆ Alphabetical author order. Philippe Suter was supported by the Swiss NSF Grant
200021 120433.

2 Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter

Mixing searching with solving. Consider the following satisfiability problem:
Find three integers x, y, z such that x > 0, y > x, 2x+3y ≤ 40, x·z = 3y2, and y

is prime? We know of no decidable logic in which this problem can be naturally
expressed. As an alternative to applying a decision procedure, we can search for
a solution. Using the system we present in this paper, we can concisely program
the search in Scala as follows:

val results = for(
(x,y) ← findAll((x: Val[Int], y: Val[Int]) ⇒ x > 0 && y > x && x ∗ 2 + y ∗ 3 ≤ 40);

if(isPrime(y));
z ← findAll((z: Val[Int]) ⇒ z ∗ x === 3 ∗ y ∗ y))

yield (x, y, z)

This for-comprehension constructs an iterator of integer triples. The iterator
ranges over all solutions (in general, it can be infinite, here there are 8 solutions).
The for-comprehension interleaves invocations of the SMT solver Z3 —the calls
to findAll— and applications of Scala functions —here isPrime, whose definition
we omit. Because findAll works by lazily generating a stream, Z3 is only invoked
as more values are requested. For instance, if we only wish to check whether a
solution exists, we can test results.isEmpty and only one solution will be com-
puted. Similarly, when y is not prime, the inner constraint is not dispatched to
the solver. Note that this constraint is, despite its appearance, in linear arith-
metic, since x and y are known at the time of its construction. Note that the only
constructs that a Scala programmer needs to learn to use the above example is
the findAll function, and the Val[] type constructor. The remaining constructs
are a standard part of Scala [4].

N-Queens puzzle. We consider now the problem of solving the N-Queens
puzzle: In how many ways can N queens be placed on an N × N checkerboard

such that they do not attack each other? The following program encodes the
problem using integer arithmetic and invokes the solver to count the number of
solutions:

val z3 = new Z3Context(”MODEL” → true)
val N = 8
val cols = (0 until N) map { ⇒ IntVar() } // column vars
val diffCnstr = Distinct(cols : ∗) // all queens on distinct cols
val boundsCnstr = for (c ← cols) yield (c ≥ 0 && c < N) // cols are within bounds
val diagonalsCnstr = // no two queens on same diagonal

for (i ← 0 until N; j ← 0 until i) yield

((cols(i) − cols(j) !== i − j) && (cols(i) − cols(j) !== j − i))

z3.assertCnstr(diffCnstr)
boundsCnstr map (z3.assertCnstr())
diagonalsCnstr map (z3.assertCnstr())
println(z3.checkAndGetAllModels.size) // prints 92

In this example, we use ScalaZ3 with the same degree of control we would have
with the native interface: we build the context explicitly, push constraints, etc.
We start by declaring a list of Z3 constants; the i-th constant representing the

Scala to the Power of Z3 3

(integer) column value of the queen that will be placed on row i. We then specify
the constraints, stating that each queen is on a different column, row and diago-
nal. Finally we assert these three constraints in the current context, and invoke
the solver to retrieve the stream of all solutions that satisfy the constructed
formulas. Most variables in this program are of the type Tree yet type inference
allows us to keep this transparent. Thanks to operator overloading, the meaning
of the constraints is clear from the code.1

Calendar computation. Implicit computations are useful not only as a form
of constraint solving, but also in cases where writing code that matches a precise
specification may be hard; in such cases we can sometimes replace explicit code
by an implicit definition. Our next example shows how we can use ScalaZ3 to
compute date differences while accounting for leap years.2 The following program
takes as input a number of days totalDays and computes the year and the day
in the year that correspond to totalDays since January 1st, 1980.

val totalDays = 10593
val originYear = 1980

val (year, day) = choose((year: Val[Int], day: Val[Int]) ⇒ {
def leapYearsUntil(y : Tree[IntSort]) = (y − 1) / 4 − (y − 1) / 100 + (y − 1) / 400

totalDays === (year − originYear) ∗ 365
+ leapYearsUntil(year) − leapYearsUntil(originYear) + day &&

day > 0 && day ≤ 366
})

println(year + ”, ” + day) // prints 2008, 366

Note that we defined a helper method leapDaysUntil which produces a tree ex-
pressing the number of leap years between year 1 and y. This is possible because
this auxiliary definition doesn’t affect the type of the predicate used in the call
to choose. We can then use this method in our predicate to express conveniently
the number of total days between January 1st, 1980 and the day specified by
year and day.

3 Design and Implementation

ScalaZ3 is implemented as a Scala library that connects to Z3’s C interface
through the Java Native Interface [2], and consists of just over 5,000 lines of
a combination of Scala, Java, and C code. Although it is possible to use ScalaZ3

as a simple Scala view of the C or OCaml interface of Z3, there are several
features that enable more productive combinations of the two systems.

1 We use the operators === and !== to construct ASTs because == and != can only
return booleans in Scala.

2 A piece of code that incorrectly performed this computation is famously responsible
for a bug that caused thousands of portable media devices to freeze in 2008.

4 Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter

abstract class Tree[+A >: Bottom <: Top]

sealed trait Top
trait IntSort extends Top
trait BoolSort extends Top
trait BVSort extends Top
trait ... extends Top
trait SetSort extends Top
trait Bottom extends IntSort with BoolSort with BVSort with ... with SetSort

Top

Bottom

IntSort BoolSort
...

SetSort

Fig. 1. Soft typing system for the domain specific language.

Domain specific language. There are two possible representations of Z3 ab-
stract syntax trees (ASTs) in ScalaZ3. The most basic is a Z3AST class that en-
capsulates a C pointer to the internal representation. This is used by all functions
that are direct mappings to the C interface. The other representation encodes
Z3 ASTs into typed Scala syntax trees. These trees can be combined using oper-
ators with which programmers are familiar, such as &&, +, as well as numerical
constants, for instance. The examples throughout this paper are all written us-
ing this domain specific language (DSL), which is enabled by adding the import
statement import z3.scala.dsl. .

The representations are mutually compatible, and through the mechanism
of implicit conversions [4, Chapter 21], the Scala compiler automatically inserts
calls to conversion functions where needed. The DSL trees are typed using a
soft-typing approach to prevent the construction of some ill-typed terms. Fig-
ure 1 shows the type system, which relies on Scala generic types and multiple
inheritance. For instance, the < operator defined on trees of integer sort has the
following signature:

def <(that: Tree[<: IntSort]): Tree[BoolSort]

This declaration indicates that < expects an operand of a type equal to (or
a subtype of) Tree[IntSort] and returns a tree of type Tree[BoolSort]. Because
Z3ASTs are by nature untyped and should be usable in combination with the
DSL, they are converted to trees of type Tree[Bottom]. Because trees are covari-
ant in their type parameter, such trees can be used in place of any type. In these
cases, the library performs a runtime check to ensure that the types match, so
as to avoid triggering an error in the Z3 native library.

High-level model navigation. One key feature of the system is the ability
to evaluate the model of a Z3 constant as a Scala type. This is achieved by a
generic method whose signature is:

def evalAs[T](ast: Z3AST)(implicit extr: (Z3Model, Z3AST) ⇒ Option[T]): Option[T]

It returns an Option type because the model may not define a value for the
desired tree. The definition refers to an implicit parameter extr. Implicit param-
eters are parameters that can be omitted at the call-site, and that will be filled
according to objects that are marked as implicit in the scope. Here, extr is the

Scala to the Power of Z3 5

function responsible for building a value of the proper Scala type from a Z3
model and constant. How this is done depends on the requested type. ScalaZ3

thus defines such functions for base types, and Scala’s mechanism for resolv-
ing implicits automatically inserts the right definitions according to the type T.
Because implicit resolution is done at compile-time, invocations of evalAs with
unsupported types result in a compile error. Experienced users can also extend
this mechanism by writing their own extractors, for instance to automatically
build algebraic data types such as lists or trees from models. ScalaZ3 also pro-
vides methods to recover models of uninterpreted function symbols or arrays,
and to wrap them in an object that can then be used as a Scala function.

The choose, find and findAll constructs. These three constructs are defined
as part of the domain specific language. choose attempts to find one assignment
to a constraint, and throws an exception if it could not, while find returns an
Option type using None to describe failures. findAll enumerates all models, as in
the introductory example. They all take a predicate that describes the constraint
as an argument. The particularity of these functions is that all the interaction
with Z3 is completely transparent. Similarly to evalAs, choose and findAll rely on
implicit arguments to build Z3 trees of the right kind and to retrieve values from
the models. Additionally, the type constructor Val[] encapsulates more implicit
conversion functions to build ASTs from it. The complete signature for (the one
argument version of) findAll is as follows:

def findAll[T](predicate : Val[T] ⇒ Tree[BoolSort])
(implicit cons : T ⇒ Tree[Bottom],

extr : (Z3Model, Z3AST) ⇒ T) : Iterator[T]

In the implementation, an iterator is constructed by maintaining the Z3 context
and successively pushing the negation of the previous model as a new constraint
when the next model is requested. Since iterators are standard in Scala, we can
use all the usual higher-order constructs on the result, including for instance
map, filter or for-comprehensions.

4 Theory Plugins

Z3 supports user-defined theory plugins ; users can integrate their decision pro-
cedure into Z3’s DPLL engine by specifying callbacks that are invoked by Z3 on
events such as context pushes and pops, newly propagated equalities, etc. We
now give two examples of how this mechanism can be exploited through ScalaZ3.

Theory plugin for sets with cardinality constraints. We implemented a
decision procedure for Boolean Algebra with Presburger Arithmetic, a logic that
supports sets with cardinality constraints,3 as a full-fledged theory extension to
Z3 using ScalaZ3 [5]. The details of the implementation are too complex to be
presented here, but we shortly illustrate here some of the programming language

3 Z3 natively supports sets, but without the cardinality operator.

6 Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter

aspects that we believe simplified this development. Scala is also an object-
oriented language, and following that paradigm, user-defined theory plugins are
created by subclassing a class Z3Theory defined as part of ScalaZ3. A definition
such as the following is all that is needed to add a theory solver to Z3’s DPLL
engine:

class BAPATheory(val z3: Z3Context) extends Z3Theory(z3, ”Sets with cardialities”) {
// User−defined sorts, constant values and functions:
val setSort = mkTheorySort(”setSort”)
val emptySet = mkTheoryValue(”empty”, setSort)
// Declares a unary function from sets to integers:
val cardinality = mkTheoryFuncDecl(”card.”, setSort, z3.mkIntSort)

// This method is automatically called when a new term enters the logical context:
override def newApp(ast: Z3AST) : Unit = ast.getKind match {

case Z3AppAST(‘cardinality‘, arg) ⇒ processCard(arg)
case ⇒ ...

}}

The interaction with Z3 is done by overriding the right methods, like newApp
in the example above, which replace the callback functions used by the C inter-
face. Theory plugins typically need to manipulate many abstract syntax trees
communicated from Z3. To simplify such tasks, ScalaZ3 defines extractors, which
are functions that can be used in pattern-matching expressions [1]. The newApp
method contains an example, where with a single line of code we test whether
a Z3 tree corresponds to an application of the cardinality function and at the
same time bind the variable args to its argument.

Procedural attachments. ScalaZ3 provides special support for procedural at-

tachment extensions. Procedural attachments are a special kind of theory plugins
where the interpretation of ground terms is provided as executable functions. To
illustrate their use, consider the code below, where we define two predicates and
one function over strings:

val z3 = new Z3Context()
// Defines a new theory of strings with two predicates and one function symbol.
val strings = new ProceduralAttachment[String](z3) {

val oddLength = predicate(s ⇒ s.length % 2 == 1)
val isSubstr = predicate((s1,s2) ⇒ s2.contains(s1))
val concat = function((s1,s2) ⇒ s1 + s2)
}

From this declaration, ScalaZ3 constructs a Z3 theory plugin for a new sort
representing strings and creates the proper predicate and function symbols. It
also registers callbacks such that any ground term built over string constants is
1) translated back into Scala, 2) evaluated using the function definitions passed
by the user, 3) converted back into Z3 trees. A usage example follows:

import strings.
val s1, s2 = variable
z3.assertCnstr(s1 === ”hello” && (s2 === ”world” || s2 === ”moon”)

Scala to the Power of Z3 7

&& oddLength(concat(s2, s1)) && isSubstr(”low”, concat(s1,s2)))
println(z3.check) // unsatisfiable

The import statement brings into scope not only the predicate and function
symbols, which can then be used as part of the domain specific language, but
also helper functions such as variable, which creates a Z3 tree for a variable
representing a string, as well as an implicit conversion function which converts
any string into a tree node representing its constant value. As a result, the
constraints can be expressed very naturally. Using Z3’s DPLL engine to assign
truth values to literals, the system concludes that the constraints cannot be
satisfied. Procedural attachment theories are in general not complete and may
return unknown when some variables never become ground. They remain very
useful extensions, though, for instance when all variables are known to range
over a finite domain.

5 Conclusions

We have demonstrated that it is possible and fruitful to smoothly integrate a
modern programming language and a powerful SMT solver. Our system en-
ables users to dynamically construct constraints, while supporting the syntax
of the underlying programming language. It enables combinatorial search that
combines Z3’s constraint solving with explicit tests and enumeration in the pro-
gramming language, as well as the creation of custom theory solvers based on
executable functions.

We have found a number of uses for ScalaZ3 in our research group, including
several program verification tools under development, as well as a new theory
plugin for Z3 [5]. We have also recently received interest from other groups to
use and contribute to ScalaZ3. Our implementation is freely available at:

http://lara.epfl.ch/w/ScalaZ3

We hope that the community will join the effort in enhancing the implementation
further. The current version includes mappings for all Z3 operations (including
manipulation of abstract data types, arrays and bitvectors, for instance), so
expert users can already use it as a substitute for the C interface. Among the
particularly desirable future extensions are: high-level support for further data
types, parallel invocation of Z3 instances, and reconstruction of proof objects.

References

1. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: ECOOP
(2007)

2. Liang, S.: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley (1999)

3. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
4. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: a comprehensive step-

by-step guide. Artima Press (2008)
5. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability

modulo theories. In: VMCAI. pp. 403–418 (2011)

http://lara.epfl.ch/w/ScalaZ3

	Scala to the Power of Z3

