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Abstract. We describe a combination of runtime information and static
analysis for checking properties of complex and configurable systems. The
basic idea of our approach is to 1) let the program execute and thereby
read the important dynamic configuration data, then 2) invoke static
analysis from this runtime state to detect possible errors that can happen
in the continued execution. This approach improves analysis precision,
particularly with respect to types of global variables and nested data
structures. It also enables the resolution of modules that are loaded based
on dynamically computed information.
We describe an implementation of this approach in a tool that statically
computes possible types of variables in PHP applications, including de-
tailed types of nested maps (arrays). PHP is a dynamically typed lan-
guage; PHP programs extensively use nested value maps, as well as ’in-
clude’ directives whose arguments are dynamically computed file names.
We have applied our analysis tool to over 50’000 lines of PHP code,
including the popular DokuWiki software, which has a plug-in architec-
ture. The analysis identified 200 problems in the code and in the type
hints of the original source code base. Some of these problems can cause
exploits, infinite loops, and crashes. Our experiments show that dynamic
information simplifies the development of the analysis and decreases the
number of false alarms compared to a purely static analysis approach.

1 Introduction

It is challenging to apply precise static analysis to realistic software applica-
tions; such applications often give results that are less precise than desired. The
imprecision stems both from 1) the approximation that is necessary to ensure ac-
ceptable analysis performance, and 2) the absence of detailed information about
the environment in which the application runs (such as the file system and user
inputs). A common pattern that makes static analysis difficult is reading in con-
figuration data from the external environment, then substantially changing the
program behavior based on this data: turning certain features on or off, and load-
ing external modules determined by the configuration. A static analysis typically
gives very imprecise results in such cases; it can even fail to determine which files
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to include in the application code base, making a conservative analysis entirely
useless. Whereas a purely dynamic analysis for such software systems is useful,
it may entirely miss opportunities for identifying errors by code inspection.

A hybrid approach. To address these difficulties we propose the follow-
ing hybrid approach: 1) run the application in its environment as usual, in a
deployment-like scenario, up to a user-specified point where most configuration
data is expected to be known; 2) record the program state at this point; and
3) use the recorded state as the starting point for a static analysis. The values
of many configuration variables thus effectively become constant. This improves
the analysis, both of data structures and of control-flow, in some cases making
the subsequent results vastly more precise.

We believe that such an hybrid analysis approach deserves more attention
than it has received so far. Previous approaches in this spirit include symbolic
execution from concrete state [12] and explicit-state model checking from con-
crete state [15]. In this paper, we show the benefits of this hybrid approach
for data-flow analysis. We examine the problem of checking for type errors in
applications written in PHP, a popular dynamically-typed scripting language.

PHP as the language of the web. PHP scripts are behind many web sites,
including wikis, content management systems, and social networking web sites.
It is notably used by major web actors, such as Wikipedia,Facebook1 or Yahoo.2

Unfortunately, it is very easy to write PHP scripts that contain errors. Among
the PHP features that are contributing to this fact is the lack of any static
system for detecting type or initialization errors.

Our analyzer. This paper presents Phantm
3, a hybrid static and dynamic

analyzer for PHP 5. Phantm is an open-source tool written in Scala and avail-
able from http://lara.epfl.ch/dokuwiki/phantm. It contains a full parser
that passes 10’000 tests from the PHP test suite, a static analysis algorithm
for type errors, and a library to save and restore representations of concrete
program states. Phantm uses an abstract interpretation domain that approxi-
mates both simple and structured values (such as arrays and objects). Phantm

is flow-sensitive, handling initialization and supporting a form of typestate [13].
The motivation for this feature is that the same PHP variable can have different
types at different program points. Moreover, the analyzer’s notion of type also
represents certain concrete values manipulated by the program. Flow sensitive
analysis of structured values enables Phantm to handle, e.g., frequently occur-
ring code that uses untyped arrays with string keys as a substitute for records.

Phantm supports a large number of PHP constructs in their most com-
mon usage scenarios, with the goal of maximizing the usefulness of the tool. It
incorporates precision-enhancing support for several PHP idioms that we fre-
quently encountered and for which our initial approach was not sufficiently pre-
cise. Phantm reports some other features of PHP, such as generic error han-
dlers for undefined methods, as bad practice instead of attempting to abstract

1 http://wiki.github.com/facebook/hiphop-php/
2 http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt
3 PHp ANalyzer for Type Mismatch

http://lara.epfl.ch/dokuwiki/phantm
http://wiki.github.com/facebook/hiphop-php/
http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt
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the complex behavior of the PHP interpreter. Based on our experience as PHP
programmers, we believe that this is a reasonable design decision.

Phantm analyzes each function separately by default but uses PHP docu-
mentation features to allow users to declare types of function arguments. It also
comes with detailed type prototype information for a large number of standard
library functions, and can be very helpful in annotating existing code bases. By
providing additional flexibility in annotation and analysis, going beyond simple
type systems, we expect Phantm to influence future evolutions of the language
and lead to more reliable applications. Phantm also supports context-sensitive
analysis of non-recursive functions without annotations.

Leveraging runtime information. Phantm ships with a library that can be
used to instrument the analyzed code and thereby improve the precision of error
detection. Programs can be annotated to indicate that the static analysis should
start at a given execution point, or to collect a trace of dynamically included
files. The collected information is then read by the static analysis component
which can use it to, for instance, conclude that certain parts of the program
are never executed under a given initial configuration, to detect which function
declarations are active, and to refine possible types and values of variables.

Experience. We have applied Phantm to three substantial PHP applications.
The first application is a webmail client used by several thousand users. The
second is the popular DokuWiki software,4 and the third is the feed aggrega-
tor SimplePie.5 Using Phantm, we have identified a number of errors in these
applications.

2 Example

PHP has a dynamic typing policy: types are not declared statically, and variables
can adopt various types at different times, depending on the values assigned to
them. The basic types are booleans, integers, floating point numbers, strings, ar-
rays and objects. There is also a null type for undefined values and a special type
for external resources such as file handlers or database connections. Variables are
not declared. Reading from an uninitialized variable results in null.

The arrays in PHP are essentially maps from integers and strings to arbitrary
values; we thus use the terms array and map interchangeably. For instance, the
following is a valid definition:

$arr = array(”one” ⇒ 1, −1 ⇒ ”minus one”, 3 ⇒ 3.1415);

After this assignment, $arr is an array defined for the keys ”one”, -1 and 3.
Contrary to many programming languages, PHP arrays are passed by value and
not aliased on assignments.

Handling typestate and nested data types. We illustrate some of the
challenges in type analysis of PHP programs and show how Phantm tackles
them. Consider the following code:

4 http://www.dokuwiki.org
5 http://simplepie.org

http://www.dokuwiki.org
http://simplepie.org
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$inputFile = ”template.txt”;
$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
$content = fread($conf[”file”]);
echo $content;
fclose($conf[”file”]);

First, note that several values of different type are stored in an array. To check
that the call to the library function fopen is correctly typed, we need to establish
that the value stored in $conf[’readmode’] is a string. This immediately points
to the fact that our analyses cannot simply abstract the value of $conf as “any
array”, as the mapping between the keys and the types of the value needs to
be stored. On this code, Phantm correctly concludes that the entry for the key
”readmode” always points to a string.

The function fopen tries to open a file in a desired mode and returns a pointer
to the file (a resource, in PHP terminology) if it succeeded, or the value false

otherwise. To properly handle this fact, Phantm encodes the result of the call
as having the type “any resource or false”. Because fread expects a resource
only, Phantm will display the following warning message:
Potential type mismatch. Expected: Array[file => Resource, ...], found:

Array[file => Resource or False, ...]

This warning indicates that the developer did not handle the case when the file
could not be opened. Note that fclose also expects only a resource, but Phantm

does not emit a second warning for the fourth line. The reason is that whenever
Phantm detects a type mismatch, it applies type refinement on the problematic
variable, assuming that the intended type was the one expected rather than
the one found. In many cases, this eliminates or greatly reduces the number of
warnings for the same variable.

We can change the code to properly handle failures to open the file as follows:

$inputFile = ”template.txt”;
$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
if($conf[”file”]) {

$content = fread($conf[”file”]);
echo $content;
fclose($conf[”file”]);

}

Now that the calls to fread and fclose are guarded by a check on $conf[”file”],
Phantm determines that their argument will never evaluate to false and there-
fore accepts the program as type correct.

As a special case, Phantm also detects uninitialized variables and array
entries.6 If we omit the first line in the source above, Phantm will warn that
the first argument of fopen is uninitialized, which could be used by an attacker
to reveal the content of arbitrary accessible file on the server.

6 These errors were a major source of vulnerabilities in past PHP versions, because
the register globals server configuration option was activated by default.



Runtime Instrumentation for Precise Flow-Sensitive Type Analysis 5

Using runtime instrumentation. PHP allows the inclusion of dependencies
using dynamic paths. The following example, inspired by DokuWiki code, illus-
trates how such dynamic features rapidly result in a lot of false alarms when
analyzed purely statically:

$conf = array(’version’ ⇒ ’1.2.3’,
’path images’ ⇒ ’images/’,
’canWrite’ ⇒ is writeable(”data/”),
’path modules’ ⇒ is dir(’local/’) ? ’local/’ : ’default/’);

include ’config.php’;
if (empty($modules)) { // default modules

$modules = array(’smiley’ ⇒ array(’inc/smiley.inc’, ’inc/smiley2.inc’),
’acronyms’ ⇒ array(’inc/acronyms.inc’), ); }

foreach($modules as $files) {
foreach($files as $file) {

include getFullPath($conf, $file); } }
phantm collect state(get defined vars()); // record runtime state
function log msg($msg) {

global $conf;
if ($conf[’canWrite’]) {

file put contents(”data/log”, $msg, FILE APPEND); } }
function displaySmiley() {

global $conf;
echo $conf[’path images’].$conf[’smiley’][’image’][’:)’]; }

In this example, the list of modules is configuration-dependent. Also, based on
that list of modules, the code includes their associated files using a non-trivial
indirection to resolve the path via getFullPath(). Later on, the displaySmiley()
function accesses global and module-dependent configuration settings, assuming
that they are defined. Such code would be extremely difficult to analyze purely
statically without emitting any false positive. In order to analyze the rest of the
application, it is crucial to know the exact state of the program after all the
modules are initialized. Runtime instrumentation is a natural and convenient
way to obtain this information.

Benefits of hybrid analysis in program understanding. Note that
with runtime instrumentation, Phantm will inform the user that the call to
file put contents() is unreachable, if run in an environment where the data/ di-
rectory is not writeable. As another example, consider the following code:

if (is debug()) { $debug = true; } else { $debug = false; }
phantm collect state(get defined vars());
...
if ($debug) { ... }

Phantm detects that the final if branch is unreachable when the code runs in a
non-debug environment. Such warnings help the user understand which regions
of code are relevant in a given environment.
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3 Data-Flow Analysis for Flow-Sensitive Type Inference

We first outline the data-flow analysis that we use to infer types. Our description
applies regardless of whether the analysis starts from the initial program state
or from the dynamically recorded state captured as described in Section 4.

Concrete states. As a first step in providing the meaning of our analysis
representation, we present our model of runtime values, which are elements of
disjoint sets corresponding to the possible types (see Figure 1). A concrete pro-
gram state contains 1) a map from a set of constant strings (variable names) to
values, and 2) a heap. A heap maps object references to object states, where an
object state is a map from a set of constant strings (field names) to values.

V = {True, False, Null} ∪ Ints ∪ Floats ∪ Strings values
∪Maps ∪ Objs ∪ Resources

Maps = (Ints ∪ Strings) →֒ V maps
Tags = {StdClass, all classes defined in the program}

H = Objs →֒ (Tags × (Strings →֒ V)) heap states
S = (Strings →֒ V) × H program states

Fig. 1. Characterization of the concrete states. A →֒ B denotes all partial func-
tions from A to B.

DV♯ = {True♯, False♯, Null♯, Int♯, Float♯, String♯, defined values

Resource♯} ∪ Maps♯ ∪ Objs♯ ∪ Ints ∪ Floats ∪ Strings

AV♯ = {Undef♯} ∪ DV♯ all values
V♯ = Pfin(AV♯) ∪ {⊤} finite unions and top

Maps♯ = (Ints ∪ Strings ∪ {?}) →֒ V♯ abstract maps

H♯ = Objs♯ →֒ (Tags × (Strings →֒ V♯)) abstract heap states

S♯ = (Strings →֒ V♯) × H♯ abstract program states

Fig. 2. Definition of the abstract domain.

β(Null) = Null♯, β(False) = False♯, β(True) = True♯

β(i ∈ Ints) = i, β(s ∈ Strings) = s, β(f ∈ Floats) = f

β(o ∈ Objs) = o♯ ∈ Objs♯ where o was allocated at site o♯

β(m ∈ Maps) = β2(m
♯, 0)

β2(m /∈ Maps, i) = β(m)
β2(m ∈ Maps, i < 5) = {(β(k) 7→ β2(v, i + 1)) | (k 7→ v) ∈ m}

β2(m ∈ Maps, i ≥ 5) = (? 7→ AV♯)

Fig. 3. Abstraction β of variable values used to define the abstraction function α

Analysis representation and abstraction function. Our abstract domain
is presented in Figure 2. We use ⊥ to denote an empty set of elements of V♯.
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Figure 3 describes the meaning of abstract type elements using function β that
abstracts the values of values of individual variables. The analysis abstracts
boolean, string and integer constants by their precise value when it is known,
for instance when they serve as keys in a map. We refer to such precise values
as singleton scalar types. In maps, we use the special value ? to denote the set of
keys that are not otherwise represented by a constant. For example, to denote all
maps where the key ”x” is mapped to an integer and all other keys are undefined
we use the abstract value Map♯[”x” 7→ Int♯,? 7→ Undef♯].

We use allocation-site abstraction [3] for objects. Whereas Objs represents
the set of possible memory addresses in the heap, Objs♯ represents the set of
program points where objects can be created.

PHP does not distinguish between variables that have never been assigned
and variables that have been assigned to the value null. However, using null
as a value can convey an intended meaning, while reading from an unassigned
variable is generally an error. To distinguish between these two scenarios, our
analysis uses two different abstract values for these two cases and handles them
differently in the transfer function. Our analysis thus incorporates a limited
amount of history-sensitive semantics.

Our goal is to approximate the set of types a variable can admit at a given
program point. To do so, we consider for our abstract domain not only the values
representing a specific type (such as Int♯) and specific values (such as constant
strings), but also their combinations. We refer to such combinations of abstract
values as union types, and we use the symbol τ to denote such a type. Even
though we could in principle consider arbitrary union of arrays (i.e. maps), for
termination and efficiency reasons we chose to simplify them by computing them
point-wise,

Map♯[k♯
1
7→ τ1, k

♯
2
7→ τ2, . . . ,? 7→ τD] ⊔ Map♯[k♯

1
7→ τ ′

1, k
♯
3
7→ τ ′

3, . . . ,? 7→ τ ′

D] =

Map♯[k♯
1
7→ τ1 ∪ τ ′

1
, k♯

2
7→ τ2 ∪ τ ′

D, k♯
3
7→ τD ∪ τ ′

3
, . . . ,? 7→ τD ∪ τ ′

D].

The set of union types forms a lattice where the partial order corresponds to the
notion of subtyping. We denote type unions by the symbol ∪, which is the exact
version of ⊔. We define subtyping for unions by τ ⊑ (τ1∪τ2) ⇐⇒ τ ⊑ τ1∨τ ⊑ τ2

and (τ1∪τ2) ⊑ τ ⇐⇒ τ1 ⊑ τ∧τ2 ⊑ τ . We define the subtype relation point-wise
for array types:

Map♯[k1 7→ τ1, k2 7→ τ2, . . . ,? 7→ τD] ⊑ Map♯[k1 7→ τ ′

1, k3 7→ τ ′

3, . . . ,? 7→ τ ′

D]

⇐⇒ τ1 ⊑ τ ′

1
∧ τ2 ⊑ τ ′

D ∧ τD ⊑ τ ′

3
∧ . . . ∧ τD ⊑ τ ′

D

Therefore, Map♯[? 7→ ⊥] and Map♯[? 7→ ⊤] are respectively the subtype and the
supertype of all array types. Our approach relies on the fact that arrays in PHP,
contrary to arrays in e.g. Java, are not objects and do not introduce a level of
reference indirection.
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3.1 Transfer Functions

For space reasons we only highlight less standard aspects of our abstract transfer
functions. A compact description of the transfer functions of our analysis in Scala
is given in around 1000 lines of Scala source code.7

Type refinement. Since the PHP language allows programs with little to no
type annotations, it is often the case that types of values are completely un-
known before they are used. To reduce the number of false positives generated
by consecutive uses of such values, it is crucial that their types get refined along
the way. For example, the code $b = $a + 1; $c = $a + 2; generates only one no-
tice in Phantm. Namely, after the first statement Phantm assumes that $a is a
valid operand for mathematical operations, and refines its type to Int♯ ∪ Float♯.
To achieve this in the general case, Phantm computes the lattice meet between
the type lattice elements corresponding to the current and the expected variable
types. For example, a typical computation of the intersection of array types gives

Map♯[k♯
1
7→ τ1, k

♯
2
7→ τ2, . . . ,? 7→ τD] ⊓ Map♯[k♯

1
7→ τ ′

1, k
♯
3
7→ τ ′

3, . . . ,? 7→ τ ′

D] =

Map♯[k♯
1
7→ τ1 ⊓ τ ′

1, k
♯
2
7→ τ2 ⊓ τ ′

D, k♯
3
7→ τD ⊓ τ ′

3, . . . ,? 7→ τD ⊓ τ ′

D]

Such type refinement corresponds to applying an assume statement that is a
consequence of successful execution of an operation.

Conditional filtering. Phantm also applies type refinement for assume state-
ments implied by control structures. Note that PHP allows values of every type
to be used as boolean conditions, and gives different boolean values to inhabi-
tants of those types. This allows Phantm to do refinement on the types of values
used as boolean conditions. For example, the type null can only evaluate to false,
whereas integers may evaluate to either true or false (true unless the value is
0). This is especially useful for booleans, for which we also define true and false

as types. We can precisely annotate a function returning false on error, and a
different type on successful execution. Phantm can then use type refinement
to verify code that invokes a function and checks for errors in the invocation.
If the representation of the value becomes ⊥ during the refinement, Phantm

concludes that the branch cannot be taken, detecting unreachable code.

Enforcing Termination. Given our allocation-side model for handling the
heap, we identify two remaining potential sources of an infinite-height lattice:
nested arrays and unions of singleton scalar types. For arrays, we limit the
array nesting depth to a constant (five, in the current implementation). For
singleton scalar types, we make sure that new singleton scalar types cannot
be generated except when abstracting a literal or a run-time state value. Any
operation handling singleton scalar types will either have one of them as a result
type, or have a more general, widened type. We have found this approach to
work well in practice (see Figure 4 for analysis performance).

7 Please consult the file src/phantm/types/TypeTransferFunction.scala in the
repository at http://github.com/colder/phantm/

src/phantm/types/TypeTransferFunction.scala
http://github.com/colder/phantm/
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3.2 Reporting Type Errors using Reconstructed Types

When the analysis reaches its fixpoint, it has effectively reconstructed the pos-
sible types for all variables at all program points. At this point, Phantm makes
a final pass over the program control-flow graph and reports type mismatches.
Because transfer functions already perform type refinement, they contain all the
necessary information to report type mismatches, and we reuse them to report
type errors. Phantm reports a type mismatch whenever the computed type at
a given program point is not a subtype of the expected type. Phantm has a
number of options to control the verbosity of its warnings and errors.

4 Runtime Instrumentation

Many PHP applications can be separated into two parts: the bootstrapping
code and the core functionality of the application. The bootstrapping code is
responsible for handling configuration settings, loading external libraries, loading
sessions or including the appropriate definitions. Because this part of the code
strongly depends on the configuration of the environment at hand, it usually
cannot be analyzed statically. Compounding the problem of imprecision is that
these configuration values that are approximated imprecisely tend to be used
often in the rest of the code. To overcome this problem, Phantm includes a PHP
library to instrument the analyzed application; one uses it to define a milestone
in the code at which multiple aspects of the runtime state should get inspected.
Using the state captured at this program point as the alternative starting point
for static analysis, Phantm can use information that goes beyond the source
code and produce an overall better output.

4.1 State Recovery

The runtime information that Phantm extracts includes: 1) all defined vari-
ables and constants and their associated values 2) a trace of function and class
definitions, including the location in the code where the definition occurs, and
3) a trace of all included files. The library function used to mark the milestone
and to collect the runtime information is called phantm collect state. It takes an
array of variables as an argument, and is typically invoked as

phantm collect state(get defined vars());

When phantm collect state is called, the runtime state and the list of active
definitions are stored into a file. This file can then be imported back into Phantm

using the --importState option.
Phantm then loads the information and applies the following steps:

1. Attach the source of all included files to the AST of the main file.
2. Collect the function and class declarations that match the trace.
3. Create an abstract state s from the stored values for variables and constants.
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4. Locate in the AST the program point p with the call to phantm collect state,
and attach s to that program point.

5. Apply the static analysis starting from p.

In the reconstructed abstract state s, all scalar variables are associated to a sin-
gleton type that precisely describes the value from the collected state. A fresh,
virtual, allocation site is associated to each object that was known at instrumen-
tation time, and arrays are reconstructed with the correct set of keys and values
(up to a bounded array nesting depth). The only limitation in practice is that
resources cannot be reconstructed, because they typically cannot be serialized.

Summary of runtime analysis benefits. In our experience, runtime infor-
mation improves the precision of our analyzer in the following ways:

Global variables. Projects like DokuWiki make an extensive use of global
variables, e.g. to store configuration settings and database connections. Global
variables are difficult to analyze in a purely static approach. Because they are
typically defined in an initialization phase, our runtime instrumentation can
capture their value; Phantm can then use it in the static analysis phase.

Increased and precise definition coverage. Phantm records the files that have
been included during execution. Often all necessary libraries are included at the
time of the phantm collect state indications, which means that all necessary func-
tions are defined. When such dependencies are dynamic, they are not resolved
with purely static analysis, resulting in warnings about undefined functions and
results that are either useless or unsound (depending on whether missing the
functions are assumed to perform arbitrary changes or no changes).

5 Evaluation

We evaluated Phantm on three PHP applications. The first one is an email
client which we will call WebMail, similar in functionality to IMP.8 It has been
in production for several years. There are currently over 5000 users registered to
the service. WebMail was written in PHP 4.1 and has not evolved much since
its launch. The source code is not public but has kindly been made available to
us by the development team. Our second application is the popular open source
wiki project DokuWiki and the third application is SimplePie, an open source
library to manage the aggregation of RSS and Atom news feeds.

We first summarize the results of our evaluation without runtime instrumen-
tation in Figure 4. “Warnings” is the number of warnings Phantm emitted with
normal verbosity, while “Filtered Warnings” is using a special mode which fo-
cuses on most relevant errors. “Problems” is the number of problems identified,
including actual bugs, dangerous implicit conversions, statements that could is-
sue notices in PHP, and errors in annotations. We see that even for large code
bases, the time required by the analysis remains reasonable.

In the sequel we show how runtime instrumentation helped improve these
results. Finally, we describe a number of issues discovered with Phantm.

8 http://www.horde.org/imp/

http://www.horde.org/imp/
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Lines of code Warnings Filtered Warnings Problems Analysis Time

DokuWiki 31486 1232 270 76 244s
WebMail 3621 272 59 43 11s
SimplePie 15003 881 327 84 21s

Total 50110 2385 656 203 276 s

Fig. 4. Summary of evaluation results without runtime instrumentation.

Lines Without With ∆ Reduction

updateprofile 62 19 0 19 100%
act resendpwd 90 16 5 11 69%
check 143 14 4 10 71%
auth ismanager 70 12 6 6 50%
auth login 49 10 4 6 60%

Fig. 5. Effects of runtime instrumentation on DokuWiki. “Without” is the num-
ber of warnings emitted by Phantm without runtime instrumentation. “With”
is the number of warnings emitted by Phantm with the information from run-
time instrumentation about global variables and the type of arguments. In both
cases, the function body is analyzed entirely.

We evaluated the impact of runtime instrumentation on DokuWiki and Web-
Mail. The code of of both projects is structured as a loading phase followed by
code that uses the configuration data. Consequently, the benefits of runtime
information are considerable. We illustrate the impact of runtime information
for DokuWiki in Figure 5, listing several functions among those for which run-
time instrumentation brought the most significant improvement. Note that a
comparison of the total number of warnings is not sensible, because using in-
strumentation can add code to the analysis that cannot be discovered statically.

Observe that we obtain a substantial reduction in the case, for example, of
updateprofile. This is explained by the fact that this function primarily deals
with global variables, user-provided form elements, and the current logged user,
which is runtime-dependent. In essence, such functions illustrate the limitations
of purely static analyses, and show how helpful runtime instrumentation was in
overcoming these limitations.

Overall, for functions analyzed both with and without runtime informa-
tion, 109 warnings (12%) were eliminated when using runtime information for
DokuWiki and 18 (12%) for WebMail. Using the instrumentation had no notable
impact on the analysis time; the overhead was only in the one-time loading of
the saved state, which takes around one second in our implementation.

5.1 Issues Identified by Phantm

We now describe a small selection of issues in the three applications that we
identified by inspecting the warnings emitted by Phantm.
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WebMail bug 1) In a function handling the conversion from one string format
to another, Phantm emitted a warning on the following line:

$newchar = substr($newcharlist, strpos($charlist, $char), 1);

The warning indicates that substr() expects a string as its second argument,
but that in this case the type False ∪ String was found. The developers were
assuming that $charlist would always contain $char even though it was not always
the case. Because of this bug, some of the passwords were improperly stored,
potentially resulting in email accounts being inaccessible from WebMail and thus
compromising WebMail’s core functionality.

WebMail bug 2) In several places, two distinct functions were called with too
many arguments. This was apparently the result of an incomplete refactoring
during the development. Although these extra arguments did not cause any bug
(they are silently ignored by the PHP interpreter), they were clearly errors and
could have led to new bugs as the code evolves further.

WebMail bug 3) In a file containing definitions for the available languages,
Phantm reported a warning on the second of the following lines:

$dict[”en”][”fr”]=”anglais”;
$dist[”en”][”de”]=”englisch”;

The first line is well formed and stores the translation for “English” in French.
The second line is accepted by the standard PHP interpreter even though $dist is
undefined in the program; it contains a typographic error preventing the desired
value from being stored in the array $dict.

WebMail bug 4) The tool identified several warnings for code such as $i = $str
* 1, which casts a string into an integer using the implicit conversion triggered
by the multiplication. Although it is not incorrect, it is flagged as bad style.

DokuWiki bug 1) We found multiple instances where the code relied on im-
plicit conversions. Even though this is a commonly used feature of PHP, relying
on them often highlights programming errors. For example, the following line

$hid = $this→ headerToLink($text,’true’);

calls the method headerToLink which is defined to take a boolean as its second
argument, not a string. This code is not wrong per se, as the string ”true”
evaluates to true, however, ”false” would evaluate to true as well!

DokuWiki bug 2) Keeping code documentation synchronized with the code
itself is often problematic. As an illustration of this fact, Phantm uncovered
over 25 errors in the existing annotations of arguments and return values.

DokuWiki bug 3) We found a potential bug resulting from an unchecked file
operation in the following function:

function bzfile($file) {
$bz = bzopen($file,”r”);
while (!feof($bz)){ $str = $str . bzread($bz,8192); }
bzclose($bz);
return $str;

}
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If bzopen fails to open the file denoted by $file, it will return false and as a
consequence the call to feof will always return false, resulting in an infinite
loop.

SimplePie bug 1) The following line of code assumes different operator prece-
dence rules than those used by PHP:

if (... && !($file→method & SP FILE SRC REMOTE === 0 ...))

The code first compares the constant SP FILE SRC REMOTE to 0, which always
results in false, and then computes the bitwise conjunction, while the goal is
clearly to check whether a flag is set in $file→method. Phantm finds the error
by reporting that the right-hand side of & is a boolean value, and that an integer
was expected.

SimplePie bug 2) Phantm flags the following code as type incorrect:

if (... && strtolower(trim($attribs[’’][’mode’]) == ’base64’))

An inspection of the statement shows that the right parenthesis of the call to
strtolower is misplaced, in effect computing the lower case version of a boolean.
As a result, the computation is incorrect when base64 is spelled with a capital
“b”, for instance.

6 Related Work

Data-flow analysis for type inference. Our work performs type inference
using an abstract interpretation, resulting in a flow-sensitive static analysis. A
systematic analysis of type analyses of different precision is presented in [4].

Static analysis of PHP. Existing work on statically analyzing PHP is pri-
marily focused on the specific task of detecting security vulnerabilities and pre-
venting attacks. Pixy [10] is a static analysis tool checking for vulnerabilities
such as cross site scripting (XSS) or SQL injections, which remain the main
attack vectors of PHP applications. Wassermann and Su [14] present work on
statically detecting SQL injections using grammar-based specifications. Huang
et al. [7] present a technique to conservatively prevent, rather than detect, sim-
ilar attacks. They use a combination of code instrumentation, to automatically
secure PHP scripts, and a static taint analysis, to reduce the number of addi-
tional checks. All these approaches focus on one analysis domain and make use of
specific techniques and annotations. Phantm on the other end ambitions to be
useful in improving the quality of arbitrary PHP code and code documentation,
while it can also serve to detect vulnerabilities, as illustrated in Section 5.1.

It is only recently that some work have been focusing on static analysis of
types in PHP applications. Notably, the Facebook HipHop project9 is relying
on a certain amount of type analysis in order to optimize the PHP runtime. In
essence, HipHop tries to find the most specific type used in order to map it to a

9 http://github.com/facebook/hiphop-php/

http://github.com/facebook/hiphop-php/
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native C++ type. In case such a type cannot be inferred, it simply falls back to
a generic type.

The recently released tool PHPLint
10 aims to detect bugs through type er-

rors. Even though its goal is close to the present work, Phantm has a much more
precise abstract domain, and therefore reports many fewer spurious warnings.
For instance, PHPLint fails to analyze precisely the initial example in Sec-
tion 2 because it does not support arrays containing mixed types. Furthermore,
it does not have union types, so many PHP functions will not be represented
both soundly and precisely enough to 1) detect defects such as the Dokuwiki
bug 3 of Section 5.1 and the fopen example of Section 2, while 2) avoiding false
warnings when the developer correctly checks for return codes.

Type inference for other languages. Researchers have also considered flow-
sensitive type inference in other languages. Soft typing approach has been ex-
plored primarily in functional languages [5, 1]. It supports first class functions,
but is not flow-sensitive and does not support value-array types.

In [11] researchers present an analysis of Cobol programs that recovers in-
formation corresponding to tagged unions. The work on the C programming
language [9, 2] deals with a language that allows subtle pointer and address
arithmetic manipulations, but already contains significant static type informa-
tion. PHP is a dynamically type safe language in that the run-time system stores
dynamic type information, which makes e.g. ad-hoc tagged unions often unnec-
essary. On the other hand, PHP by itself provides no static type checking, which
makes the starting point for analysis lower. In addition to considering a different
language, one of the main novelties of our work is the support for not only flat
types but also heterogeneous maps and arrays.

In [8] the authors present a type analysis for JavaScript also based on data-
flow analysis. The abstract domain for array types presented in our paper goes
beyond what is supported in [8]. On the other hand, the support for interpro-
cedural analysis and pointer analysis in [8] is more precise than in the present
paper. The main difference, however, is that we demonstrate the potential of
combining dynamically computed program states with data-flow analysis.

Combining static and dynamic analysis. Combining static and dynamic
analysis arises in a number of approaches. Our approach is closest to [12] and
[15]. Promising approach have been developed that combine testing, abstraction,
theorem proving [16] or combine may and must analysis [6]; these approaches
compute a sound overapproximation, in contrast to our runtime information that
performs a sample of an early stage of the execution to estimate properties of a
dynamic environment.

7 Conclusion

Our experience with over 50000 lines of PHP code showed our tool to be fast
enough and effective in identifying serious issues in code such as exploits, infinite

10 http://www.icosaedro.it/phplint/

http://www.icosaedro.it/phplint/
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loops, and crashes. The use of runtime information was shown to be helpful in
reducing the number of false alarms in the tool and focusing the attention on true
errors. We therefore believe that it is well-worthwhile to build into future static
analyses tools the ability to start the analysis from a recorded concrete program
state. This approach overcomes several limitations of purely static approach
while preserving certain predictability that help interpret the results that it
computes. Our tool Phantm is available for download and evaluation, and we
report verifiable experimental results on significant code bases, including popular
software whose source code is publicly available.
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