
Towards Complete Reasoning

about Axiomatic Specifications

Swen Jacobs and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract. To support verification of expressive properties of functional
programs, we consider algebraic style specifications that may relate mul-
tiple user-defined functions, and compare multiple invocations of a func-
tion for different arguments. We present decision procedures for reason-
ing about such universally quantified properties of functional programs,
using local theory extension methodology. We establish new classes of
universally quantified formulas whose satisfiability can be checked in
a complete way by finite quantifier instantiation. These classes include
single-invocation axioms that generalize standard function contracts, but
also certain many-invocation axioms, specifying that functions satisfy
congruence, injectivity, or monotonicity with respect to abstraction func-
tions, as well as conjunctions of some of these properties. These many-
invocation axioms can specify correctness of abstract data type imple-
mentations as well as certain information-flow properties. We also present
a decidability-preserving construction that enables the same function to
be specified using different classes of decidable specifications on different
partitions of its domain.

1 Introduction

A promising approach to precision and scalability in software verification is to let
developers write the specifications of procedures, then use modern satisfiability-
modulo theory solvers to automatically prove verification conditions that use
such specifications. Recent results in modular verification have been obtained
using e.g. tools VCC [2] and Jahob [12]. In this paper, we follow the idea of
the high-level analysis of Hob [10] tool, and focus particularly on checking that
specified functions are correctly used to implement the desired higher-level func-
tionality. We simplify the problem by considering purely functional instead of
imperative code. However, we consider more complex program properties than
those checked by most previous automated verification approaches. Most of the
existing approaches for specifying a function f use contracts that establish a re-
lationship between a given input, x, and the output of the function, f(x). Such
contracts can be expressed as universally quantified statements ∀x.Φ(x, f(x)),
where Φ is a formula expressing the desired property of the function. Contracts
are therefore a very special case among the classes of function specifications.

2 Swen Jacobs and Viktor Kuncak

Algebraic specifications. In this paper, we consider a broader class of spec-
ifications that follow algebraic specification style. Our specifications may relate
multiple different functions, using, for example, abstraction functions to specify
the behavior of an abstract data type implementation. Moreover, our properties
may include multiple universal quantifiers, which allows us to express congru-
ence, monotonicity, injectivity, and non-interference properties of functions. Such
properties cannot be directly expressed using standard pre/post condition spec-
ifications, which refer to an arbitrary, but only one function invocation.

Sound, complete and terminating approach. We study the verification
problem for such properties from the theorem proving point of view. In analogy
with modular verification of contracts, our verification conditions (VCs) contain
as assumptions certain universally quantified formulas (specifying the behavior
of basic functions). As the goal, the VCs contain further universally quantified
formulas that express the behavior of functions composed from basic ones. The
key challenge in proving such VCs is the presence of quantifiers in their assump-
tions. Current SMT provers typically have incomplete support for quantifiers.
Therefore, they typically cannot establish that a quantified formula is satisfiable.
This limits their ability to provide meaningful counterexamples to the developer.

In this paper, we overcome the incompleteness of quantifier reasoning for
a number of properties of interest. We use the methodology of local theory
extensions [13] to obtain complete quantifier-instantiation strategies. We there-
fore arrive at decision procedures for quantified formulas about functions in the
presence of decidable theories of primitive operations (such as linear arithmetic
and algebraic data types). The procedure can prove the validity of universally
quantified properties of functions, where functions themselves are specified using
universally quantified axioms. Our algorithms are counterexample generating de-
cision procedures. They terminate for all specifications in the identified classes.
Given a formula, they either prove its validity, or generate a counterexample.
The completeness for counterexamples is a significant aspect of usability, be-
cause it helps users identify concrete inputs that cause errors. At the same time,
the completeness for generating proofs provides a higher degree of confidence
compared to bounded-exhaustive test-case generation [4].

Single-invocation and many-invocation axioms. As our first class of
properties that specify a function f we consider single-invocation axioms of
the form ∀x̄.Φ(x̄, f(x̄)) for a formula Φ in a decidable theory. We show that
it suffices to instantiate the universal quantifier over x̄ only with ā such that
f(ā) occurs in the property being proved. Such completeness of instantiation
has not been stated before, and is not to be taken for granted: we show that
such instantiation is incomplete for general two-invocation axioms of the form
∀x̄, ȳ.Φ(x̄, ȳ, f(x̄), f(ȳ)). Despite this limitation, we identify a number of useful
subclasses of two-invocation axioms that also remain local and decidable. These
include properties of functions such as monotonicity, injectivity, congruence, and
non-interference, all under a given abstraction function.

Locality of sufficiently surjective recursive abstractions. The results
on both single-invocation and many-invocation axioms are particularly useful

Towards Complete Reasoning about Axiomatic Specifications 3

in the presence of recursively defined functions. Recent results [15, 17] show
the decidability of theories of algebraic data types with recursive abstraction
functions which includes e.g. functions to compute set or multiset content, size,
or height of algebraic data type (ADT) values. We verify that, like [15], the
results of [17] can be naturally explained using Ψ -locality. We present a more
abstract algorithm than the description in [17], possibly leading to more efficient
future implementations.

Combination results. Given several classes of axioms for which reasoning is
complete, a question arises whether they can be combined. We consider combina-
tions of axioms that are separately local, and show several positive and negative
results for the locality of their combinations. Finally, we give a positive result
on piecewise combinations of local axioms. This is of significant practical value,
because it enables functions to be specified using different local axiomatizations
on different regions of their input domain, and generates a local axiomatization
as a result.

In summary, we show a number of new decidability results for theories that
support quantifiers, by showing that these quantifiers can be finitely instantiated
in a complete way. Thus, we extend the predictability and efficiency of quantifier-
free reasoning to an interesting class of axiomatically specified functions. Proofs
have been omitted due to lack of space. They can be found in the technical
report [8].

2 Example

Fig. 1 shows an illustrative functional program in the notation of the Scala
programming language. We specify functions using global assertions written in
Scala extended with a ∀ operator for universal quantification.

Many interesting properties of functional programs can be expressed using
contracts. Contracts assign a pre- and a postcondition to every function, where
the postcondition may depend on the value of function parameters. The specifi-
cation of function merge in Fig. 1 illustrates how we can encode contracts using
universally quantified axioms. The result of the function is a list containing the
elements of both input lists. We express this requirement using an abstraction
function content, mapping a list to the set of elements it contains. We show
locality for such specifications in sections 4 and 5.

However, many other interesting properties of functions are not expressible
through contracts, because they compare the values of different invocations of
the function. Consider a user-defined equality on data structures, defined by the
abstraction function content: x ∼ y ⇐⇒ content(x) = content(y). By definition,
∼ is an equivalence relation, but it may or may not satisfy the congruence axiom:
x ∼ y → f(x) ∼ f(y). Congruence states that the equivalence is preserved under
application of data structure operations, and is generally a desirable property.
For example, the function even in Figure 1 takes a list and returns the sublist
containing the (integer) elements that are even numbers. The second assertion

4 Swen Jacobs and Viktor Kuncak

def merge(l1: List, l2: List): List = { ... }
assert(∀l1 : List ⇒ ∀l2 : List ⇒ content(merge(l1,l2)) = content(l1) ∪ content(l2))

def even(l : List): List = { ... }
assert(∀l: List ⇒ content(even(l)) ⊆ content(l))
assert(∀l1 : List ⇒ ∀ l2 : List ⇒

content(l1) = content(l2) → content(even(l1)) = content(even(l2)))

def insert(c : Int, l: List): List = { ... }
assert(∀c: Int ⇒ ∀l1 : List ⇒ ∀l2 : List⇒

content(l1) ⊆ content(l2) → content(insert(c,l1)) ⊆ content(insert(c,l2)))

def fill(l: List): List = { ... }
assert(∀l: List ⇒ if (content(l).size < 3) content(fill(l)).size=3

else content(fill(l)) = content(l))

def main(c: Int, l1: List, l2: List): List = merge(even(l1), fill(insert(c,l2)))

case class Employee(name : String, age : Int, bankAccountNo : Int)
def samePublic1(e1 : Employee, e2 : Employee) : Boolean =
{ e1.name = e2.name && e1.age = e2.age }

def samePublic(el1 : List[Employee], el2 : List[Employee]) : Boolean =
zip(el1,el2).forAll(samePublic1) && length(el1)=length(el2)

assert(equivalence(samePublic))

def averageAge(emp : List[Employee]) : Int = { ... }
// information flow property: averageAge does not depend on private data
assert(∀l1: List[Employee] ⇒ ∀l2: List[Employee] ⇒

samePublic(l1,l2) → averageAge(l1) = averageAge(l2)

Fig. 1. Example of Functional Program Specified Using Axioms

after even definition shows how to specify the congruence of even with respect to
equivalence determined by content.

For other functions, such as insert in Fig. 1, we may require stronger proper-
ties, such as monotonicity with respect to the pre-order. The pre-order can be
induced by an abstraction function that maps into an ordered structure. In case
of the content abstraction, the starting point is the subset ordering, and we define
x � y ⇐⇒ content(x) ⊆ content(y). Then, we expect a function that inserts a
given element into the data structure to satisfy x � y → insert(c, x) � insert(c, y).

It can also be useful to specify the data that a function is allowed to ac-
cess. For example, averageAge in Fig. 1 is a function that should not access
the private information about employees. We specify this by first defining an
equivalence relation samePublic1 on employees, abstracting from the private data
bankAccountNo, then an equivalence relation on lists of employees (which are
equivalent if they have the same length and elements at the same position in
a list are in relation samePublic1), and finally assert that whenever two lists are

Towards Complete Reasoning about Axiomatic Specifications 5

equivalent wrt. samePublic, then averageAge will give the same result for both lists.
The results in Section 6 ensure complete reasoning about specifications that take
the form of congruence, monotonicity, or injectivity.

We may also wish to combine specifications using conjunctions or if-then-else.
As an example of combination using conjunction, the function even in Fig. 1
should satisfy the congruence, and, in addition, it should return a subset of
the original list. As an example of combination by if-then-else, the fill function
should insert additional elements into lists with less than 3 elements (so that the
result has 3 distinct elements), and otherwise should not change the list content.
Sections 7 and 8 establish results on preserving the decidability of reasoning
when combining specifications.

As with the usual contracts, our overall goal is to verify partial correctness
of programs in a modular way. We wish to check the properties of functions
such as main in Figure 1, assuming the assertions of the functions it calls. The
properties we check can be universally quantified and can include contracts, as
well as e.g. congruence or monotonicity. When the function verified (e.g. main) is
not recursive, proving such contracts reduces to deciding quantifier-free formulas
in the theory given by the specifications of the functions called. The approach
that we introduce allows us to decide such questions. Moreover, if a property
does not hold, we obtain a counterexample that points us to the weakness in our
specification or code, which we can use to make the appropriate correction.

3 Background

The notion of local theory extensions is key to our decidability results. We
give a short introduction to the concept, which was developed by Sofronie-
Stokkermans [13]. For more details, we refer to [5, 7, 13].

Theories and models. Consider a signature Π = (Σ, Pred), where Σ is a
set of function symbols and Pred a set of predicate symbols (both with given
arities). A Π-structure M consists of a non-empty set of elements M , a total
function fM : Mn → M for every n-ary function symbol f ∈ Σ, as well as a set
PM ⊆ Mn for every n-ary predicate symbol P ∈ Pred. We regard theories as
sets of formulas closed under consequences, defined by a set of axioms. A given
(Π-)structure M is a model of a theory T iff every axiom of T is satisfied by M.
If a formula F is satisfied by a structure M, we write M |= F . If F is true in all
models of T , we write |=T F . If no model of T satisfies F , we write F |=T �,
where � represents the empty clause.

Local theory extensions. Theory extensions extend a given theory with new
function symbols, defined by a set of axioms. Locality of the extension ensures
that reasoning about these symbols can be reduced to reasoning in the base
theory by finite instantiation of the axioms. The new symbols are called extension
symbols, terms starting with extension symbols are extension terms.

Consider a background theory T with signature Π0 = (Σ0, Pred), and an
extension Π = (Σ0∪Σ1, Pred) of this signature with extension symbols in Σ1. An
augmented Π-clause is a Π-formula ∀x. Φ(x)∨C(x), where Φ(x) is an arbitrary

6 Swen Jacobs and Viktor Kuncak

Π0-formula and C(x) is a disjunction of Π-literals. We say that it is Σ1-ground
if C(x) is ground. A theory extension of a theory T with signature Π0 is given by
a set K of augmented Π-clauses, representing axioms for the extension symbols.

A substitution σ is a function mapping variables to terms. By Fσ we denote
the result of simultaneously replacing each free variable x in F with σ(x). For
a set of formulas K, define st(K) as the set of ground subterms appearing in K.
For a set of Π-formulas K and a Π-formula G, let

K[G] = { Fσ | F ∈ K and σ is such that
f(t)σ ∈ st(K ∪ G) for each extension subterm f(t) of F,
and σ(x) = x if x does not appear in an extension term },

i.e. K[G] is the result of matching extension terms in K to ground terms in
K∪G. We consider theory extensions with the following locality property (defined
in [13]):

(ELoc) For every set G of Σ1-ground augmented Π-clauses, we have
K ∪ G |=T � ⇐⇒ K[G] ∪ G |=T �

Decidability and model generation. Assuming (ELoc), satisfiability of G
modulo T ∪K is decidable whenever K[G]∪G is finite and belongs to a decidable
fragment of T (plus free functions). In particular, if G is ground, and all variables
in K appear in extension terms, then K[G] ∪ G is ground, and decidability of
the ground fragment of T is sufficient. As mentioned in [5], model-generating
decision procedures for T can be used to produce models for T ∪ K.

Identifying local theory extensions. To formulate a sufficient condition for
theory extensions satisfying (ELoc), we need some additional definitions.

A partial Π-structure is the same as a Π-structure, except that function
symbols may be assigned partial functions. In a partial structure M, terms are
evaluated wrt. a variable assignment β as in total structures, except that the
evaluation of β(f(t1, . . . , tn)) is undefined if either (β(t1), . . . , β(tn)) is not in the
domain of fM, or at least one of the β(ti) is undefined. A partial Π-structure
M and a variable assignment β weakly satisfy a literal L if either all terms in L
are defined and the usual notion of satisfaction applies, or if at least one of the
terms in L is undefined. Based on weak satisfaction of literals, weak satisfaction
of formulas is defined recursively in the usual way. If M satisfies F for all variable
assignments β, M is a weak partial model of F .

For Π = (Σ, Pred), a total Π-structure M is a completion of a partial Π-
structure M′ if (1) M = M ′, (2) for every f ∈ Σ: fM(x) = fM

′

(x) whenever
fM

′

(x) is defined, and (3) for every P ∈ Pred: PM = PM
′

.
For extensions of a theory T with signature Π0 = (Σ0, Pred) with a set of

axioms K with signature Π = (Σ0∪Σ1, Pred), define the completability property

(Compw) For every weak partial Π-model M of T ∪ K where Σ0-functions are
total, there exists a completion which is a model of T ∪ K

A formula F is Σ1-flat if it does not contain occurrences of function symbols
below a Σ1-symbol. A Σ1-flat formula F is Σ1-linear if all extension terms in F

Towards Complete Reasoning about Axiomatic Specifications 7

which contain the same variable are syntactically equal, and no extension term
in F contains two or more occurrences of the same variable.

Theorem 1 (Completability implies extended locality [13]). If K con-
sists of Σ1-linear augmented clauses and the extension of T with K satisfies
(Compw), then it also satisfies (ELoc).

Combinations and chains of extensions. For combining several local theory
extensions with different extension functions, two approaches have been consid-
ered in the literature. If we have two extensions of T with K1 and K2, respec-
tively, that introduce disjoint sets of function symbols and individually satisfy
(Compw), then the extension of T with K1 ∪ K2 also satisfies (Compw) [14]. On
the other hand, an extended theory can be extended again, so we can extend T
with K1, then T ∪ K1 with K2, and so on, if every extension satisfies (Compw).

These combination results allow us to efficiently reason about programs con-
taining multiple user-specified functions: if two functions are defined separately
(i.e. they don’t appear in the definition of each other), then the combination of
both axioms is also a local extension, and if one is defined in terms of the other,
we can use a chain of extensions. There are currently no combination results for
mutually recursive functions.

In sections 5 to 8, we introduce several classes of axioms and prove that they
satisfy (Compw), and thus the locality property (ELoc).

4 Reasoning about ADTs with Abstractions

In this section, we introduce a logic that allows us to reason about axiomatic
specifications of functional programs. We consider the theory of ADTs with
recursive abstraction functions introduced in [17] as our base theory, and use the
framework of local theory extensions [13] to reason about axiomatic specifications
of additional functions that manipulate these data structures. The syntax of our
logic, parametrized by element and collection theory, can be found in Fig. 2. In
the rest of the paper, we will prove decidability of this logic.

Several decidability results for recursive functions over algebraic data types
are presented in [15, 17]. Whereas [15] uses local theory extensions, [17] uses a
criterion of sufficient surjectivity, related to the notion of counting constraints
of [19]. In the following, we give a decision procedure that follows [17] but uses
local theory extensions. It decides satisfiability of ground formulas in our logic
(see Fig. 2; we ignore additional function symbols f 6∈ ΣT for now, but they
could easily be added as free function symbols).

We present our decision procedure for the specific ADT of binary trees,
but it generalizes to data types with other constructors. Our decision proce-
dure is parametrized by an element theory TE , a collection theory TC and an
abstraction function α, which is recursively defined on the tree structure by
Kα = {α(Leaf) = empty, ∀t1, e, t2. α(Node(t1, e, t2) = combine(α(t1), e, α(t2))},
where empty is a ground term in TC and combine is a function which maps two

8 Swen Jacobs and Viktor Kuncak

Element terms: E ::= e | TE

Tree terms: T ::= t | Leaf | Node(T, E, T) | Left(T) | Right(T) | f(T) for f 6∈ ΣT

Collection terms: C ::= c | α(T) | TC

Element literals: LE ::= LE (given by TE)
Tree literals: LT ::= T = T

Collection literals: LC ::= C = C | C ≤ C | LC (given by TC)
Ground Formulas: ϕ ::= LE | LT | LC | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

Axioms: φ ::= ∀x.Φ(x, f(x))⋆ | (Con) | (Mon) | (Inj)
Conjunctive comb.: φ∧ ::= φ | (Con) ∧ (Mon) | (Con) ∧ (Inj) | ∀x.Φ(x, f(x)) ∧ (Con)⋆

| ∀x.Φ(x, f(x)) ∧ (Inj)⋆ | ∀x.Φ(x, f(x)) ∧ (Con) ∧ (Inj)⋆

Piecewise comb.: φ∨ ::=
V

j

`

(
V

i
ϕj(xi)) → φ∧

j

´⋆

Formulas: φ+ ::= φ∨ ∧ ϕ

Cases marked with ⋆ require additional side conditions, see Sect. 5 to 8.

Fig. 2. Syntax of our logic

arguments of collection sort and one argument of element sort to a value of
collection sort.1 We assume that α is sufficiently surjective as defined in [17].

Key steps of the decision procedure. We give a decision procedure for
conjunctions of literals. It can be lifted to arbitrary ground formulas by using
the well-known DPLL(T) approach.

Purification and flattening. We purify the formula s.t. every literal only
contains symbols from one of the theories TE , TC or TT (the theory of trees).
Then we flatten tree terms s.t. constructors and selectors are only applied to
tree variables (and arbitrary element terms), and tree disequalities do not contain
non-variable terms. Both can be done by introduction of fresh variables.

Elimination of selectors. We rewrite equations t = Left(t1) to t1 =
Node(tL, e, tR) ∧ t = tL, and t = Right(t1) to t1 = Node(tL, e, tR) ∧ t = tR,
where tL, tR and e are always fresh variables.

Unification of tree literals. We apply unification on the positive tree literals
(see [17] for details). If unification fails, we have shown unsatisfiability. Other-
wise, we obtain a solution σ that can be seen as a substitution for tree and
element variables. We apply this substitution to the formula and call the result
G. Tree variables t with σ(t) = t will in the following be called parameter vari-
ables. If for any disequality x 6= y between tree or element variables we have
σ(x) = σ(y), then we also have shown unsatisfiability. Otherwise, we continue.

Adding additional constraint P . To ensure equisatisfiability to the original
problem, we have to add an additional constraint P that depends on the ab-
straction function α, as well as on the variables and terms of tree sort in the
given formula. Generation of P for content and other abstraction functions is
given in [17].

Partial evaluation of α. We partially evaluate α in G ∧ P by adding,
for every term α(Node(T1, e, T2)), the recursive definition α(Node(T1, e, T2)) =

1 Typically, we consider theories of sets or multisets as collection theory, but integers
or even booleans can also be considered as “collections”.

Towards Complete Reasoning about Axiomatic Specifications 9

combine(α(T1), e, α(T2)), and recursively for the subterms T1 and T2. The set of
all these recursive definitions, including α(Leaf) = empty, will be called Kα[G]
(note that all terms in P which appear below α are also in G, so the set of
needed definitions does not depend on P). G may still contain equalities of
the form α(Tj) = cj , where Tj may be either a parameter variable or a term
containing parameter variables. In the latter case, Kα[G] contains all recursive
definitions to uniquely determine α(Tj), given the values α(ti) for all parameter
variables ti and values of element variables ei appearing in Tj .
Solving the resulting problem. The resulting formula, when considering α as
a free function symbol, is equisatisfiable to the original one. We can check its
satisfiability with a combined decision procedure for TT ∪ TC ∪ TE .

Correctness of the decision procedure. It is clear that the preprocessing
steps are satisfiability-preserving. Therefore, we only state that the constraint G
(in the theory TT ∪Tc ∪TE ∪Kα, where Kα are the universal recursive definitions
of α) is equisatisfiable to the resulting formula G ∧ P ∧ Kα[G] in TT ∪ Tc ∪ TE .

Theorem 2 (Correctness of Decision Procedure for Abstraction Func-
tions). Let G be a conjunction of literals which has been preprocessed as men-
tioned above, let P be as defined in [17] (based on G and α), and Kα and Kα[G]
as defined above. Then G |=TT∪Tc∪TE∪Kα

� ⇐⇒ G ∪ P ∪Kα[G] |=TT∪Tc∪TE
�.

Compared to [17], we improved efficiency of the decision procedure by re-
moving the case split on (dis)equalities of variables, which are now partially
determined by unification, and then negotiated by a combined decision proce-
dure for the base theory. Also, we do not need to convert formula P to DNF,
since our correctness argument works for arbitrary boolean structure of P .

5 Complete Reasoning about Single-Invocation Axioms

Suppose we are given a function f , and we wish to prove P (f(t1), . . . , f(tn))
for all values of free variables in P . In condition P , function f is applied to
arbitrary terms t1, . . . , tn from some decidable theory, such as the theory of
linear arithmetic, lists, sets, or trees. We wish to prove P valid using only a
contract-like specification of f as an assumption. Consider a contract for f with a
quantifier-free precondition Pre(x) and a quantifier-free postcondition Post(x, r),
with r denoting the resulting value. We model such a contract as the formula
∀x.Φ(x, f(x)), where Φ(x, r) is Pre(x) → Post(x, r). Our goal is to show that
the contract implies the desired property, that is, that the following formula is
valid: (∀x.Φ(x, f(x))) → P (f(t1), . . . , f(tn)). Equivalently, we aim to show that
(∀x.Φ(x, f(x))) ∧ ¬P (f(t1), . . . , f(tn)) is an unsatisfiable formula.

In this section we show that we can reduce such satisfiability prob-
lems to the simpler quantifier-free satisfiability problem

(
∧n

i=1
Φ(ti, f(ti))

)

∧
¬P (f(t1), . . . , f(tn)), in which the universal quantifier is instantiated only with
the terms ti. Note that the above instantiation confirms two important special
cases. First, when Φ(x, r) specifies the behavior of f completely, that is, r is

10 Swen Jacobs and Viktor Kuncak

unique for a given x, then the axiom is simply a form of one-point rule applied
to f as a variable. Second, if we view P as a program that invokes f , then the
instantiation principle above reflects modular reasoning by inlining contracts.
While it is known that such reasoning is sound, this is usually shown using oper-
ational semantics. In our formulation, the approach is sound thanks to quantifier
instantiation. Moreover, the following theorem shows that this approach is also
complete, as a consequence of a locality result.

Theorem 3 (Locality for Single-Invocation Axioms). Let T be a theory
with signature Π0 = (Σ0, Pred), f a fresh function symbol and Φ(x, f(x)) a
(Σ0 ∪ {f}, Pred)-formula with x as the vector of all free variables and f(x) the
only non-ground term containing f . Then (Compw) holds for the extension of T
with ∀x. Φ(x, f(x)) if and only if |=T ∀x∃y. Φ(x, y).

By Thm. 1, (Compw) implies (ELoc), which ensures that we can decide satisfia-
bility of formulas with respect to such axioms by simply adding one instance of
the axiom for every occurrence of the function symbol in a given formula.2

The side condition |=T ∀x∃y. Φ(x, y) guarantees that the specification is
consistent. It holds whenever there exists a function f with ∀x. Φ(x, f(x)). Con-
sequently, if we have proved that some function satisfies its contract, we can use
finite instantiation to reason about the contract in a complete way.

Let us also remark that Thm. 3 subsumes the decidability result from field
constraint analysis [18] in a more systematic form, by expressing it as a locality
result. We have shown that this result applies also to contracts of functional pro-
grams. Moreover, in addition to better understanding, locality gives us efficient
implementations in the form of incremental instance generation [6].

Loss of locality for general many-invocation axioms. In general, the
straightforward modification of Thm. 3 for axioms with multiple function invo-
cations does not hold. Consider the background theory of integers TZ and its
extension with strict monotonicity

∀x1, x2. x1 < x2 → f(x1) < f(x2). (SMon)

Although the axiom is consistent, the extension of TZ with (SMon) is not local
(and thus cannot satisfy (Compw)). Indeed, take G = {f(0) = 0, f(2) = 1}.
Then (SMon)[G] ∪ G is TZ-satisfiable, but (SMon) ∪ G is unsatisfiable, because
a strictly monotonic function on integers cannot have f(0) = 0 and f(2) = 1.
Despite this negative result, in the next sections we show that in a number of
cases of interest we can also obtain locality results for many-invocation axioms.

6 Complete Reasoning about Many-Invocation Axioms

In this section, we push decidability of reasoning over axiomatic specifications
beyond function contracts to more expressive axiom classes.

2 Note that in this case, we do not need the restriction to augmented clauses, since for
any G the local instantiation of Φ(x, f(x)) can easily be shown to be equivalent to
the instantiation of its augmented CNF (where Π0-formulas are treated as literals).

Towards Complete Reasoning about Axiomatic Specifications 11

Congruence. We want to consider axiomatic specifications which go beyond
contracts, in that they allow multiple function invocations. We start with con-
gruence properties, as defined for function even in Fig. 1.

We consider equivalence relations ∼ on data types given by abstraction func-
tions like content, i.e. x ∼ y ⇐⇒ content(x) = content(y).

The following result allows us to reason about specifications ensuring con-
gruence of a function wrt. an equivalence relation ∼. In the following Theorem,
the equivalence relation ∼̇ may be defined by x∼̇y ⇐⇒

∧n

i=1
xi ∼ yi, but it

can also be any other equivalence relation on the domain of f .

Theorem 4 (Locality of Congruence). If T is a theory with equivalence
relations ∼ and ∼̇, then (Compw) holds for the extension of T with a function f
satisfying

∀x, y. x∼̇y → f(x) ∼ f(y). (Con)

This theorem allows us to decide satisfiability problems with user-defined func-
tions that are specified to be congruent with respect to a given abstraction, such
as the averageAge function in the Fig. 1 example.

Monotonicity. Another important requirement for many functions is mono-
tonicity wrt. a given abstraction, as specified for function insert in Fig. 1.

By ordering data structures wrt. the given abstraction, we define a new order
with x � y ⇐⇒ content(x) ⊆ content(y).

Because it is defined by a function, such a user-defined order satisfies the
defining properties of the original order, except antisymmetry (unless the ab-
straction function is injective). That is, if the original order is a total order then
the user-defined order will be a total preorder, if it is a lattice the user-defined
order will be a prelattice, etc.

The following theorem extends known results on local extensions with mono-
tone functions [7, 16] to the case of preorders and bounded (semi-)prelattices:

Theorem 5 (Locality of Monotonicity). Let T be a theory with a binary
relation � such that either (i) � is a total order, or (ii) � defines a bounded
semi-lattice. Let R(x, y) be a binary predicate which is transitive in T . Then
(i) (Jacobs, Sofronie-Stokkermans [7])

(Compw) holds for the extension of T with a function f satisfying

∀x, y. R(x, y) → f(x) � f(y). (Mon)

(ii) (Compw) is already satisfied if � is a total preorder, or defines a bounded
semi-prelattice.

For the abstraction of data structures to their set of elements, � is a bounded
prelattice, and for abstractions to their length or size, it is a total preorder.

Injectivity. Another important property of functions manipulating data struc-
tures is injectivity. The following result allows us to decide specifications that
require injectivity of a function wrt. a given abstraction, and is a generalization
of known locality results wrt. equality [5]:

12 Swen Jacobs and Viktor Kuncak

Theorem 6 (Locality of Injectivity). If T is a theory with equivalence re-
lations ∼ and ∼̇ such that (in every model of T)3 there are infinitely many
equivalence classes wrt. ∼, then (Compw,f)

4 holds for the extension of T with a
function f satisfying

∀x, y. ¬(x∼̇y) → ¬(f(x) ∼ f(y)). (Inj)

7 Complete Reasoning about Conjunctive Combinations

In this Section, we consider the problem of reasoning about specifications which
impose several axioms from the classes introduced in Sect. 5 and 6 on the same
function, as for function even from Fig. 1.

Theorem 7 (Locality of Conjunctive Combinations 1). Let T be a theory
with equivalence relations ∼ and ∼̇.

(i) Let Φ(x, f(x)) be as in Thm. 3. Then (Compw) holds for the extension of T
with a function f satisfying (Con) ∪ ∀x. Φ(x, f(x)) if and only if
|=T ∀x1, x2, y1. (x1∼̇x2 ∧ Φ(x1, y1) → ∃y2. y1 ∼ y2 ∧ Φ(x2, y2)).

(ii) Let � and R(x, y) be as in Thm. 5, and furthermore such that
|=T x � y ∧ y � x ⇐⇒ x ∼ y. Then (Compw) holds for the extension of T
with a function f satisfying (Con) ∪ (Mon).

(iii) (Compw) holds for the extension of T with a function f satisfying (Con)∪(Inj)
if and only if |dom(f)/∼̇| ≤ |codom(f)/∼|.

In contrast to these positive results, an extension with (Mon) ∪ (Inj) or (Con) ∪
(Mon) ∪ (Inj) will in general not be local. This essentially corresponds to strict
monotonicity, mentioned as a counterexample to locality at the end of Sect. 5.
We can however obtain some more positive results:

Theorem 8 (Locality of Conjunctive Combinations 2). Let T be a theory
with equivalence relations ∼ and ∼̇, and Φ(x, f(x)) as in Thm. 3. Then

(i) (Compw) holds for the extension of T with a function f satisfying
(Inj) ∪ ∀x. Φ(x, f(x)) if
|=T ∀x1, x2, y1. (¬(x1∼̇x2) ∧ Φ(x1, y1) → ∃∞y2. y1 6∼ y2 ∧ Φ(x2, y2)).

(ii) (Compw) holds for the extension of T with a function f satisfying
(Con) ∪ (Inj) ∪ ∀x. Φ(x, f(x)) if and only if
|=T ∀x1, x2, y1. (x1∼̇x2 ∧ Φ(x1, y1) → ∃y2. y1 ∼ y2 ∧ Φ(x2, y2)) and
|dom(f)/∼̇| ≤ |codom(f)/∼|.

Above, ∃∞y2 means that there exist infinitely many values y2 in different equiva-
lence classes wrt. ∼. Combination of contracts with (Mon) is in general not local,
not even with the restriction to contracts which allow monotone functions.
3 In fact, it would be sufficient to have a notion similar to stable infiniteness wrt. the

equivalence classes, i.e. whenever a formula is satisfiable, it is also satisfiable in a
model with infinitely many equivalence classes.

4 (Compw,f) is a weaker form of (Compw) that only considers embeddability of models
where partial functions have a finite domain. It implies the slightly weakened locality
condition (ELocf), which requires G to be finite.

Towards Complete Reasoning about Axiomatic Specifications 13

8 Complete Reasoning about Piecewise Combinations

In some cases, it is desirable to use specifications with a case distinction over
different partitions of the function domain, as for function fill in Fig. 1.

While single-invocation axioms allow case distinctions intrinsically, this is not
the case for the other axiom classes we introduced, or local theory extensions in
general. In the following, we consider sets of axioms K(f(x1), . . . , f(xn)), where
in each axiom there may be up to n invocations of f . We first show that we
can have different local axiomatizations in disjoint subsets of the domain, and
the resulting “piecewise” axiomatization will again be local. Furthermore, we
show that a piecewise local axiomatization can also be obtained for non-disjoint
subsets of the domain, as long as the overlaps are finite.

In the following, we use restrictions of formulas K(f(x1), . . . , f(xn)) to a sub-
set of the domain of f , specified by a formula Φ(x). We denote by

∧n

i=1
Φ(xi) →

K(f(x1), . . . , f(xn)) the set of augmented Π-clauses {∀x1, . . . , xn.
∧n

i=1
Φ(xi) →

F ∨ C | F ∨ C ∈ K(f(x1), . . . , f(xn))}. We state that such restrictions do not
destroy locality properties:

Lemma 1. Let T be a Π0-theory and K(f(x1), . . . , f(xn)) a set of augmented
Π-clauses such that T ⊆ T ∪ K(f(x1), . . . , f(xn)) satisfies (Compw). For any
Π0-formula Φ(x), the extension T ⊆ T ∪ (Φ(x) → K(f(x1), . . . , f(xn)) also
satisfies (Compw).

Lem. 1 and the next theorem allow piecewise combinations satisfying (Compw):

Theorem 9 (Locality of Disjoint Piecewise Combinations). Let T be
a Π0-theory and consider Π0-formulas Φ1(x), Φ2(x) such that |=T ¬(Φ1(x) ∧
Φ2(x)). If K1(f(x1), . . . , f(xn)) and K2(f(x1), . . . , f(xm)) are Π-formulas such
that (Compw) holds for both T ⊆ T ∪ (

∧n

i=1
Φ1(xi) → K1(f(x1), . . . , f(xn)) and

T ⊆ T ∪ (
∧m

i=1
Φ2(xi) → K2(f(x1), . . . , f(xm)), then (Compw) also holds for

T ⊆ T ∪ K, with

K = (
∧n

i=1
Φ1(xi)) → K1(f(x1), . . . , f(xn))

∪ (
∧m

i=1
Φ2(xi)) → K2(f(x1), . . . , f(xm)).

Repeated application of Thm. 9 directly gives a locality result for arbitrarily
many case distinctions.

Non-disjoint subsets with a finite intersection. If the overlap between
cases is finite, we can preserve completeness by instantiating the axioms addi-
tionally for all elements in the overlap. To this end, consider a closure operator
Ψ on ground terms and the more general notion of Ψ -completability [5]

(CompΨ
w) For every weak partial Π-model M of T ∪ K where Σ0-functions

are total and the definition domain of Σ1-functions is closed
under Ψ, there exists a completion which is a model of T ∪ K,

which implies the Ψ -locality condition

(ELocΨ) For every set G of Σ1-ground augmented Π-clauses, we have
K ∪ G |=T � ⇐⇒ KΨ [G] ∪ G |=T �

14 Swen Jacobs and Viktor Kuncak

with KΨ [G] defined like K[G], except extension terms may be in Ψ(st(K ∪ G)).
Then, with a suitable Ψ we can prove Ψ -locality for piecewise combinations

with finite overlaps:

Theorem 10 (Locality of Piecewise Combinations with Finite Inter-
section). Let T be a theory with signature Π0 = (Σ0, Pred) and consider
Π0-formulas Φ1(x), Φ2(x) such that in every T -model M, the set O = {x ∈
M |Φ1(x)∧Φ2(x)} is finite. Let furthermore T0 be a set of Σ0-terms such that in
every such model M, O ⊆ {tM | t ∈ T0}.

If K1(f(x1), . . . , f(xn)) and K2(f(x1), . . . , f(xm)) are sets of aug-
mented Π-clauses such that (Compw) holds for both the extensions of
T with (

∧n

i=1
Φ1(xi) → K1(f(x1), . . . , f(xn)) and (

∧m

i=1
Φ2(xi) →

K2(f(x1), . . . , f(xm)), then (CompΨ
w
) holds for the extension of for T with K,

where Ψ(T) = T ∪ {f(t)|t ∈ T0} and

K = (
∧n

i=1
Φ1(xi)) → K1(f(x1), . . . , f(xn))

∪ (
∧m

i=1
Φ2(xi)) → K2(f(x1), . . . , f(xm)).

Thm. 10 can easily be extended to a combination of arbitrarily many pieces,
where O = {x ∈ M |Φi(x) ∧ Φj(x), for some i 6= j} .

9 Related Work

Local theory extensions are one of the few approaches that allow us to obtain
decision procedures for quantified satisfiability problems modulo a background
theory. They have proved useful in the verification of parametrized systems [9]
and properties of data structures [5,15], and in reasoning about certain properties
of numerical functions [14] and functions in ordered domains [16]. Algebraic
data types with size functions are shown to be decidable in [19]. Further results
on handling quantified formulas in a complete way include decidable fragments
of the theory of arrays [1] and of pointer data structures [11, 18], as well as
certain classes of formulas that can be decided with an appropriate instantiation
strategy [3]. An overview of results on local theory extensions can be found in [7].

Note that each locality result needs to be proved separately for each class
of axioms of interest. A contribution of our paper is to identify new classes of
local theories, and to show that they are useful in verification of new classes of
properties of functional programs.

Acknowledgements. We thank Viorica Sofronie-Stokkermans for detailed
comments on drafts of this paper, as well as the original suggestion to generalize
the monotonicity axiom from [16] to the version in [7]. We thank Philippe Suter
for discussions related to Section 4.

References

1. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
E. A. Emerson and K. S. Namjoshi, editors, VMCAI 2006, volume 3855 of LNCS.
Springer, 2006.

Towards Complete Reasoning about Axiomatic Specifications 15

2. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In C. U. Stefan Berghofer, Tobias Nipkow and M. Wenzel, editors, TPHOLs
2009, volume 5674 of LNCS. Springer, 2009.

3. Y. Ge and L. de Moura. Complete instantiation for quantified SMT formulas. In
A. Bouajjani and O. Maler, editors, CAV 2009, volume 5643 of LNCS. Springer,
2009.

4. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov.
Test generation through programming in UDITA. In International Conference on
Software Engineering (ICSE), 2010.

5. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in
verification. In C. R. Ramakrishnan and J. Rehof, editors, TACAS 2008, volume
4963 of LNCS. Springer, 2008.

6. S. Jacobs. Incremental instance generation in local reasoning. In A. Bouajjani
and O. Maler, editors, CAV 2009, volume 5643 of LNCS. Springer, 2009.

7. S. Jacobs. Hierarchic Decision Procedures for Verification. PhD thesis, Saarland
University, Germany, 2010.

8. S. Jacobs and V. Kuncak. On complete reasoning about axiomatic specifications.
Technical Report EPFL-REPORT-151486, EPFL, 2010.

9. S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchical reasoning in
the verification of complex systems. Electronic Notes in Theoretical Computer
Science, 174(8):39–54, 2007.

10. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking for data
structure consistency. In R. Cousot, editor, VMCAI 2005. Springer, 2005.

11. S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In K. Etessami and S. K. Rajamani, editors, CAV 2005, volume 3576 of
LNCS. Springer, 2005.

12. A. Podelski and T. Wies. Counterexample-guided focus. In 37th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 2010.

13. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, CADE-20, volume 3632 of LNAI. Springer, 2005.

14. V. Sofronie-Stokkermans. Efficient hierarchical reasoning about functions over
numerical domains. In K. Berns and T. Breuel, editors, KI 2008, volume 5243 of
LNAI. Springer, 2008.

15. V. Sofronie-Stokkermans. Locality results for certain extensions of theories with
bridging functions. In R. A. Schmidt, editor, CADE-22. Springer, 2009.

16. V. Sofronie-Stokkermans and C. Ihlemann. Automated reasoning in some local
extensions of ordered structures. Journal of Multiple-Valued Logic and Soft
Computing, 13(4-6):397–414, 2007.

17. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In 37th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 2010.

18. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint
analysis. In E. A. Emerson and K. S. Namjoshi, editors, VMCAI 2006. Springer,
2006.

19. T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for recursive data
structures with integer constraints. In D. A. Basin and M. Rusinowitch, editors,
IJCAR 2004, volume 3097 of LNCS. Springer, 2004.

