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Abstract. A synthesis procedure acts as a compiler for declarative spec-
ifications. It accepts a formula describing a relation between inputs and
outputs, and generates a function implementing this relation. This paper
presents the first synthesis procedures for 1) algebraic data types and 2)
arrays. Our procedures are reductions that lift a synthesis procedure for
the elements into synthesis procedures for containers storing these ele-
ments. We introduce a framework to describe synthesis procedures as
systematic applications of inference rules. We show that, by interpreting
both synthesis problems and programs as relations, we can derive and
modularly prove widely applicable transformation rules, simplifying both
the presentation and the correctness argument.

1 Introduction

Software synthesis is an active area of research [6, 17, 19, 22]. It has received in-
creased attention recently, but has been studied for decades [3, 11, 12, 16]. Our
paper pursues the synthesis of functions mapping inputs to outputs. The synthe-
sized functions are guaranteed to satisfy a given input/output relation expressed
in a decidable logic. We call this approach complete functional synthesis [8, 9].
The appeal of this direction is that it can synthesize functions over unbounded
domains, and that the produced code is guaranteed to satisfy the specification for
the entire unbounded range of inputs. If the synthesis process always terminates,
we speak of synthesis procedures, analogously to decision procedures.

Previous work described synthesis procedures for linear arithmetic and sets
[8,9] as well as extensions to unbounded bitvector constraints [4,18]. In this pa-
per we make further steps towards systematic derivation of synthesis procedures
by showing how inference rules that describe decision procedure steps (possibly
for a combination of theories) can be generalized to synthesis procedures. Within
this framework we derive the first synthesis procedures for two relevant decid-
able theories of data structures: term algebras (algebraic data types), and the
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theory of integer-indexed arrays with symbolic bounds on index ranges. The two
synthesis procedures that we present are interesting in their own right. Synthesis
for algebraic data types can be viewed as a generalization of the compilation of
pattern matching, and is therefore a useful way to increase the expressive power
of functional programs. Synthesis for arrays is useful for synthesizing fragments
of imperative programs. Synthesizing from constraints on arrays is challenging
because it requires, in general, iteration over the space of indices. It therefore
illustrates the importance of synthesizing not only individual values that meet
a constraint, but also functions that enumerate all values.

Our synthesis procedures are expressed as a set of modular transformation
rules whose correctness can be checked in a straightforward way, and which
can be more easily implemented (even in foundational proof assistants). The
transformations gradually evolve a constraint into a program. Sound rules for
such transformations can be formulated for each decidable theory separately, and
they can be interleaved for more efficient synthesis and more efficient synthesized
programs. Our framework therefore contributes to the methodology for synthesis
in general. We start from proof rules for a decision procedure, and extend them
into transformation rules that can be viewed as a result of partially evaluating
the execution of inference rules.

As remarked in [9], compiled synthesis procedures could be viewed as a result
of partial evaluation of the execution of a constraint solver at run time. This is
a useful observation from a methodological point of view. However, it likely has
similar limitations as an attempt to automatically transform an interpreter into
a compiler. We therefore expect that the insights of researchers will continue
to play a key role in designing synthesis procedures. These insights both take
the form of understanding decidable logics, but also understanding how to solve
certain classes of problems efficiently. Examples of manually deriving compiled
code that can be more efficient than run-time search appear in both synthesis for
term algebras and the synthesis of arrays. We can assume that the values in these
theories are finitely generated by terms. Because these terms become known only
at run time, it appears, at first, necessary to continue running decision procedure
at run time. However, because the nature of processing steps is known at compile
time, it was possible to generate statically known loops instead of an invocation
of a general-purpose constraint solver at run time. The main advantage is not
only that such code can be more efficient by itself, but that it can then be further
analyzed and simplified, automatically or manually, to obtain code that is close
or better than one written using conventional development methodology.

Contributions In summary, this paper makes the following contributions:

1. the first synthesis procedure for quantifier-free theory of algebraic data types;
2. the first synthesis procedure for a theory of (symbolically bounded) arrays;
3. a formalization of the above procedures, as well as a simple synthesis proce-

dure for Presburger arithmetic, in a unified framework supporting:
(a) proving correctness of synthesis steps, and
(b) combining synthesis procedures in a sound way.
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We start by introducing our framework and illustrate it with a simple synthesis
procedure for Presburger arithmetic. We then present the synthesis procedures
for algebraic data types and for arrays.

2 Synthesis using Relation Transformations

A synthesis problem is a triple

Jā 〈φ〉 x̄K

where ā is a set of input variables, x̄ is a set of output variables and φ is a
formula whose free variables are a subset of ā ∪ x̄. A synthesis problem denotes
a binary relation {(ā, x̄) | φ} between inputs and outputs. The goal of synthesis
is to transform such relations until they become executable programs. Programs
correspond to formulas of the form P ∧ (x̄ = T̄ ) where vars(P ) ∪ vars(T̄ ) ⊆ ā.
We denote programs

〈P | T̄ 〉
We call the formula P a precondition and call the term T̄ a program term.

We use ` to denote the transformation on synthesis problems, so

Jā 〈φ〉 x̄K ` Jā 〈φ′〉 x̄K (1)

means that the problem Jā 〈φ〉 x̄K can be transformed into the problem
Jā 〈φ′〉 x̄K. The variables on the right-hand side are always the same as on the
left-hand side. Our goal is to compute, given ā, one value of x̄ that satisfies φ.
We therefore define the soundness of (1) as a process that refines the binary rela-
tion given by φ into a smaller relation given by φ′, without reducing its domain.
Expressed in terms of formulas, the conditions become the following:

φ′ |= φ refinement
∃x̄.φ |= ∃x̄.φ′ domain preservation

In other words, ` denotes domain-preserving refinement of relations. Note that
the dual entailment ∃x̄.φ′ |= ∃x̄.φ also holds, but it follows from refinement.
Note as well that ` is transitive.

Equivalences in the theory of interest immediately yield useful transformation
rules: if φ and φ′ are equivalent, (1) is sound. We can express fact as the following
inference rule:

|= φ1 ↔ φ2

Jā 〈φ1〉 x̄K ` Jā 〈φ2〉 x̄K (2)

In most cases we will consider transformations whose result is a program:

Jā 〈φ〉 x̄K ` 〈P | T̄ 〉

The correctness of such transformations reduces to

P |= φ[x̄ 7→ T̄ ] refinement
∃x̄.φ |= P domain preservation
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A synthesis procedure for a theory T is given by a set of inference rules and a
strategy for applying them such that every formula in the theory is transformed
into a program.

2.1 Theory-Independent Inference Rules

We next introduce inference rules for a logic with equality. These rules are gen-
erally useful and are not restricted to a particular theory.

Equivalence. From the transitivity of ` and (2), we can derive a rule for synthe-
sizing programs from equivalent predicates.

Jā 〈φ1〉 x̄K ` 〈P | T̄ 〉 |= φ1 ↔ φ2

Jā 〈φ2〉 x̄K ` 〈P | T̄ 〉

Ground. In the case where no input variables are given, a synthesis problem is
simply a satisfiability problem.

M |= φ

J∅ 〈φ〉 x̄K ` 〈> | M〉
¬∃M.M |= φ

J∅ 〈φ〉 x̄K ` 〈⊥ | ⊥〉

(In these rulesM is a model for φ and should be thought of as a tuple of ground
terms.) Note that the second rule can be generalized: even in the presence of
input variables, if the synthesis predicate φ is unsatisfiable, then the generated
program must be 〈⊥ | ⊥〉.

Assertions. Parts of a formula that only refer to input variables are essentially
assertions and can be moved to the precondition.

Jā 〈φ1〉 x̄K ` 〈P | T̄ 〉 vars(φ2) ⊆ ā
Jā 〈φ1 ∧ φ2〉 x̄K ` 〈φ2 ∧ P | T̄ 〉

Case Split. A top-level disjunction in the formula can be handled by deriving
programs for both disjuncts and combining them with an if-then-else structure.

Jā 〈φ1〉 x̄K ` 〈P1 | T̄1〉 Jā 〈φ2〉 x̄K ` 〈P2 | T̄2〉
Jā 〈φ1 ∨ φ2〉 x̄K ` 〈P1 ∨ P2 | if(P1) {T̄1} else {T̄2}〉

Unconstrained Output. Output variables that are not constrained by φ can be
assigned any value.

Jā 〈φ〉 x̄K ` 〈P | T̄ 〉 x0 /∈ vars(φ)

Jā 〈φ〉 x0 ; x̄K ` 〈P | any ; T̄ 〉
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In the program, any denotes a nullary function that returns an arbitrary of the
appropriate type.

One-point. Whenever the value of an output variable is uniquely determined by
an equality atom, it can be eliminated by a simple substitution.

Jā 〈φ[x0 7→ t]〉 x̄K ` 〈P | T̄ 〉 x0 /∈ vars(t)

Jā 〈x0 = t ∧ φ〉 x0 ; x̄K ` 〈P | let x̄ := T̄ in (t ; x̄)〉

Definition. The definition rule is in a sense dual to One-point, and is convenient
to give a name to a subterm appearing in a formula. Typical applications include
purification and flattening of terms.

Jā 〈x0 = t ∧ φ[t 7→ x0]〉 x0 ; x̄K ` 〈P | T̄ 〉 x0 /∈ vars(φ)

Jā 〈φ〉 x̄K ` 〈P | let (x0 ; x̄) := T̄ in x̄〉

Sequencing. The sequencing rule allows us to synthesize values for two groups of
variables one after another. It fixes the values of some of the output variables,
treating them temporarily as inputs, and then continues with the synthesis of
the remaining ones.

Jā ; x̄ 〈φ〉 ȳK ` 〈P1 | T̄1〉 Jā 〈P1〉 x̄K ` 〈P2 | T̄2〉
Jā 〈φ〉 x̄ ; ȳK ` 〈P2 | let x̄ := T̄2 in (x̄ ; T̄1)〉

Static Computation. A basic rule is to perform computational steps when possible.

Ja0 ; ā 〈φ[t 7→ a0]〉 x̄K ` 〈P | T̄ 〉 vars(t) ⊆ ā a0 /∈ vars(φ)

Jā 〈φ〉 x̄K ` 〈let a0 := t in P | let a0 := t in T̄ 〉

Variable Transformation. The ` transformation preserves the variables. To show
how we can change the set of variables soundly, we next present in our framework
variable transformation by a computable function ρ [8], as an inference rule on
two ` transformations.

Jā 〈φ[x̄ 7→ ρ(x̄′)]〉 x̄′K ` 〈P | T̄ 〉
Jā 〈φ〉 x̄K ` 〈P | ρ(T̄ )〉

Slightly more generally, we have the following:

Jā 〈φ′〉 x̄′K ` 〈P | T̄ 〉 ∃x̄.φ |= ∃x̄′.φ′ φ′ |= φ[x̄ 7→ ρ(x̄′)]

Jā 〈φ〉 x̄K ` 〈P | ρ(T̄ )〉

Existential Projection. This rule is a special case of variable transformation, where
ρ simply projects out some of the variables.

Jā 〈φ〉 x̄ ; x̄′K ` 〈P | T̄ 〉
Jā 〈∃x̄′.φ〉 x̄K ` 〈P | let (x̄ ; x̄′) := T̄ in x̄〉
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3 Synthesis for Presburger Arithmetic

This section summarizes a simple version of a synthesis procedure for Presburger
arithmetic using our current synthesis rules. Our goal is to give a complete
procedure that is easy to prove correct, as opposed to one that generates efficient
code. The reader will observe that our description reads like a description of
quantifier elimination. Note, however, that the inference rules that we refer to
are from the previous section and therefore also specify how to compute the
corresponding program.

Unlike the procedure in [9] the procedure below does not perform efficient
solving of equations, but could be refined to do so by adapting the description
in [9] to our inference rules.

As in the preprocessing steps for simple quantifier elimination for Presburger
arithmetic, the equivalences we use as rules include replacing t1 6= t2 with t1 <
t2 ∨ t2 < t1. In principle, we can rewrite t1 = t2 into t1 ≤ t2 ∧ t2 ≤ t1 (see [9] for
more efficient approaches). We rewrite t1 ≤ t2 into t1 < t2 +1. When needed, we
assume that we apply the Case Split rule to obtain only a conjunction of literals.
We also assume that we apply the Sequencing rule to fix the remaining variables
and only consider one output variable x. Finally, thanks to the Assertions rule,
we assume that all literals contain x.

A rule that takes into account divisibility is the following:

Jā 〈φ[kx 7→ y] ∧ y ≡k 0〉 yK ` 〈P | T 〉 k 6= 0 x in φ only as kx

Jā 〈φ〉 xK ` 〈P | T/k〉

The rule is a case of Variable Transformation with ρ(y) = y/k.
To enable the previous rule, we can ensure that all occurrences of a variable

have the same coefficient by multiplying constraints by a positive constant (e.g.,
the least common multiple of all coefficients). These transformations are based
on using (in a context) equivalences between t1 ./ t2 and kt1 ./ kt2, for k > 0
and ./ ∈ {=, <, >,≡p}.

Using the rules so far, we can ensure that an output variable has a coefficient
1. If such a variable occurs in at least one equality, we can eliminate it using
One-point. If the variable occurs only in inequalities, we perform the main step
of the procedure.

Elimination of Inequalities Based on the discussion above, we can assume
that the formula φ in the synthesis problem is of the form

L∧
i=1

li < x ∧
U∧

j=1

x < uj ∧
D∧
i=1

x+ ti ≡Ki
0

We aim to replace φ with φ′ such that

Jā 〈φ〉 xK ` Jā 〈φ′〉 xK (3)
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We define φ′ as

L∨
i=1

K∨
k=1

(φ ∧ x = li + k)

where K is the least common multiple of K1, . . . ,KD. Clearly φ′ is stronger
than φ because each disjunct is stronger than φ, so it remains to argue about
domain preservation. Suppose there exists values for x so that φ holds. Let lI
be the largest value among the values of lower bounds li and let T be such that
lI + T ≡K x holds. Then letting x to be lI + T makes φ′ true as well.

After performing disjunctive splitting (Case Split), we can eliminate x using
the One-point rule. The correctness follows by (3) and the correctness of One-
point. The cases where some of the bounds do not exist can be treated similarly.

This completes the overview of synthesis of functions given by Presburger
arithmetic relations.

Enumerating Solutions In addition to finding one solution x̄ such that φ
holds, it is useful to be able to find all solutions, when this set is finite. When
solving constraints at run time, a simple way to find all solutions is to maintain
a list of previously found solutions v̄1, . . . , v̄n for x̄ and add to φ an additional
conjunct

∧n
i=1 x̄ 6= v̄n, see [7].

One possible approach to compile this process is to enrich Presburger arith-
metic with finite uninterpreted relations as parameters. This enables a synthesis
procedure to, for example, take the set of previous solutions as the input. If R
is such a finite-relation symbol or arity n and x̄ are n variables, we introduce
an additional literal x̄ /∈ R into the logic, with the intention that R stores the
previously found solutions. The elimination of inequalities then produces terms
that avoid the elements of R by considering not only the value li + k for x,
but enumerating a larger number of solutions, li + k + αN , for multiple values
of α ≥ 0. Because R is known only at run time, the generated code contains
a loop that increases α ≥ 0 to allow x to leave the range of the correspond-
ing coordinate of R. The value of α is bounded at run time by, for example,
d(max(Rx)−min(Rx))/Ke+ 1 where Rx is the projection of R onto the coordi-
nate at which x appears in the literal x̄ /∈ R. The generated loop is guaranteed
to terminate.

4 Synthesis for Term Algebras

This section presents a synthesis procedure for quantifier-free formulas in the
theory of term algebras. We start by assuming a pure term algebra, and later
extend the system to algebras with elements from parameter theories. In both
cases, we present a series of normal forms and inference rules, and argue that
together they can be used to build a synthesis procedure.
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4.1 Pure Term Algebras

The grammar of atoms over our term algebra is given by the following two
production rules, where c and F denote a constant and a function symbol from
the algebraic signature, respectively:

A ::= T = T | T 6= T | isc(T ) | isF (T )
T ::= x | c | F (T̄ ) | Fi(T )

In the following we assume that the algebra defines at least one constant and
one non-nullary constructor function. Formulas are built from atoms with the
usual propositional connectives. We use an extension of the standard theory
of term algebras. The extension defines additional unary tester functions isc(·)
and isF (·) for constant and functions in the algebraic signature respectively, and
unary selector functions Fi(·), with 1 ≤ i ≤ n where n is the arity of F . These
extra symbols form a definitional extension [5] given by the axioms:

∀x.isc(x)↔ x = c (4)

∀x.isF (x)↔ ∃ȳ.x = F (ȳ) (5)

∀x, y.Fi(x) = y ↔ (∃ȳ.y = ȳ [i] ∧ F (ȳ) = x) (6)

∨¬(∃ȳ.F (ȳ) = x) ∧ x = y

Note that the case analysis in (6) is required only to make the selector functions
total. In practice, we are only interested in cases where the selectors are applied
to arguments of the proper type. We will therefore assume in the following that
each selector application Fi(x) is accompanied with a side condition isF (x).

Rewriting of tester and selector functions. By applying the axioms (4) and (5),
we can rewrite all applications of a tester function into an existentially quantified
equality over terms. We can similarly eliminate applications of testers by existen-
tially quantifying over the arguments of the corresponding constructors. Using
the Existential Projection rule, we can in turn consider the obtained synthesis
problem as a quantifier-free one.

Elimination through unification. We can at any point apply unification to a
conjunction of equalities over terms. Unification rewrites a conjunction of term
equations into either ⊥, if the equations contain a cycle or an equality involving
incompatible constructors, or into an equivalent conjunction of atoms

∧
i vi = ti,

where vi is a variable and ti is a term. This set of equations has the additional
property that (⋃

i

{vi}

)
∩

(⋃
i

vars(ti)

)
= ∅

In other words, it defines a set of variables as a set of terms built from another
disjoint set of variables [2]. This form is particularly suitable for applications of
the One-point rule: indeed, whenever vi is an output variable, we can apply it,
knowing that vi does not appear in ti (or in any other equation).
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Dual view. Unification allows us to eliminate output variables that are to the left
of an equality. When instead an input variable appears in such position, we can
resort to a dual form to eliminate output variables appearing in the right-hand
side. We obtain the dual form by applying as much as possible the following two
rules to term equalities:

t = c

isc(t)

t = F (t1, . . . , tn)

F1(t) = t1 ∧ . . . ∧ Fn(t) = tn ∧ isF (t)

Note that these are rewrite rules for formulas. Because they preserve the set of
variables and equisatisfiability, they can be lifted to inference rules for programs
using the Equivalence rule. Observe that at saturation, the generated atoms are
of two kinds: 1) applications of tester predicates and 2) equalities between two
terms, each containing at most one variable. In particular, all equalities between
an output variable and a term are amenable to applications of the One-point
rule.

Disequalities. Finally, we introduce a dedicated rule for the treatment of dise-
qualities between terms. The rule is defined for disequalities over variables and
constants in conjunctive normal form (CNF). From a conjunction of disequali-
ties over terms, we can obtain CNF by applying the following rewrite rules until
saturation:

F (t̄1) 6= G(t̄2) F 6= G

>
F (t̄1) 6= F (t̄2)

t11 6= tn1 ∨ . . . ∨ t12 6= tn2

Intuitively, the first rule captures the fact that terms built with distinct con-
structors are trivially distinct (note that this also captures distinct constants,
which are nullary constructors). The second rule breaks down a disequality into
a disjunction of disequalities over subterms.

To obtain witness terms from the CNF, it suffices to satisfy one disequality
in each conjunct. We achieve this by eliminating one variable after another,
applying for each a diagonalization principle, as follows. In the following rule
φCNF denotes the part of the CNF formula over atomic disequalities that does
not contain a given variable of interest x0.

Jā 〈φCNF〉 x̄K ` 〈P | T̄ 〉 x0 /∈ φCNFu

ww
vā

≤
(x0 6= t1 ∨ . . .)
∧ . . .
∧ (x0 6= tn ∨ . . .)
∧ φCNF

º
x0 ; x̄

}

��
~ ` 〈P | let x̄ := T̄ in (∆(t1, . . . , tn) ; T̄ )〉

In the generated program, ∆ denotes an n-ary computable function that returns,
at run time, a term distinct from all its arguments. Such a value is guaranteed
to exist, since the term algebra is assumed to have at least one constructor. This
function runs in time polynomial in the number of its arguments.
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Synthesis Procedure for Algebraic Data Types We now argue that the
reductions to normal forms and the rules presented above are sufficient to form
a complete synthesis procedure for any given pure term algebra structure. The
procedure (a strategy for applying the rules) is given by the following steps:

1. Reduce an arbitrary propositional structure to a conjunction through appli-
cations of the Case Split rule.

2. Remove selectors and testers through rewrites and applications of Existential
Projection.

3. Apply unification to all equalities, then apply One-point as often as possible.
As a result, the only equalities remaining have the form a = t, where a is an
input variable and a /∈ vars(t).

4. Rewrite into dual form, then apply One-point as much as possible. After
applying Assertions, the problem is reduced to a conjunction of disequalities,
each involving at least one output variable.

5. Transform the conjunction into CNF and eliminate all remaining variables
by successive applications of the diagonalization rule.

Given a conjunctions of literals, the generated program runs in time polynomial
in the size of the input terms: it consists of a sequence of assignments, one for
each output variable, and each term has polynomial size.

4.2 Reduction to an Interpreted Theory

We now consider the case of a term algebra defined over an interpreted theory
T . A canonical example is the algebra of integer lists, where T is the theory
of integers, and defined by the constant Nil : List and the constructor Cons :
Z× List→ List. In this theory, the selector function Cons1(·), for instance, is of
type List → Z. We show how to reduce a synthesis problem in the combination
of theories to a synthesis problem in T . We focus on the important differences
with the previous case.

Purification. We can assume without loss of generality that constructor terms
contain no subterms from T other than variables. Indeed one can always apply
the Definition rule to separate such terms.

Unification. Applying unification can result in derived equalities between vari-
ables of T . These should simply be preserved in the reduced problem.

Dual view. Applying the rewriting into the dual view can result in derived
equalities of the form x = t, where x is a variable from T and t is an application
of selectors to an input variable. Because T cannot handle these selectors, we
need to rewrite t into a simple variable. By using the Definition and Sequencing
rules, we make this variable an input of the problem in T .
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Disequalities. Contrary to the pure case, we cannot always eliminate all con-
juncts in the CNF by applying a diagonalization; we can eliminate variables
that belong to the term algebra, but not variables of T . Instead, for each dise-
quality v 6= w over T in the CNF, we introduce at the top-level a disjunction
v = w ∨ v 6= w, and apply the Case Split rule to encode a guess. This in essence
compiles the guessing of the partitioning of shared variables that is tradition-
ally introduced in a Nelson-Oppen setting [15]. Because Case Split preserves the
relation entirely, this is a sound and complete reduction step.

Once all the disequalities have been handled, either through diagonalization
if they are over algebraic terms, or by case-splitting if they are over T variables,
we have entirely reduced the synthesis problem into a synthesis problem for T .

5 Synthesis for Arrays with Symbolic Bounds

This section introduces a synthesis procedure for a theory of arrays. In contrast
to many other theories for which synthesis procedures have been introduced, the
standard (unbounded) array theory does not admit quantifier elimination. With
a known finite bound on the size of all arrays, there is a procedure that reduces
the synthesis problem to synthesis problems over indices and elements, in a
similar way as the satisfiability problem for arrays is reduced to these component
theories. However, if we do not know the size bounds at compile time, we need
to employ a mixed approach, which postpones some of the reasoning to run
time. The reduction is the same as before, but now the component synthesis
procedures not only return one solution of the synthesis problem, but instead
an iterator over all possible solutions (given by any limited knowledge about the
inputs contained in the specification formula). Then, at run time, the synthesized
code examines all the solutions for constraints on indices, searching for one that
matches the current array inputs.

In the rest of this section we focus on this more general case of symbolic
bounds, then revisit briefly statically bounded arrays as a special case.

5.1 Preliminaries

We present synthesis for a theory of arrays with symbolic bounds. We consider
arrays with the usual read and write operations, an index theory TI with an
ordered, discrete domain, and an element theory TE . We assume that our input
formula φ is a conjunction of literals, and that we have synthesis procedures for
these theories. Additionally, we assume that we have a predicate ≈I between
arrays, where I can be any set of variables or constants, and a ≈I b evaluates
to true iff a and b are equal up to (the elements stored at) indices i ∈ I. In
particular, this also subsumes extensionality of arrays (with I = ∅).

Arrays with Symbolic Bounds We assume that our specification φ contains,
for every array variable a, two special variables al, au, standing for the lower and
upper bound of the array. Additionally, we assume that φ contains, for every
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index variable i used to read or write into a, the constraints al ≤ i ∧ i ≤ au.
These constraints ensure that synthesized programs to not contain out-of-bounds
array accesses, and that the number of possible solutions for index variables will
be bounded at run time. If a is an array parameter, then al, au are additional
parameters. For convenience, if we have b = write(a, i, e) or a ≈I b, then we
assume that al = bl and au = bu, i.e. we need not introduce multiple lower and
upper bounds for “connected” arrays.

Enumerating Solutions For the index theory TI , we need a synthesis proce-
dure that not only returns one solution T , but allows us to iterate over the set
T
∗

of all possible solutions. We assume that one of the following cases holds:

1. the synthesis procedure computes T
∗

as a finite set of solutions
2. the synthesis procedure computes T

∗
as a solved form of φ, that allows us

to access solutions iteratively (like mentioned in Sect. 3; this is also possible
if there are infinitely many possible solutions at compile time)

3. the synthesis procedure produces code T
∗
, representing a specialized solver

for the index theory, that is instantiated with φ and allows to add more
constraints ψ to obtain solutions satisfying φ ∧ ψ (in the limit this means
integrating a constraint solver procedure into the generated code [7]).

5.2 A Reduction-based Synthesis Procedure for Arrays

We introduce a synthesis procedure for arrays, consisting of the following steps:

– Array reduction: φ is reduced to TE ∪ TI , along with a set of definitions
that allows us to generate witness terms for array variables;

– “Partial Synthesis” reduction: part of the reasoning is postponed to
runtime, assuming we get an enumerator of all possible solutions in TE ∪TI ;

– Separation and synthesis in TE and TI : we separate the specification into
parts talking purely about TE and TI , and synthesize all possible solutions.

Array Reduction We introduce fresh variables for array writes and reads,
allowing us to reduce the problem to the combined theory TI ∪ TE :

1. For every array write write(a, i, e) in φ: i) use Definition to introduce a fresh
array variable b, and obtain b = write(a, i, e) ∧ φ[write(a, i, e) 7→ b], and ii)
by Equivalence, add b[i] = e ∧ a ≈{i} b to φ.

2. Until saturation, use Equivalence to add for every pair of literals a ≈I b and
b ≈J c in φ the literal a ≈I∪J c.

3. For every array read a[i] and predicate a ≈J b in φ: use Equivalence to add
a formula (

∧
j∈J i 6= j) → a[i] = b[i] to φ.

4. For every array read a[i] in φ: i) use Definition to introduce a fresh element
variable ai , and obtain ai = a[i] ∧ φ[a[i] 7→ ai].

5. For every pair of variables ai, aj in φ: use Equivalence to add a formula
i = j → ai = aj to φ.
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Let D ≡ D1 ∧D2, where D1, D2 are the sets of definitions introduced in 1 and
4, respectively. Let EqA be the saturated set of all literals a ≈I b after 2, Impl
the set of all implications introduced in 3 and 5, and φ′ the remaining part of
φ, after the rewriting steps in 1 and 5. Let furthermore b̄, āi be the sets of fresh
variables introduced in steps 1 and 5, respectively. Then array reduction can be
depicted as a macro-step

q
ā 〈φ′ ∧ Impl ∧ EqA ∧D〉 b̄ ; āi ; x̄

y
` 〈P | T̄ 〉

Jā 〈φ〉 x̄K ` 〈P | let (b̄ ; āi ; x̄) := T̄ in x̄〉

Let x̄A ; x̄E ; x̄I be a separation of x̄ into array, element and index variables.
As an array-specific step, based on EqA ∧ D we can now already give witness
terms for array variables b̄ ; x̄A, assuming that we will get witness terms T̄ai

for
āi and T̄I for x̄I :

Let a be an array variable, and I the set of all index variables i for which
ai = a[i] is in D. For a given v, let J be the maximal subset of I s.t. ∀i, j ∈
J. v |= i 6= j. By construction, there must be an array variable b s.t. a ≈I b is
in EqA. If b is not a parameter array, all positions not explicitly defined can be
defined arbitrarily. Then the witness term Ta for variable a is defined by:

Ta := write(. . . (write(b, Tj1 , Taj1
) . . .), Tjn , Tajn

)

where the Tj are witness terms for index variables j ∈ J , and the Taj
witness

terms for the corresponding element variables. Let T̄A be the sequence of witness
terms for all array variables b̄ ; x̄A. Then this step can be depicted as

Jā 〈φ′ ∧ Impl ∧D2〉 āi ; x̄E ; x̄IK ` 〈P | T̄ 〉q
ā 〈φ′ ∧ Impl ∧ EqA ∧D〉 b̄ ; x̄A ; āi ; x̄E ; x̄I

y

` 〈P | let (āi ; x̄E ; x̄I) := T̄ in (T̄A ; āi ; x̄E ; x̄I)〉

Correctness of this step follows from the correctness of array decision procedures
using the same reduction. Note that we also remove EqA and D1 from our
specification, as they will not be needed anymore.

Partial Synthesis with Run-time Checks Since the theory of arrays does
not allow quantifier elimination, we in general need to postpone some of the
reasoning to run time. The following is a general rule to separate the specification
into a part φ that allows for compile-time synthesis, and another part ψ that is
checked (against the possible solutions of φ) at run time. Here, we assume that
the result T̄ ∗ is an iterator over all possible solutions, and that for any given ā
only finitely many solutions exist:
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Jā 〈φ〉 x̄K ` 〈P | T̄ ∗〉

Jā 〈φ ∧ ψ〉 x̄K `

≤
P ∧ ∃i. ψ[x̄ 7→ T̄ ∗.next(i)]

∣∣∣∣∣∣∣∣
x̄ := T̄ ∗;
while(¬ψ(ā, x̄))
if(T̄ ∗.hasNext) {x̄ := T̄ ∗.next}
else {return UNSAT}

º
If T̄ ∗ is not an iterator, but a specialized decision procedure for the given theory
and constraint φ, then the loop is replaced by a call to T̄ ∗ with constraint ψ.

For array synthesis, we apply the rule to remove D2, reducing the synthesis
problem to Jā 〈φ′ ∧ Impl〉 āi ; x̄E ; x̄IK ` 〈P | T̄ ∗〉, in the theory TE ∪ TI .

Separation of TI ∪ TE We use the Sequencing rule to separately synthesize
element and index variables:3

Jā ; x̄I 〈φ′ ∧ Impl〉 āi ; x̄EK ` 〈PE | T̄E〉 Jā 〈PE〉 x̄IK ` 〈P | T̄ ∗I 〉
Jā 〈φ′ ∧ Impl〉 x̄ ; ȳK ` 〈P | let x̄I := T̄ ∗I in (T̄E ; x̄I)〉

TE-Synthesis To solve the left-hand side, note that φ′ is a conjunction of
literals and does not contain array variables anymore, so it can be separated
into φE ∧φI , with φE , φI pure constraints in TE and TI , respectively. We use the
Assertions rule to move φI into PE . The only other occurrences of index variables
are in Impl. To remove these, we use Equivalence to introduce a disjunction over
all possible valuations of equalities between index variables, and Case Split to
branch synthesis of element variables for all these cases:

Let EqI be the set of all equalities i = j s.t. either i = j or i 6= j appears in
an implication in Impl. Let VE be the set of truth valuations of elements of EqI ,
each described by a conjunction of literals v ∈ VE (containing for every l ∈ EqI
either l or ¬l). For every v ∈ VE , obtain a new formula φv by adding to φE ∧ v
the succedent of all implications in Impl for which the antecedent is in v.

For each v ∈ VE , we solve Jā ; x̄I 〈φv〉 āI ; x̄EK ` 〈Pv | T̄ ∗v 〉, where φv is a
pure TE-constraint. Joining results according to Case Split, we get 〈PE | T̄ ∗〉.

TI-Synthesis We solve the right-hand side of the Sequencing rule,
Jā 〈PE〉 x̄IK ` 〈P | T̄ ∗I 〉. As before we use Assertions to obtain a pure TI -
constraint.4

3 Note that we do not have to explicitly compute all possible solutions in TE ; since
x̄I is used as an input in T̄E , we will obtain a suitable solution of āi ; x̄E for every
solution of x̄I .

4 If bounds for all arrays (or all array indices in φ) can be computed at compile time,
then all solutions can be computed statically. Otherwise, array bounds are symbolic
and will only have values at run time, i.e. we need to be able to compute solutions
during runtime.
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Remarks For efficiency, it may be useful to deduce, both in TI and TE , equal-
ities that are implied by φ at any time, and replacing clauses in Impl by their
succedents if the antecedent is implied by φ, or the negation of the antecedent, if
the negation of the succedent is implied. This will avoid unnecessary branching,
speeding up synthesis and removing dead branches from the resulting code.

Theory Combination TE ∪ TI The reduction above assumes that theories
TE and TI are strongly disjoint, i.e. they share not even the equality symbol.
Alternatively, we can make the restriction that variables that are used for array
reads may never be compared to variables that are used as elements. In this
case, implications from congruence of array reads is the only connection between
the theories, and TI -synthesis can run completely independent of TE-synthesis,
provided the latter accounts for all possible cases of TI -equalities. If the theories
are not strongly disjoint, we really need a synthesis procedure for the combined
theory. In this case, we directly use the combined decision procedure to produce
an iterator over all possible solutions in both element and index theory.

Statically Bounded Arrays If all arrays in φ are statically bounded, i.e.
values of upper and lower bounds are known or can be computed at compile
time, then we can statically compute all solutions for constraints in TI that are
within array bounds. In that case the generated code does not need an iterator
that computes additional solutions, and we can give a constant bound on the
maximum number of traversals of the loop at compile time.

5.3 Complexity of Synthesis and Synthesized Code

Complexity of the array synthesis procedure is dominated by the branching on
equalities of index variables: we may need exponentially many (in the number
of index variables) calls to the synthesis procedure for TE . The array reduction
itself runs in polynomial time.

Correspondingly, the size of the synthesized code is also exponential in the
number of index variables. The code can contain branches for all possible cases
of equalities (arrangements) among indices. Although only one of these branches
will be explored at runtime, the worst-case running time of the synthesized code
will still be exponential in the number of index variables: for a size bound n on
a given array, there may be ni many solutions to the constraints in TI . In the
worst case, the condition of the while-loop needs to be checked for all of these
solutions.

5.4 Example of Array Synthesis

Suppose we want to synthesize a most general precondition P and program code
s.t. for any input array a and bounds al, au that satisfy P , the synthesized code
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computes values for an array b and integer variables i, j, k such that the following
is satisfied:5

φ ≡ al = 0 ∧ i > al ∧ i = j + j ∧ i < au ∧ k ≥ al ∧ k < i
∧ a[i] > 0 ∧ a[k] ≤ 0 ∧ b[i] > a[i− 2] ∧ b[k] = a[i]
∧ a′ = write(a, i, e1) ∧ b = write(a′, k, e2).

Array reduction: We obtain

D1 := {a′ = write(a, i, e1), b = write(a′, k, e2)}
EqA := {a′ ≈i a, b ≈k a

′, a ≈{i,k} b}

Impl =



k 6= i → ak = a′k, i− 2 6= i → ai−2 = a′i−2,
i 6= k → a′i = bi, i− 2 6= k → a′i−2 = bi−2,
i− 2 6= i ∧ i− 2 6= k → ai−2 = bi−2 ,
i = k → ai = ak, i− 2 = k → ai−2 = ak,
i = k → a′i = a′k, i− 2 = k → a′i−2 = a′k,
i = k → bi = bk, i− 2 = k → bi−2 = bk


D2 :=

ai = a[i], ai−2 = a[i− 2], ak = a[k],
a′i = a′[i], a′i−2 = a′[i− 2], a′k = a′[k],
bi = b[i], bi−2 = b[i− 2], bk = b[k]


φ′ :=

al = 0 ∧ i > al ∧ i = j + j ∧ i < au ∧ k ≥ al ∧ k < i
∧ ai > 0 ∧ ak ≤ 0 ∧ bi > ai−2 ∧ bk = ai
∧ a′i = e1 ∧ bk = e2

Implied equalities and disequalities: From φ′ we can conclude that i 6= j, k 6= i
and i− 2 6= i, as well as ai 6= ak, bi 6= ai−2.

Propagating equalities through Impl: k 6= i implies ak = a′k and a′i = bi. i− 2 6= i
implies ai−2 = a′i−2. In the opposite direction, ai 6= ak implies i 6= k (which we
already knew). We get

φ′′ := φ′ ∧ ai 6= ak ∧ bi 6= ai−2 ∧ a′i = bi ∧ ai−2 = a′i−2 ∧ i 6= k ∧ i− 2 6= i.

Separation of TI ∪ TE We use the Sequencing rule, obtaining subproblems
Jā ; x̄I 〈φ′′ ∧ Impl〉 āi ; x̄EK ` 〈PE | T̄E〉 and Jā 〈PE〉 x̄IK ` 〈P | T̄ ∗I 〉.

TE-Synthesis From the three equations that appear in antecedents of Impl,
valuations for two are fixed by φ′′. Thus, we only branch on the valuation of
i− 2 = k. Let v1 ≡ i− 2 = k, which implies ai−2 = ak, a

′
i−2 = a′k and bi−2 = bk.

Let v2 ≡ i − 2 6= k, which implies a′i−2 = bi−2 and (together with i − 2 6= i)
ai−2 = bi−2.

5 Note that the last two literals imply a ≈{i,k} b, which in turn implies that there exist
valuations for a′, e1, e2 satisfying these literals. Thus, we can allow statements of the
form a ≈I b in specifications, and replace them with a number of write definitions
according to the size of I, with fresh element and array variables in every write.
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Assuming v1, we obtain the following valuations for variables x̄E :

e2 := bk := bi−2 := ai, e1 := bi := a′i := ai−2 + 1, a′k := a′i−2 := ak.

Assuming v2, valuations are the same except for bi−2 := a′i−2 := ai−2. The
precondition is in both cases PE ≡ ai > 0 ∧ ak ≤ 0 (plus the TI -part of φ′′).

TI-Synthesis We obtain j := b i2c and an iterator T̄ ∗I of solutions for (i, k):

T ∗I := (0,2)
T ∗I .next = let (k,i) = T ∗I in

if(k+1<i) (k+1,i)
else if(i+2<a u) (0,i+2)
else return UNSAT

along with a precondition P ≡ ai > 0 ∧ ak ≤ 0 ∧ au > 2.

Array synthesis: Lifting the witness terms for elements to array b, we obtain

b := if(i− 2 = k)
write(write(a, i, a[Ti−2] + 1), Tk, a[Ti])
else write(write(write(a, i, a[Ti−2] + 1), Ti−2, a[Ti]), Tk, a[Ti])

Result: Finally, we obtain the precondition

au > 2 ∧ ∃n.
Ä
(i, k) = T ∗I .next(n) → a[i] > 0 ∧ a[k] ≤ 0

ä
and the program6 in Fig. 1 for computing i, j, k and b from a and au.

5.5 Example: Inverting Program Fragments

The synthesis procedure for arrays can also be used to invert given code frag-
ments, e.g. for automatically obtaining a program that reverts (some of) the
changes a given piece of code did to some data. Consider the code fragment

if(a[i]==0)
a[i]:=a[i+1]

else if (a[i]==1)
a[i]:=a[0]

else if (a[i]>1)
a[i]:=a[i]−1

else a[i]:= a[i]+2

which translates into the specification

(a0[i] = 0 ∧ a1 = write(a0, i, a0[i+ 1]))
∨ (a0[i] = 1 ∧ a1 = write(a0, i, a0[0]))
∨ (a0[i] > 1 ∧ a1 = write(a0, i, a0[i]− 1))
∨ (a0[i] < 0 ∧ a1 = write(a0, i, a0[i] + 2)),

6 The code can be significantly simplified by merging parts that are not affected by
case distinctions.
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if(au > 2) {
(i,k) := T ∗I in
while (¬(a[i] > 0 && a[k] ≤ 0))

if (T ∗I .hasNext)
(i,k) := T ∗I .next

else throw new Exception(”Unsatisfiable constraint.”)
let j = i / 2 in
if (i−2 = k) {

bi := a[i−2]+1
bk := a[i]

} else {
bi := a[i−2]+1
bk := a[i]
bi2 := a[i−2]

}
if (i−2 = k)

b := write(write(write(a,i,bi),k,bk))
else

b := write(write(write(a,i,bi),k,bk),i−2,bi2)
(b,i,j,k)

} else throw new Exception(”Unsatisfiable constraint.”)

Fig. 1. Example of code generated by array synthesis procedure

where a0 refers to the pre-, and a1 to the post-state value of array a. For syn-
thesizing the inverted code, we assume that a1 is the input, and a0 the output.
The synthesis procedure will return a piece of code

if(a[i]==a[i+1])
a[i]:=0

else if(a[i]=a[0])
a[i]:=1

else if(a[i]>0)
a[i]:=a[i]+1

else a[i]:=a[i]−2

Since the relation given by the input code does not model a bijection, applying
the inverted code after the input code will not result in exactly the same state.
However, for a deterministic code, the resulting state will be equivalent with
respect to the original piece of code: if we run the original program for the
second time from such state, we will get the same final result as when running
the program once.

6 Related Work

Term algebras admit quantifier elimination [5, 21] and are thus natural candi-
dates for synthesis. Our synthesis procedure is similar to quantifier elimination
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when it comes to eliminating variables that are constrained by an equality, with
the additional requirement that the witness term be stored to serve in the pro-
gram. However, we simplified the treatment of disequalities: existing elimination
procedures typically rewrite a disequality between a variable and a term into a
disjunction of equalities between the same variable and terms constructed with
different constructors [5, p.63sqq]. This has the advantage that the language of
formulas needs not be extended, allowing for nested quantifiers to be eliminated
one after the other. In our synthesis setting, this is not necessary: we can rely
on additional computable functions, as we have illustrated with the use of ∆,
greatly simplifying the resulting program. A related area of research is compila-
tion of unification in Prolog [1]. This process typically does not require handling
of disequalities, so it deals with a simpler language.

Pattern-matching compilation is a task for which specialized procedures for
term algebras have been developed [13, 23]. When viewed through the prism of
synthesis procedures, these algorithms can be thought of as procedures that are
specialized for disjunctions of term equalities, and where the emphasis is put
on code reuse. We expect that using a combination of our synthesis procedures
and common subexpression elimination techniques, one should be able to de-
rive pattern-matching compilation schemes that would support, e.g., disjunctive
patterns, non-linear patterns, and could take into account guards referring to
integer predicates.

Our synthesis procedure for arrays is based on a reduction of constraints
over arrays to constraints in the combined theory of indices and elements. In
particular, our reduction is very close to the decision procedure for extensional
arrays introduced by Stump et al. [20]. Combination of strongly disjoint theories
is also used in the array decision procedure of de Moura and Bjørner [14], but the
main focus of their work was to make array decision procedures more efficient by
restricted application of fine-grained reduction rules. In the presence of unknown
inputs, these techniques are not applicable in general.

Specialization of decision procedures for the purpose of predicate abstraction
was considered in [10]. In addition to covering a different set of theories, our
results are broader because our process generates not only a satisfiability check
but also the values of variables.

7 Conclusions

We presented synthesis procedures for two important theories: algebraic data
types and arrays, formulated in a unified framework. Our contribution fills an
unexplored area between two approaches: running SMT solvers at run time [7]
and using quantifier-elimination-like algorithms to compile specifications. In this
paper we have shown that for two important theories supported by SMT solvers,
compilation of constraints is also feasible. Moreover, much like SMT can be built
and proved correct modularly, synthesis procedures can be combined as well
using our framework.
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