
INFORMATICA, 2002, Vol. 13, No. 2, 163–176 163
 2002Institute of Mathematics and Informatics, Vilnius

Numerical Representations as Purely Functional
Data Structures: a New Approach

Mirjana IVANOVIĆ
Faculty of Science and Mathematics, University of Novi Sad
Trg Dositeja Obradovi´ca 4, 21000 Novi Sad, Yugoslavia
e-mail: mira@im.ns.ac.yu

Viktor KUNČAK
Laboratory for Computer Science, Massachusetts Institute of Technology
Cambridge, MA02139
e-mail: vkuncak@mit.edu

Received: May 2001

Abstract. This paper is concerned with design, implementation and verification of persistent purely
functional data structures which are motivated by the representation of natural numbers using posi-
tional number systems. A new implementation of random-access list based on redundant segmented
binary numbers is described. It uses 4 digits and an invariant which guarantees constant worst-case
bounds for cons, head, and tail list operations as well as logarithmic time for lookup and update.
The relationship of random-access list with positional number system is formalized and benefits of
this analogy are demonstrated.

Key words: data structures, purely functional language, random-accesss list, program derivation,
recursive slowdown.

1. Introduction

Studying data structures in the context of purely functional programming languages is
important (Aditya, 1995) both for improving efficiency of functional programs and for
exploring issues in foundations of data structures (Reid, 1989; Bird and Wadler, 1988).
New techniques are needed to analyze persistent data structures, which are naturally fa-
vored by purely functional languages, yet have advantages even in imperative settings.

Implementing data structures in functional programming languages makes them
closer to their specification, facilitating formal development of operations (Voß, 1985).
In this way, the implementation can be derived along with the proof of its correctness and
properties of data structures can be rigorously studied.

Functional programming languages abstract from the issues of memory management
and references, which results in clear, concise and easy to debug programs (Bird, 1998;
Hughes, 1989; Turner, 1982). This makes them particularly suitable for developing and
experimenting with new data structures. This is a consequence of uniform treatment for

164 M. Ivanović, V. Kunčak

all values. Data structures are just values of algebraic data types, and their use and modi-
fication in functional style is explicit.

In this paper a class of purely functional data structures termednumerical represen-
tations is explored. The discussion here is motivated by a chapter in (Okasaki, 1998).
Contributions of this paper are:

• formalization of analogy with number system;
• implementation and correctness proof for a segmented representation based on 4

instead of 5 digits, using a new invariant.

On the operational side, using a pure functional programming language makes data
structurespersistent(Okasaki, 1998). Persistent data structures remain available after
updates have been performed, so new version of data structure coexists with the original
one.1 Persistent data structures are an important subclass of data structures. For many
abstract data types such as lists, queues, trees, and heaps both persistent and imperative
implementations exist (Pippenger, 1997; Wadler, 1995; Peyton Jones and Wadler, 1993).
The advantages of persistent implementations are:

• they can be used in purely functional programming languages without language
extensions;

• they can also be used in imperative languages (especially those with garbage col-
lection support), where they avoid expensive copy operations;

• being read-only, they offer greater potential for performance improvements via
caching and parallelization;

• reasoning about them is simpler.

Their potential disadvantage is less efficient memory use if only one version of data
structure is needed. Persistent implementations of some abstract data types tend to be
more complex that imperative implementations and in some cases have worse asymptotic
time and space bounds.

Implementations in this paper are written in Haskell (Peyton Jones and Hughes, 1999),
a non-strict, purely functional programming language. Programs were tested using Hugs
environment (Jones and Peterson, 1999). Notation of multiparameter type classes and
instance declarations is used, but it is not central to this approach.

The paper is organized as follows. In the second section the notion of random-access
list is introduced. In the third section the analogy with positional number systems, es-
sential for numerical representation is presented. New approach to implementation of
random-access list is described in the section four. Conclusion and further work are given
in the last section.

2. Random-Access List

This section introduces the notion of random-access list (RAL). The signature of this data
structure is presented as a Haskell type class and a minimal implementation is given.

1This is not to be confused with persistence as a language capability for storing values on external storage
for later use.

Numerical Representations as Purely Functional Data Structures 165

2.1. Motivation

RAL is a data structure which implements both list and array interfaces. Elements can
be inserted in the front, but alsoi-th element can be replaced or retrieved efficiently. In
this respect random-access lists have similar functionality as imperative arrays. Unlike
static arrays, however they can grow arbitrarily. Even if implementations of vectors can
be made that dynamically expand and shrink, they are not persistent since the update
operation destroys the previous version of data structure (Trinder, 1989). Hence RAL are
the best choice for persistent lists with efficient indexing.

2.2. List Interface

The list interface can be described by the following multiparameter type class.

class Lst r a where
empty :: r a
cons :: a -> r a -> r a
isEmpty :: r a -> Bool
head :: r a -> a
tail :: r a -> r a

Herer is a type constructor, sor a is a list of elements of typea. The class introduces
two abstract list constructorsempty (make empty list) andcons (add element to the front
of list), as well as destructors:isEmpty to test whether the list is empty, andhead and
tail to access head and tail of a nonempty list.

2.3. Array Interface

The array interface is given by the following class. Functionsize is introduced since
array can grow and shrink over the time.

class Arr r a where
size :: r a -> Int
lookup :: Int -> r a -> a
update :: a -> Int -> r a -> r a

The definition of RAL signature is just

class (Lst r a, Arr r a) => RandomAccessList r a
instance (Lst r a, Arr r a) => RandomAccessList r a

2.4. A Minimal Implementation

The usual implementation of list is obtained by treatingempty andcons as free algebra
generators.

data List a = Nil | Cons {headL :: a, tailL :: List a}
instance Lst List a where

empty = Nil

166 M. Ivanović, V. Kunčak

cons = Cons
isEmpty lst = case lst of

Nil -> True
_ -> False

head = headL
tail = tailL

This definition is identical, up to syntactic sugar, to the built-in implementation of lists in
Haskell.

In this implementation efficiency problems arise with array interface operations. The
best that can be achieved is linear complexity forlookup andupdate.

instance Arr List a where
size Nil = 0
size (Cons _ lst) = 1 + size lst

lookup 0 (Cons a as) = a
lookup (n+1) (Cons a as) = lookup n as

update x 0 (Cons a as) = Cons x as
update x (n+1) (Cons a as) = Cons a (update x n as)

In following sections RAL implementations will be introduced with logarithmicup-
date andlookup operations. Due to its simplicity, the implementation in this section
can be used for correctness verification of more complex implementations.

3. Simple Binary Random-Access List

This section presents the analogy with positional number systems which is the essential
idea of numerical representations. RAL based on ordinary binary number system is used
to demonstrate advantages of this approach. The implementation is similar to the one
in (Okasaki, 1998), but the presentation here is slightly more in the spirit of program
derivation.

3.1. Binary Numbers

In binary number system a natural number is represented as a list of ones and zeros.
The weight of thei-th digit is 2i, so the value of binary digit sequencea0a1 . . . an is
a0 · 20 + a1 · 21 + · · · + an · 2n. Note that here (contrary to the usual practice) the least
significant digit is written first.

This representation can be written in Haskell as follows.

data Digit = Zero | One
type BinNum = [Digit]

The following simple definitions of functions for incrementing (inc) and decrementing
(dec) binary numbers will be used as abstract descriptions of RAL operationscons and
tail.

Numerical Representations as Purely Functional Data Structures 167

inc [] = [One]
inc (Zero:ds) = One:ds
inc (One:ds) = Zero:inc ds

dec [One] = []
dec (One:ds) = Zero:ds
dec (Zero:ds) = One:dec ds

Operationsinc anddec preserve the absence of trailing zeros in the digit sequence,
which is easy to verify by induction on the length of the sequence.

3.2. DerivingLst Implementation

While natural numbers from previous subsection are lists of digits, RAL based on binary
numbers is a list of “tree digits”.

data Tree a = Leaf a | Node (Tree a) (Tree a)
data TreeDigit a = ZeroT | OneT (Tree a)
type SimpleRAL a = [TreeDigit a]

OneT tree digit holds a complete binary leaf tree. Complete binary leaf tree of height
h has2h elements. Thei-the tree digit in the RAL holds2i elements, which justifies
analogy with the binary number system.

To formalize the analogy betweenBinNum and SimpleRAL, functionsabst and
mabst are introduced.abst just throws away the tree, andmabst appliesabst to all
elements of the list.

abst :: TreeDigit a -> Digit
abst ZeroT = Zero
abst (OneT _) = One
mabst :: SimpleRAL a -> BinNum
mabst = map abst

These functions can be used to guide the derivation of RAL operations. Thecons opera-
tion on trees is defined as follows.

consR :: a -> SimpleRAL a -> SimpleRAL a
consR a = insTree (Leaf a)
insTree :: Tree a -> SimpleRAL a -> SimpleRAL a

The analogy between numbers and RAL is given by the following equation:

mabst . insTree t = inc . mabst

Here. denotes function composition. By expanding this specification a pattern for the
definition ofinsTree is obtained. Both sides of the equation have the typeSimpleRAL
a -> BinNum, so the desired equation becomes

mabst (insTree t ts) = inc (mabst ts)

for all treest and all sequences of tree digitsts. The informal derivation ofinsTree
proceeds by case analysis.

168 M. Ivanović, V. Kunčak

Case ts=[] The right hand side evaluates to[One]. By definition ofmabst, it must be
insTree t [] = t1 wheret1 is some tree. The most natural choicet=t1 turns
out to be the right one. Hence

insTree t [] = [OneT t]

Case ts=ZeroT:ts1 The right hand side evaluates toOne:mabst ts1, or, by defini-
tion of mabst, mabst (OneT t1:ts1). One way to satisfy the equation

mabst (insTree t (ZeroT:ts1)) = mabst (OneT t1:ts1)

is to make arguments ofmabst equal. By takingt=t1, this case becomes

insTree t (ZeroT:ts1) = OneT t:ts1

Case ts=OneT t1:ts1 The right hand side can now be written in the formZero:inc
(mabst ts1). Assuming the equation holds forts1, this becomesZero:mabst
(insTree t2 ts1) for some treet2, which equalsmabst (ZeroT:insTree
t2 ts1). This can again be satisfied by stripping offmabst, giving

insTree t (OneT t1:ts1) = ZeroT:insTree t2 ts1

In order to keep all the elements it is reasonable to instantiate the free variablet2

by puttingt2=Node t t1, which results in the final case

insTree t (OneT t1:ts1) = ZeroT:insTree (Node t t1) ts1}

The three cases just derived make up a complete definition ofinsTree. In the simi-
lar vein, operationunconsTree can be derived fromdec operation on binary numbers.
While the type ofinsTree was isomorphic to(Tree a, SimpleRAL a) -> Sim-
pleRAL a, the type ofunconsTree is

unconsTree :: SimpleRAL a -> (Tree a, SimpleRAL a)

This operation is used to define RALhead andtail operations.

headR ral = let (Leaf a, _) = unconsTree ral in a
tailR ral = let (_, tl) = unconsTree ral in tl

The specification in this case is

mabst . snd . unconsTree = dec . mabst

wheresnd (x,y) = y. The derivation ofunconsTree would proceed again by induc-
tion on the structure of a RAL.

The operationsconsR, headR, andtailR accompanied by definitionsemptyR =

[] andisEmptyR ral = (ral==[]) make up the implementation ofLst interface
for this RAL. Due to a restriction on type synonyms, writing an actual instance declara-
tion for Lst multiparameter class would require the use ofnewtype in the definition of
SimpleRAL which would clutter the code with application of trivial type constructor and
destructors. Instead, function implementations here are simply suffixed by letterR.

Numerical Representations as Purely Functional Data Structures 169

3.3. Writing Arr Implementation

It remains to writesizeR, lookupR, andupdateR functions for the RAL. The imple-
mentation ofsizeR is simple andmabst makes it even simpler.

sizeR = binVal . mabst

HerebinVal calculates the value of a binary number.

binVal = foldr op 0 where
op d r = digitVal d + 2*r

digitVal Zero = 0
digitVal One = 1

Sincemabst = map abst, a simple Haskell implementation would execute this defini-
tion of sizeR by creating an intermediate list. More efficient version would be obtained
if abst were propagated to the definition ofdigitVal.

Implementations oflookup andupdate are straightforward once the linear order is
imposed on RAL elements. In the list of trees, elements in earlier trees come first. Inside
the tree, leaves are ordered left to right.

lookupR :: Int -> SimpleRAL a -> a
lookupR = lookup1 1
lookup1 sz i (ZeroT:rl) = lookup1 (2*sz) i rl
lookup1 sz i (OneT t:rl)

| i < sz = lookupTree sz i t
| otherwise = lookup1 (2*sz) (i-sz) rl

lookupTree sz 0 (Leaf x) = x
lookupTree sz i (Node t1 t2)

| i < sz2 = lookupTree sz2 i t1
| otherwise = lookupTree sz2 (i-sz2) t2
where sz2 = sz ‘div‘ 2

updateR :: Int -> a -> SimpleRAL a -> SimpleRAL a
updateR = update1 1
update1 sz i x (ZeroT:rl) = ZeroT : update1 sz i x rl
update1 sz i x (OneT t:rl)

| i < sz = OneT (updateTree sz i x t) : rl
| otherwise = OneT t : update1 sz (i-sz) x rl

updateTree sz 0 x (Leaf _) = Leaf x
updateTree sz i x (Node t1 t2)

| i < sz2 = Node (updateTree sz2 i x t1) t2
| otherwise = Node t1 (updateTree sz2 (i-sz2) x t2)
where sz2 = sz ‘div‘ 2

This completes the implementation of RAL based on simple binary number system.
The main purpose of this section was to demonstrate the benefits of using analogy with
positional number systems. The RAL implementation derived here has O(n) worst-case
complexity forcons andtail. This corresponds to linear worst-case complexity for

170 M. Ivanović, V. Kunčak

inc anddec, as ininc [1,1,1,1,1] = [0,0,0,0,0,1] anddec [0,0,0,0,1] =

[1,1,1,1]. In general, incrementing2k − 1 takes aboutk steps, as does decrementing
2k+1. Although cases with such “cascading carries” and “cascading borrows” are rare and
can be amortized in non-persistent usage of data structure (Cormen et al., 1990), this is
not true for persistent usage (Okasaki, 1998) of data structures based on binary numbers.

4. Random-Access List via Recursive Slowdown

This section presents an implementation of random-access list with O(1) worst-case
bounds oncons, head andtail operations. Moreover,lookup i andupdate x i

will have O(log i) worst-case complexity. The implementation is similar to the one sug-
gested in (Okasaki, 1998), but uses 4 instead of 5 digits and relies on slightly different
invariant.

The relevance of analogy with number system should become obvious here: invariants
which are the essence this implementation can all be proved considering the number
system alone. Then it becomes easy to extend the implementation to RAL.

4.1. Segmented Redundant Binary Numbers

The motivation behind segmented redundant binary numbers is to avoid cascading carries
in inc and cascading borrows indec. To achieve this, additional digits 2 and 3 are intro-
duced. Positional binary system is still used. However, the representation of the number
is not unique any more and reflects previous applications ofinc anddec.

Introducing new digits 2 and 3 does not solve the problem by itself. Cascading carries
could now appear in cases such as[3,3,3,3,3]. What is needed is a constraint on
the digit sequence which would eliminate such cases. The constraint chosen here is that
every digit Three is preceded by digit Zero or One, possibly followed by a list of Two-s.
Analogously, Zero is preceded by Two or Three, possibly followed by a list of One-s.
This is theinvariant that will hold for representation of number 0 and whichinc and
dec need to preserve. The invariant can be described by two regular expressions:

(A) ((0 + 1)2∗3 + 0 + 1 + 2)∗

(B) ((3 + 2)1∗0 + 3 + 2 + 1)∗

The symmetry between digits is apparent in invariants: replacing digitd by 3 − d in (A)
yields (B) and vice versa.

In order to check invariants (A) and (B), the ability to skip over a sequence of One dig-
its and Two digits of arbitrary length is needed. Therefore, consecutive digits are grouped
into list, yielding the following data structure.

data Digit = Zero | Ones Int | Twos Int | Three
data SegNum = [Digit]

To make sure that all consecutive Ones and Twos are in one group, functionsones and
twos are used instead of constructors Ones and Twos.

Numerical Representations as Purely Functional Data Structures 171

ones :: Int -> SegNum -> SegNum
ones 0 ds = ds
ones i (Ones k:ds) = Ones (i+k) : ds
ones i ds = Ones i : ds
twos :: Int -> SegNum -> SegNum
twos 0 ds = ds
twos i (Twos k:ds) = Twos (i+k) : ds
twos i ds = Twos i : ds

Incrementing a number is done in two steps: incrementing the first digit bysim-
pleInc, and restoring the invariant byfixInc.

inc :: SegNum -> SegNum
inc = fixInc . simpleInc

simpleInc :: SegNum -> SegNum
simpleInc [] = [Ones 1]
simpleInc (Zero:ds) = ones 1 ds - only for fixInc
simpleInc (Ones i:ds) = twos 1 (ones (i-1) ds)
simpleInc (Twos i:ds) = Three:twos (i-1) ds

fixInc :: SegNum -> SegNum
fixInc (Twos i:Three:ds) = Twos i:ones 1 (simpleInc ds)
fixInc (Three:ds) = ones 1 (simpleInc ds)
fixInc ds = ds

Note thatsimpleInc is well defined. First, (A) guarantees that the first digit is never
Three, sosimpleInc in inc is well-defined. Next, if the argument ofsimpleInc in
fixInc had a leading Three, it would mean that (A) was violated in the original digit
sequence.

(A) can be violated by turning One into Two in front of Three or by turning Two
into Three. Both of these cases are dealt with byfixInc. AlthoughfixInc may call
simpleInc again creating another Two or Three,simpleInc ds is preceded by One,
so (A) is not violated any more.

(B) is not violated bysimpleInc, so the only danger is thatfixInc turns a Three into
One in front of a sequence of Ones and a Zero. But in this casesimpleInc increments
Zero or One so the invariant still holds.

Henceinc preserves both invariants. The definition and proof fordec are analogous.

simpleDec :: SegNum -> SegNum
simpleDec [Ones 1] = []
simpleDec (Ones i:ds) = Zero:ones (i-1) ds
simpleDec (Twos i:ds) = ones 1 (twos (i-1) ds)
simpleDec (Three:ds) = twos 1 ds

fixDec :: SegNum -> SegNum
fixDec (Ones i:Zero:ds) = Ones i:twos 1 (simpleDec ds)
fixDec (Zero:ds) = twos 1 (simpleDec ds)
fixDec ds = ds

Clearly,inc anddec run in O(1) time. This will lead directly to O(1) implementation of
cons andtail for RAL.

172 M. Ivanović, V. Kunčak

4.2. RAL Based on Segmented Redundant Binary Numbers

This subsection extendsinc anddec operations on the number system of previous sub-
section tocons, tail, andhead operations in random-access list. The extension is sim-
ilar to one in Section 3, but the underlying number system is more complex.

The first step is to extend the data structure. Each digit holds the number of trees equal
to its value. Sequences of digits are represented by lists of (pairs of) trees.

data Tree a = Leaf a | Node (Tree a) (Tree a)
data TreeDigit a = ZeroT

| OnesT [Tree a]
| TwosT [(Tree a,Tree a)]
| ThreeT (Tree a, Tree a, Tree a)

type SegmenRAL a = [TreeDigit a]

Auxiliary functions that keep consecutive Ones and Twos together take lists of trees as
arguments.

onesT :: [Tree a] -> SegmenRAL a -> SegmenRAL a
onesT [] ds = ds
onesT ts (OnesT os:ds) = OnesT (ts++os) : ds
onesT ts ds = OnesT ts : ds

twosT :: [(Tree a,Tree a)] -> SegmenRAL a -> SegmenRAL a
twosT [] ds = ds
twosT ts (TwosT tws:ds) = TwosT (ts++tws) : ds
twosT ts ds = TwosT ts : ds

Definition ofconsR should come as no surprise givenconsR for SimpleRAL of Section 3
andinc of previous subsection. Taking into account the order of elements leads to the
following definition.

consR a = fixIns . simpleIns (Leaf a)

simpleIns :: Tree a -> SegmenRAL a -> SegmenRAL a
simpleIns t [] = [OnesT [t]]
simpleIns t (ZeroT:ds) = onesT [t] ds
simpleIns t (OnesT (t1:ts):ds) = twosT [(t,t1)] (onesT ts ds)
simpleIns t (TwosT ((t1,t2):tws):ds)

= ThreeT (t,t1,t2) : twosT tws ds

fixIns :: SegmenRAL a -> SegmenRAL a
fixIns (TwosT tws:ThreeT (t1,t2,t3):ds)

= TwosT tws:onesT [t1] (simpleIns (Node t2 t3) ds)
fixIns (ThreeT (t1,t2,t3):ds)

= onesT [t1] (simpleIns (Node t2 t3) ds)
fixIns ds = ds

OperationsheadR andtailR are implemented usingsimpleUncons, which generalizes
simpleDec, andfixUncons, which generalizesfixDec.

headR :: SegmenRAL a -> a

Numerical Representations as Purely Functional Data Structures 173

headR ral = a where (Leaf a, _) = simpleUncons ral

tailR :: SegmenRAL a -> SegmenRAL a
tailR = fixUncons . snd . simpleUncons

simpleUncons :: SegmenRAL a -> (Tree a, SegmenRAL a)
simpleUncons [OnesT [t]] = (t, [])
simpleUncons (OnesT (t:ts):ds) = (t, ZeroT:onesT ts ds)
simpleUncons (TwosT ((t1,t2):ts):ds)

= (t1, onesT [t2] (twosT ts ds))
simpleUncons (ThreeT (t1,t2,t3):ds) = (t1, twosT [(t2,t3)] ds)

fixUncons :: SegmenRAL a -> SegmenRAL a
fixUncons (OnesT ts:ZeroT:ds) = OnesT ts:twosT [(t1,t2)] ds1

where (Node t1 t2, ds1) = simpleUncons ds
fixUncons (ZeroT:ds) = twosT [(t1,t2)] ds1

where (Node t1 t2, ds1) = simpleUncons ds
fixUncons ds = ds

This completes the implementation ofLst interface for RAL. As in Section 3 the rela-
tionship with number system could be formalized byabst andmabst.

abst :: TreeDigit a -> Digit
abst ZeroT = Zero
abst (OnesT ts) = Ones (length ts)
abst (TwosT ts) = Twos (length ts)
abst ThreeT = Three
mabst :: SegmenRAL -> SegNum
mabst = map abst

The following equations are then easy to verify.
1. mabst . onesT ts = ones (length ts) . mabst

2. mabst . twosT ts = twos (length ts) . mabst

3. mabst . simpleIns t = simpleInc . mabst

4. mabst . fixIns = fixInc . mabst

5. mabst . consR a = inc . mabst

6. mabst . snd . simpleUncons = simpleDec . mabst

7. mabst . fixUncons = fixDec . mabst

8. mabst . tailR = dec . mabst

In particular, 5 follows immediately from 3 and 4, and 8 follows from 6 and 7.
Implementation of operationslookup andupdate of theArr interface requires some

work, but no new insights. The order of elements inSegmenRAL data structure corre-
sponds to their order in standard printed representation. The definition oflookupR is
bellow and the structure ofupdateR implementation is analogous.

lookupR = lookupList 1
lookupList :: Int -> Int -> SegmenRAL a -> a
lookupList sz i (ZeroT:ds) = lookupList (2*sz) i ds
lookupList sz i (OnesT ts:ds) = lookupOnes sz i ts ds
lookupList sz i (TwosT ts:ds) = lookupTwos sz i ts ds

174 M. Ivanović, V. Kunčak

lookupList sz i (ThreeT (t1,t2,t3):ds)
| i < sz = lookupTree sz i t1
| i < 2*sz = lookupTree sz (i-sz) t2
| i < 3*sz = lookupTree sz (i-2*sz) t3
| otherwise = lookupList (2*sz) (i-3*sz) ds

lookupOnes sz i [] ds = lookupList sz i ds
lookupOnes sz i (t:ts) ds | i < sz = lookupTree sz i t

| otherwise = lookupOnes (2*sz) (i-sz) ts ds
lookupTwos sz i [] ds = lookupList sz i ds
lookupTwos sz i ((t1,t2):ts) ds

| i < sz = lookupTree sz i t1
| i < 2*sz = lookupTree sz (i-sz) t2
| otherwise = lookupTwos (2*sz) (i-2*sz) ts ds

lookupTree sz 0 (Leaf x) = x
lookupTree sz i (Node t1 t2)

| i < sz2 = lookupTree sz2 i t1
| otherwise = lookupTree sz2 (i-sz2) t2
where sz2 = sz ‘div‘ 2

4.3. Worst-case Bounds

Worst-case time complexity bounds for the resulting random-access list are given in the
following table.

operation worst-case complexity

consR a ral O(1)
headR a ral O(1)
tailR a ral O(1)
lookupR i ral O(log i)
updateR i a ral O(log i)

Constant times forconsR, headR, andtailR are obvious from their definitions.
Logarithmic time bound forlookupR i and updateR i a follows from follow-

ing reasoning. Let thei-th node be located ink-th TreeDigit of the random-access list.
According to invariant (B), every Zero digit is preceded by Two or Three. Therefore pre-
cedingk − 1 digits contain at leastk − 1 trees. There are up to 3 trees in a tree digit, so
there are at least(k − 1)/3 different tree sizes with at least3(2(k−1)/3 − 1) elements.
Thereforei � 3(2(k−1)/3−1), sok is a logarithmic function ofi. Search fori-th element
proceeds through firstk elements of RAL, and through thek-tree whose depth isk. The
number of steps inlookupR is bounded by a linear function ofk, so it is a logarithmic
function ofi. Similar argument holds forupdateR.

Numerical Representations as Purely Functional Data Structures 175

5. Conclusions and Future Work

Random-access list presented in this paper is among the most efficientpersistentimple-
mentations that supportboth list and array abstract data types. In (Okasaki, 1998) sev-
eral random-access list implementations are presented. Among them, random-access list
based onskewnumber systems deserves special attention because it is efficient and sim-
ple. Its potential drawback is thatlookup i andupdate i a can take O(log n) where
n is total number of list elements, compared to O(log i) for segmented representation.
The O(log i) bound is also achieved by another implementation from (Okasaki, 1998),
which essentially relies on laziness. This makes it unsuitable for strict programming lan-
guages and makes complexity analysis more involved. In addition, the resulting bounds
are amortized and not worst case.Schedulingtechnique is needed to achieve worst-case
bounds, which further complicates the implementation. For this reason segmented rep-
resentation was chosen here. It was shown that the desired effect can be achieved using
digits 0, 1, 2, and 3 instead of 5 digits as suggested in (Okasaki, 1998).

The analogy with number system proved to be extremely useful on both intuitive and
formal level of reasoning. Full verification of implementation was not done, but no serious
difficulties are expected in this direction. The ability to use the same language both for
stating properties and writing efficient implementations is an important advantage itself.
It allows application of program transformation techniques which promise to improve the
quality of programming process.

This experience shows that purely functional languages are an excellent vehicle for
development of new persistent data structures. It is worth stressing again that persistent
data structures are not specific for functional programming languages. Both persistent
and mutable data structures can be used in both functional and imperative programming
paradigms. Although persistence requirements may seem constraining, it would not be
the first time that a more controlled use of language features resulted in better program-
ming practice.

References

Aditya, S. (1995). Functional encapsulation and type reconstruction in a strongly-typed. Polymorphic language.
PhD Thesis. MIT.

Bird, R., Wadler, P. (1988).Introduction to Functional Programming. Prentice Hall.
Bird, R. (1998).Introduction to Unctional Programming Using Haskell.2nd Edn. Prentice Hall.
Cormen, H., Leiserson, C. E., Rivest, R.L. (1990).Introduction to Algorithms.MIT.
Hughes, J. (1989). Why functional programming matters.Computer Journal, 32(2).
Jones, M.P., Peterson, J.C. (1999).Hugs98 User Manual. Revised version.http://haskell.org/hugs.
Okasaki, C. (1998).Purely Functional Data Structures.CUP.
Peyton Jones, S.L., Wadler, P. (1993). Imperative Functional Programming. InACM Symposium on Principles

of Programing Languages (POPL). Charleston. pp.71–84.
Peyton Jones, S.L., Hughes J. (1999).Haskell 98: A Non-strict, Purely Functional Language.Language report

available fromhttp://haskell.org/report.
Pippenger, N. (1997). Pure versus Impure Lisp. InACM Transactions on Programming Languages and Systems.

Vol. 19(2), pp. 223–238.

176 M. Ivanović, V. Kunčak

Reid, A. (1989). Designing Data Structures. InProceedings of the 1989 Glasgow Workshop on Functional
Programming. Springer-Verlag.

Trinder, P. (1989). Referentially transparent database languages. InProceedings of the 1989 Glasgow Workshop
on Functional Programming. Springer-Verlag.

Turner, D. A. (1982). Recursion Equations as a Programming Language. In J. Darlington, P. Henderson, D. A.
Turner (Eds.),Functional Programming and its Applications. Cambridge University Press. Cambridge.

Voß, A. (1985). Algebraic specifications in an integrated software development and verification system.PhD
Thesis. University of Kaiserslautern.

Wadler, P. (1995). How to declare imperative. In J. Loyd (Ed.)International Logic Programming Symposium.
MIT Press.

M. Ivanovi ć received MSc degree in Computer Science from Novi Sad University in
1988 and PhD degree in Computer Science from the same university in 1992. Presently
she is an associate professor at Institute of Mathematics and Computer Science, Faculty of
Science, University of Novi Sad. Her scientific interests include programming languages,
agent oriented methodology, software engineering and comiplers.

V. Kun čak recieved his BSc degree in Computer Science from University of Novi Sad
in 2000 with Best University Student Award. He is currently graduate student in Labo-
ratory for computer science of Massachusetts Institute of Technology. His main interests
include program analysis and verification, lambda calculus, and programming language
implementation and design.

Skaitmen ↪u grupės kaip išskirtinai funkcinės duomen↪u strukt ūros:
naujas požīuris

Mirjana IVANOVIĆ, Viktor KUNČAK

Straipsnyje nagriṅejamos nuolat saugom↪u išskirtinai funkcini↪u duomen↪u strukt̄ur ↪u projek-
tavimo, realizavimo ir verifikavimo problemos. Šias problemas siūloma spr↪esti pasinaudojant
nat̄urini ↪u skaǐci ↪u vaizdavimo poziciṅese skaǐciavimo sistemose b̄udu. Straipsnyje taip pat yra
pasīulytas naujas atsitiktiṅes prieities s↪arašo realizavimo b̄udas, grindžiamas dvejetaini↪u skait-
men↪u pasikartojaňci ↪u grupi ↪u panaudojimu. Naudojami 4 skaitmenys ir invariantinė dalis, šitaip
užtikrinant, kad darbo su s↪arašiṅemis strukt̄uromis operacijoms bus garantuotos fiksuotos blogiau-
siojo atvejo ribos ir logaritmiṅes laiko s↪anaudos paieškos bei atnaujinimo operacijoms. Atsitiktinės
prieities s↪arašo s↪aryšis su pozicine skaičiavimo sistema yra formalizuotas, straipsnyje parodyta,
kokius privalumus duoda šitokia analogija.

