INFORMATICA, 2002, \Vol. 13, No. 2, 163-176 163
0 2002Institute of Mathematics and Informatics, Vilnius

Numerical Representations as Purely Functional
Data Structures: a New Approach

Mirjana IVANOVIC

Faculty of Science and Mathematics, University of Novi Sad
Trg Dositeja Obradowia 4, 21000 Novi Sad, Yugoslavia
e-mail: mira@im.ns.ac.yu

Viktor KUN CAK

Laboratory for Computer Science, Massachusetts Institute of Technology
Cambridge, MA02139
e-mail: vkuncak@mit.edu

Received: May 2001

Abstract. This paper is concerned with design, implementation and verification of persistent purely
functional data structures which are motivated by the representation of natural numbers using posi-
tional number systems. A new implementation of random-access list based on redundant segmented
binary numbers is described. It uses 4 digits and an invariant which guarantees constant worst-case
bounds for cons, head, and tail list operations as well as logarithmic time for lookup and update.
The relationship of random-access list with positional number system is formalized and benefits of
this analogy are demonstrated.

Key words: data structures, purely functional language, random-accesss list, program derivation,
recursive slowdown.

1. Introduction

Studying data structures in the context of purely functional programming languages is
important (Aditya, 1995) both for improving efficiency of functional programs and for
exploring issues in foundations of data structures (Reid, 1989; Bird and Wadler, 1988).
New techniques are needed to analyze persistent data structures, which are naturally fa-
vored by purely functional languages, yet have advantages even in imperative settings.

Implementing data structures in functional programming languages makes them
closer to their specification, facilitating formal development of operations (Vof3, 1985).
In this way, the implementation can be derived along with the proof of its correctness and
properties of data structures can be rigorously studied.

Functional programming languages abstract from the issues of memory management
and references, which results in clear, concise and easy to debug programs (Bird, 1998;
Hughes, 1989; Turner, 1982). This makes them particularly suitable for developing and
experimenting with new data structures. This is a consequence of uniform treatment for

164 M. Ivanovig, V. Kurcak

all values. Data structures are just values of algebraic data types, and their use and modi-
fication in functional style is explicit.

In this paper a class of purely functional data structures temoueakerical represen-
tationsis explored. The discussion here is motivated by a chapter in (Okasaki, 1998).
Contributions of this paper are:

o formalization of analogy with number system;
e implementation and correctness proof for a segmented representation based on 4
instead of 5 digits, using a new invariant.

On the operational side, using a pure functional programming language makes data
structurespersistent(Okasaki, 1998). Persistent data structures remain available after
updates have been performed, so new version of data structure coexists with the original
onel Persistent data structures are an important subclass of data structures. For many
abstract data types such as lists, queues, trees, and heaps both persistent and imperative
implementations exist (Pippenger, 1997; Wadler, 1995; Peyton Jones and Wadler, 1993).
The advantages of persistent implementations are:

e they can be used in purely functional programming languages without language
extensions;

¢ they can also be used in imperative languages (especially those with garbage col-
lection support), where they avoid expensive copy operations;

e being read-only, they offer greater potential for performance improvements via
caching and parallelization;

e reasoning about them is simpler.

Their potential disadvantage is less efficient memory use if only one version of data
structure is needed. Persistent implementations of some abstract data types tend to be
more complex that imperative implementations and in some cases have worse asymptotic
time and space bounds.

Implementations in this paper are written in Haskell (Peyton Jones and Hughes, 1999),
a non-strict, purely functional programming language. Programs were tested using Hugs
environment (Jones and Peterson, 1999). Notation of multiparameter type classes and
instance declarations is used, but it is not central to this approach.

The paper is organized as follows. In the second section the notion of random-access
list is introduced. In the third section the analogy with positional number systems, es-
sential for numerical representation is presented. New approach to implementation of
random-access list is described in the section four. Conclusion and further work are given
in the last section.

2. Random-Access List

This section introduces the notion of random-access list (RAL). The signature of this data
structure is presented as a Haskell type class and a minimal implementation is given.

1This is not to be confused with persistence as a language capability for storing values on external storage
for later use.

Numerical Representations as Purely Functional Data Structures 165

2.1. Motivation

RAL is a data structure which implements both list and array interfaces. Elements can
be inserted in the front, but algeth element can be replaced or retrieved efficiently. In
this respect random-access lists have similar functionality as imperative arrays. Unlike
static arrays, however they can grow arbitrarily. Even if implementations of vectors can
be made that dynamically expand and shrink, they are not persistent since the update
operation destroys the previous version of data structure (Trinder, 1989). Hence RAL are
the best choice for persistent lists with efficient indexing.

2.2. List Interface

The list interface can be described by the following multiparameter type class.

class Lst r a where

enpty r a

cons i a->r a->r a
isEmpty :: r a -> Bool
head r a->a

tail ra->r a

Herer is a type constructor, so a is a list of elements of typa. The class introduces
two abstract list constructoesmpt y (make empty list) andons (add element to the front
of list), as well as destructorssEnpt y to test whether the list is empty, ahdad and
tai |l to access head and tail of a nonempty list.

2.3. Array Interface

The array interface is given by the following class. Functibre is introduced since
array can grow and shrink over the time.

class Arr r a where

si ze rr a->1Int
lookup :: Int ->r a ->a
update :: a ->1Int ->r a->r a

The definition of RAL signature is just

class (Lst r a, Arr r a) => RandomAccessList r a
instance (Lst r a, Arr r a) => RandomAccessList r a

2.4. A Minimal Implementation

The usual implementation of list is obtained by treaténgt y andcons as free algebra
generators.

data List a = Nil | Cons {headL :: a, taillL :: List a}
instance Lst List a where
enmpty = Nil

166 M. Ivanovig, V. Kurcak

cons = Cons
isEmpty Ist = case |Ist of
Nil -> True
-> Fal se
head = headL
tail =taillL

This definition is identical, up to syntactic sugar, to the built-in implementation of lists in
Haskell.

In this implementation efficiency problems arise with array interface operations. The
best that can be achieved is linear complexityl faokup andupdat e.

instance Arr List a where

size NI =0

size (Cons _ Ist) =1 + size Ist

| ookup O (Cons a as) = a

| ookup (n+1) (Cons a as) = |l ookup n as
update x 0 (Cons a as) Cons x as

update x (n+1) (Cons a as) = Cons a (update x n as)

In following sections RAL implementations will be introduced with logarithmp:
dat e andl ookup operations. Due to its simplicity, the implementation in this section
can be used for correctness verification of more complex implementations.

3. Simple Binary Random-Access List

This section presents the analogy with positional number systems which is the essential
idea of numerical representations. RAL based on ordinary binary number system is used
to demonstrate advantages of this approach. The implementation is similar to the one
in (Okasaki, 1998), but the presentation here is slightly more in the spirit of program
derivation.

3.1. Binary Numbers

In binary number system a natural number is represented as a list of ones and zeros.
The weight of thei-th digit is 2¢, so the value of binary digit sequenaga; . . . a,, is
ag - 2° +ap - 2' + - + a, - 2™. Note that here (contrary to the usual practice) the least

significant digit is written first.
This representation can be written in Haskell as follows.

data Digit = Zero | One
type BinNum = [Digit]

The following simple definitions of functions for incrementing¢) and decrementing
(dec) binary numbers will be used as abstract descriptions of RAL operationsand
tail.

Numerical Representations as Purely Functional Data Structures 167

inc [] = [One]
inc (Zero:ds) = One:ds
inc (One:ds) = Zero:inc ds

dec [One] = []
dec (One:ds) = Zero:ds
dec (Zero:ds) = One:dec ds

Operations nc anddec preserve the absence of trailing zeros in the digit sequence,
which is easy to verify by induction on the length of the sequence.

3.2. DerivingLst Implementation

While natural numbers from previous subsection are lists of digits, RAL based on binary
numbers is a list of “tree digits”.

data Tree a = Leaf a | Node (Tree a) (Tree a)
data TreeDigit a = ZeroT | OneT (Tree a)
type SinpleRAL a = [TreeDigit a]

OneT tree digit holds a complete binary leaf tree. Complete binary leaf tree of height
h has2" elements. The-the tree digit in the RAL holdg’ elements, which justifies
analogy with the binary number system.

To formalize the analogy betweeBi nNum and Si npl eRAL, functionsabst and
mabst are introducedabst just throws away the tree, amahbst appliesabst to all
elements of the list.

abst :: TreeDigit a -> Digit
abst ZeroT = Zero

abst (OneT _) = One

mabst :: SinpleRAL a -> Bi nNum
mabst = map abst

These functions can be used to guide the derivation of RAL operationg.oflseopera-
tion on trees is defined as follows.

consR :: a -> SinpleRAL a -> SinpleRAL a
consR a = insTree (Leaf a)
insTree :: Tree a -> SinpleRAL a -> SinpleRAL a

The analogy between numbers and RAL is given by the following equation:
mabst . insTree t = inc . mabst

Here. denotes function composition. By expanding this specification a pattern for the
definition ofi nsTr ee is obtained. Both sides of the equation have the Sipepl eRAL
a -> Bi nNum so the desired equation becomes

mabst (insTree t ts) = inc (mabst ts)

for all treest and all sequences of tree digits. The informal derivation of nsTr ee
proceeds by case analysis.

168 M. Ivanovig, V. Kurcak

Casets=[] The right hand side evaluates[tone] . By definition ofmabst , it must be
insTree t [] = t1wheretlissome tree. The most natural choicea 1 turns
out to be the right one. Hence

insTreet [] = [OneT t]

Caset s=Zer oT: t s1 The right hand side evaluates®@e: mabst ts1, or, by defini-
tion of mabst , mabst (OneT t 1:ts1).One way to satisfy the equation

mabst (insTree t (ZeroT:tsl)) = mabst (OneT t1l:tsl)
is to make arguments ahbst equal. By taking =t 1, this case becomes
insTree t (ZeroT:tsl) = OneT t:tsl

Casets=neT t 1:ts1 The right hand side can now be written in the fazer o: i nc
(mabst ts1).Assuming the equation holds fos 1, this becomegZer o: nabst
(insTree t2 ts1) for some treg 2, which equalsrabst (ZeroT:insTree
t2 ts1). This can again be satisfied by stripping wébst , giving

insTreet (OneT tl:tsl) = ZeroT:insTree t2 tsl

In order to keep all the elements it is reasonable to instantiate the free varfable
by puttingt 2=Node t t 1, which results in the final case

insTree t (OneT tl:tsl) = ZeroT:insTree (Node t t1) tsl}

The three cases just derived make up a complete definitionfr ee. In the simi-
lar vein, operatiorunconsTr ee can be derived fromec operation on binary numbers.
While the type ofi nsTree was isomorphic tqd Tree a, SinpleRAL a) -> Sim
pl eRAL a, the type ofunconsTree is

unconsTree :: SinpleRAL a -> (Tree a, SinpleRAL a)
This operation is used to define RAlead andt ai | operations.

unconsTree ral in a
unconsTree ral in tl

headR ral
tail R ral

let (Leaf a, _)
let (_, tl)

The specification in this case is

mabst . snd . unconsTree = dec . mabst

wheresnd (x,y) = y. The derivation ofinconsTr ee would proceed again by induc-
tion on the structure of a RAL.

The operationgonsR, headR, andt ai | R accompanied by definitionsmpt yR =
[1 andi sEnptyR ral = (ral ==[]) make up the implementation akt interface
for this RAL. Due to a restriction on type synonyms, writing an actual instance declara-
tion for Lst multiparameter class would require the usaeefit ype in the definition of
Si mpl eRAL which would clutter the code with application of trivial type constructor and
destructors. Instead, function implementations here are simply suffixed byRetter

Numerical Representations as Purely Functional Data Structures 169
3.3. Writing Arr Implementation

It remains to writesi zeR, | ookupR, andupdat eR functions for the RAL. The imple-
mentation oki zeRis simple andrabst makes it even simpler.

sizeR = binVal . nmabst
Herebi nval calculates the value of a binary number.

binVal = foldr op O where
opdr =digitval d + 2*r

digitval Zero = 0

digitvVal One =1

Sincemabst = map abst, a simple Haskell implementation would execute this defini-
tion of si zeR by creating an intermediate list. More efficient version would be obtained
if abst were propagated to the definitiondifgi t Val .

Implementations of ookup andupdat e are straightforward once the linear order is
imposed on RAL elements. In the list of trees, elements in earlier trees come first. Inside
the tree, leaves are ordered left to right.

|l ookupR :: Int -> SinpleRAL a -> a
| ookupR = | ookupl 1
| ookupl sz i (ZeroT:rl) = lookupl (2*sz) i rl
| ookupl sz i (OneT t:rl)
| i < sz | ookupTree sz i t
| otherw se | ookupl (2*sz) (i-sz) rl

| ookupTree sz 0 (Leaf x) = x
| ookupTree sz i (Node t1 t2)
| i < sz2 = | ookupTree sz2 i t1
| otherwi se = | ookupTree sz2 (i-sz2) t2

where sz2 = sz ‘div' 2

updateR :: Int -> a -> SinpleRAL a -> SinpleRAL a
updat eR = updatel 1
updatel sz i x (ZeroT:rl) = ZeroT : updatel sz i x rl
updatel sz i x (OneT t:rl)

| i < sz = OneT (updateTree sz i x t) : rl

| otherwise = OneT t : updatel sz (i-sz) x rl

(Leaf _) = Leaf x

updat eTree sz O
i (Node t1 t2)

updat eTree sz i
| i < sz2 Node (updateTree sz2 i x tl1) t2
| otherw se Node t1 (updateTree sz2 (i-sz2) x t2)
where sz2 = sz ‘div' 2

X X

This completes the implementation of RAL based on simple binary number system.
The main purpose of this section was to demonstrate the benefits of using analogy with
positional number systems. The RAL implementation derived here hasurst-case
complexity forcons andt ai | . This corresponds to linear worst-case complexity for

170 M. Ivanovig, V. Kurcak

i nc anddec,asininc [1,1,1,1,1] =[0,0,0,0,0,1] anddec [0,0,0,0,1] =
[1,1,1,1].Ingeneral, incrementin® — 1 takes abouk steps, as does decrementing
2k+1_Although cases with such “cascading carries” and “cascading borrows” are rare and
can be amortized in non-persistent usage of data structure (Cormen et al., 1990), this is
nottrue for persistent usage (Okasaki, 1998) of data structures based on binary numbers.

4. Random-Access List via Recursive Slowdown

This section presents an implementation of random-access list With Worst-case
bounds oncons, head andt ai | operations. Moreovef,ookup i andupdate x i
will have O(log 7) worst-case complexity. The implementation is similar to the one sug-
gested in (Okasaki, 1998), but uses 4 instead of 5 digits and relies on slightly different
invariant.

The relevance of analogy with number system should become obvious here: invariants
which are the essence this implementation can all be proved considering the number
system alone. Then it becomes easy to extend the implementation to RAL.

4.1. Segmented Redundant Binary Numbers

The motivation behind segmented redundant binary numbers is to avoid cascading carries
ini nc and cascading borrows itec. To achieve this, additional digits 2 and 3 are intro-
duced. Positional binary system is still used. However, the representation of the number
is not unique any more and reflects previous applicationsofanddec.

Introducing new digits 2 and 3 does not solve the problem by itself. Cascading carries
could now appear in cases such[&s 3, 3, 3, 3] . What is needed is a constraint on
the digit sequence which would eliminate such cases. The constraint chosen here is that
every digit Three is preceded by digit Zero or One, possibly followed by a list of Two-s.
Analogously, Zero is preceded by Two or Three, possibly followed by a list of One-s.
This is theinvariant that will hold for representation of number 0 and whiatc and
dec need to preserve. The invariant can be described by two regular expressions:

(A) ((04+1)2*3+0+1+2)*
(B) (3+2)1*0+3+2+1)*

The symmetry between digits is apparent in invariants: replacingdlijt3 — d in (A)
yields (B) and vice versa.

In order to check invariants (A) and (B), the ability to skip over a sequence of One dig-
its and Two digits of arbitrary length is needed. Therefore, consecutive digits are grouped
into list, yielding the following data structure.

data Digit = Zero | Ones Int | Twos Int | Three
data SegNum = [Digit]

To make sure that all consecutive Ones and Twos are in one group, funatiesignd
t wos are used instead of constructors Ones and Twos.

Numerical Representations as Purely Functional Data Structures 171

ones :: Int -> SegNum -> SegNum
ones 0 ds = ds

ones i (Ones k:ds) = Ones (i+k) : ds
ones i ds = Ones i : ds

twos :: Int -> SegNum -> SegNum
twos 0 ds = ds

twos i (Twos k:ds) = Twos (i+k) : ds
twos i ds = Twos i : ds

Incrementing a number is done in two steps: incrementing the first digéi by
pl el nc, and restoring the invariant by x| nc.

inc :: SegNum -> SegNum
inc = fixlnc . sinplelnc

sinplelnc :: SegNum -> SegNum
sinmplelnc [] = [Ones 1]

si npl el nc (Zero: ds)
sinplelnc (Ones i:ds)
sinpl el nc (Twos i:ds)

ones 1 ds - only for fixlnc
twos 1 (ones (i-1) ds)
Three:twos (i-1) ds

fixlnc :: SegNum -> SegNum

fixInc (Twos i:Three:ds) = Twos i:ones 1 (sinplelnc ds)
fixlnc (Three:ds) = ones 1 (sinplelnc ds)

fixlnc ds = ds

Note thatsi npl el nc is well defined. First, (A) guarantees that the first digit is never
Three, scsi npl el nc in i nc is well-defined. Next, if the argument &f npl el nc in
fixI nc had a leading Three, it would mean that (A) was violated in the original digit
sequence.

(A) can be violated by turning One into Two in front of Three or by turning Two
into Three. Both of these cases are dealt withf byl nc. Althoughfi xI nc may call
si mpl el nc again creating another Two or Thres,npl el nc ds is preceded by One,
so (A) is not violated any more.

(B) is notviolated bysi npl el nc, so the only danger is that xI nc turns a Three into
One in front of a sequence of Ones and a Zero. But in this €aspl el nc increments
Zero or One so the invariant still holds.

Hence nc preserves both invariants. The definition and proofiee are analogous.
sinpl eDec :: SegNum -> SegNum
sinpl eDec [Ones 1] =[]
sinpl eDec (Ones i:ds) = Zero:ones (i-1) ds
sinpleDec (Twos i:ds) = ones 1 (twos (i-1) ds)
sinpl eDec (Three:ds) = twos 1 ds

fixDec :: SegNum -> SegNum

fixDec (Ones i:Zero:ds) = Ones i:twos 1 (sinpleDec ds)
fixDec (Zero:ds) = twos 1 (sinpleDec ds)

fixDec ds = ds

Clearly,i nc anddec run in (1) time. This will lead directly to Q1) implementation of
cons andt ai | for RAL.

172 M. Ivanovig, V. Kurcak

4.2. RAL Based on Segmented Redundant Binary Numbers

This subsection extend#ic anddec operations on the number system of previous sub-
section tacons, t ai | , andhead operations in random-access list. The extension is sim-
ilar to one in Section 3, but the underlying number system is more complex.

The first step is to extend the data structure. Each digit holds the number of trees equal
to its value. Sequences of digits are represented by lists of (pairs of) trees.

data Tree a = Leaf a | Node (Tree a) (Tree a)
data TreeDigit a = ZeroT
| OnesT [Tree aj
| TwosT [(Tree a, Tree a)]
| ThreeT (Tree a, Tree a, Tree a)

type SegnenRAL a [TreeDigit a]

Auxiliary functions that keep consecutive Ones and Twos together take lists of trees as
arguments.

onesT :: [Tree a] -> SegmenRAL a -> SegnmenRAL a
onesT [] ds = ds

onesT ts (OnesT os:ds) = OnesT (ts++0s) : ds
onesT ts ds = OnesT ts : ds

twosT :: [(Tree a, Tree a)] -> SegnenRAL a -> SegnmenRAL a
twosT [] ds = ds

twosT ts (TwosT tws:ds) = TwosT (ts++tws) : ds

twosT ts ds = TwosT ts : ds

Definition ofconsRshould come as no surprise givesnsRfor Si npl eRAL of Section 3
andi nc of previous subsection. Taking into account the order of elements leads to the
following definition.

consR a = fixlns . sinplelns (Leaf a)

sinplelns :: Tree a -> SegmenRAL a -> SegnenRAL a
simplelns t [] = [OnesT [t]]
sinmplelns t (ZeroT:ds) = onesT [t] ds
sinmplelns t (OnesT (tl:ts):ds) = twosT [(t,t1)] (onesT ts ds)
simplelns t (TwosT ((t1,t2):tws):ds)

= ThreeT (t,t1,t2) : twosT tws ds

fixlns :: SegmenRAL a -> SegmenRAL a
fixlns (TwosT tws: ThreeT (t1,t2,t3):ds)
= TwosT tws:onesT [t1] (sinplelns (Node t2 t3) ds)
fixlns (ThreeT (t1,t2,t3):ds)
= onesT [t1] (sinplelns (Node t2 t3) ds)
X

fixlns ds = ds

OperationheadRandt ai | Rare implemented usirgj npl eUncons, which generalizes
si npl eDec, andf i xUncons, which generalizesi xDec.

headR :: SegnenRAL a -> a

Numerical Representations as Purely Functional Data Structures 173
headR ral = a where (Leaf a, _) = sinpleUncons ral

tail R :: SegnenRAL a -> SegmenRAL a
tailR = fixUncons . snd . sinpleUncons

si npl eUncons :: SegmenRAL a -> (Tree a, SegnenRAL a)
si mpl eUncons [OnesT [t]] = (t, [])
si mpl eUncons (OnesT (t:ts):ds) = (t, ZeroT:onesT ts ds)
si npl eUncons (TwosT ((t1,t2):ts):ds)
= (t1, onesT [t2] (twosT ts ds))
si mpl eUncons (ThreeT (t1,t2,t3):ds) = (t1, twosT [(t2,t3)] ds)

fixUncons :: SegmenRAL a -> SegmenRAL a

fixUncons (OnesT ts:ZeroT:ds) = OnesT ts:twosT [(t1,t2)] dsl
where (Node t1 t2, dsl) = sinpleUncons ds

fixUncons (ZeroT:ds) = twosT [(t1,t2)] dsi
where (Node t1 t2, dsl) = sinpleUncons ds

fixUncons ds = ds

This completes the implementation oft interface for RAL. As in Section 3 the rela-
tionship with number system could be formalizeddiyst andmabst .

abst :: TreeDigit a -> Digit

abst ZeroT Zero

abst (OnesT ts) Ones (length ts)
abst (TwosT ts) Twos (length ts)
abst ThreeT = Three

mabst :: SegmenRAL -> SegNum
mabst = map abst

The following equations are then easy to verify.

1. mabst . onesT ts = ones (length ts) . mabst
mabst . twosT ts = twos (length ts) . nabst
mabst . sinplelns t = sinplelnc . nabst
mabst . fixlns = fixlnc . mabst
mabst . consR a = inc . nabst
mabst . snd . sinpleUncons = sinpleDec . mabst
mabst . fixUncons = fixDec . mabst
8. mabst . tailR = dec . mabst

In particular, 5 follows immediately from 3 and 4, and 8 follows from 6 and 7.

Implementation of operatiom®okup andupdat e of theAr r interface requires some
work, but no new insights. The order of elementsSegnenRAL data structure corre-
sponds to their order in standard printed representation. The definitiboofupR is
bellow and the structure afpdat eR implementation is analogous.

Nook~odN

| ookupR = | ookupList 1

| ookupList :: Int ->1Int -> SegnenRAL a -> a

| ookuplLi st sz i (ZeroT:ds) = | ookupLi st (2*sz) i ds
| ookupLi st sz i (OnesT ts:ds) | ookupOnes sz i ts ds
| ookupLi st sz i (TwosT ts:ds) | ookupTwos sz i ts ds

174 M. Ivanovig, V. Kurcak

| ookupLi st sz i (ThreeT (t1,t2,t3):ds)

| i < sz = | ookupTree sz i tl
| i < 2*sz = | ookupTree sz (i-sz) t2
| i < 3*sz = | ookupTree sz (i-2*sz) t3
| otherwi se = |ookupList (2*sz) (i-3*sz) ds

| ookupOnes sz i [] ds = | ookupList sz i ds

| ookupOnes sz i (t:ts) ds | i < sz = | ookupTree sz i t
| otherwi se = | ookupOnes (2*sz) (i-sz) ts ds

| ookupTwos sz i [] ds = | ookupList sz i ds

| ookupTwos sz i ((t1,t2):ts) ds

| i < sz = | ookupTree sz i t1
| i < 2*sz = | ookupTree sz (i-sz) t2
| otherw se = | ookupTwos (2*sz) (i-2*sz) ts ds

| ookupTree sz 0 (Leaf x) = x
| ookupTree sz i (Node t1 t2)
| i < sz2 = | ookupTree sz2 i t1
| otherwi se = | ookupTree sz2 (i-sz2) t2

where sz2 = sz ‘div' 2

4.3. Worst-case Bounds

Worst-case time complexity bounds for the resulting random-access list are given in the
following table.

operation worst-case complexity
consR a ral 0o(1)
headR a ral o(1)
tailR a ral o(1)
| ookupR i ral O(log)
updateR i a ral O(log7)

Constant times fotonsR, headR, andt ai | Rare obvious from their definitions.
Logarithmic time bound fol ookupR i andupdateR i a follows from follow-
ing reasoning. Let théth node be located ik-th TreeDigit of the random-access list.
According to invariant (B), every Zero digit is preceded by Two or Three. Therefore pre-
cedingk — 1 digits contain at least — 1 trees. There are up to 3 trees in a tree digit, so
there are at leagtc — 1)/3 different tree sizes with at leag{2(*=1/3 — 1) elements.
Thereforei > 3(2(k—1)/3 —1), sok is a logarithmic function of. Search foi-th element
proceeds through firgt elements of RAL, and through thetree whose depth is. The
number of steps ihookupR is bounded by a linear function &f so it is a logarithmic
function ofi. Similar argument holds farpdat eR.

Numerical Representations as Purely Functional Data Structures 175

5. Conclusions and Future Work

Random-access list presented in this paper is among the most effiersigtenimple-
mentations that suppobioth list and array abstract data types. In (Okasaki, 1998) sev-
eral random-access list implementations are presented. Among them, random-access list
based orskewnumber systems deserves special attention because it is efficient and sim-
ple. Its potential drawback is thabokup i andupdate i a can take Qlogn) where

n is total number of list elements, compared tfl€3 ¢) for segmented representation.

The Qlogi) bound is also achieved by another implementation from (Okasaki, 1998),
which essentially relies on laziness. This makes it unsuitable for strict programming lan-
guages and makes complexity analysis more involved. In addition, the resulting bounds
are amortized and not worst caSehedulingechnique is needed to achieve worst-case
bounds, which further complicates the implementation. For this reason segmented rep-
resentation was chosen here. It was shown that the desired effect can be achieved using
digits 0, 1, 2, and 3 instead of 5 digits as suggested in (Okasaki, 1998).

The analogy with number system proved to be extremely useful on both intuitive and
formal level of reasoning. Full verification of implementation was not done, but no serious
difficulties are expected in this direction. The ability to use the same language both for
stating properties and writing efficient implementations is an important advantage itself.
It allows application of program transformation techniques which promise to improve the
quality of programming process.

This experience shows that purely functional languages are an excellent vehicle for
development of new persistent data structures. It is worth stressing again that persistent
data structures are not specific for functional programming languages. Both persistent
and mutable data structures can be used in both functional and imperative programming
paradigms. Although persistence requirements may seem constraining, it would not be
the first time that a more controlled use of language features resulted in better program-
ming practice.

References

Aditya, S. (1995). Functional encapsulation and type reconstruction in a strongly-typed. Polymorphic language.
PhD ThesisMIT.

Bird, R., Wadler, P. (1988)ntroduction to Functional ProgrammindPrentice Hall.

Bird, R. (1998).Introduction to Unctional Programming Using Haske2hd Edn. Prentice Hall.

Cormen, H., Leiserson, C. E., Rivest, R.L. (199@jroduction to AlgorithmsMIT.

Hughes, J. (1989). Why functional programming matt@smputer Journal32(2).

Jones, M.P., Peterson, J.C. (1999)gs98 User ManualRevised versiorht t p: / / haskel | . or g/ hugs.

Okasaki, C. (1998)Purely Functional Data Structure€UP.

Peyton Jones, S.L., Wadler, P. (1993). Imperative Functional ProgrammiAGNhSymposium on Principles
of Programing Languages (POPLgharleston. pp.71-84.

Peyton Jones, S.L., Hughes J. (199%9skell 98: A Non-strict, Purely Functional Languadgenguage report
available fromht t p: / / haskel | . org/ report.

Pippenger, N. (1997). Pure versus Impure LispAGM Transactions on Programming Languages and Systems
Vol. 19(2), pp. 223-238.

176 M. Ivanovig, V. Kurcak

Reid, A. (1989). Designing Data Structures. Proceedings of the 1989 Glasgow Workshop on Functional
Programming Springer-Verlag.

Trinder, P. (1989). Referentially transparent database languagemdeedings of the 1989 Glasgow Workshop
on Functional ProgrammingSpringer-Verlag.

Turner, D. A. (1982). Recursion Equations as a Programming Language. In J. Darlington, P. Henderson, D. A.
Turner (Eds.)Functional Programming and its Application€ambridge University Press. Cambridge.

VolR3, A. (1985). Algebraic specifications in an integrated software development and verification $isi2m.
Thesis University of Kaiserslautern.

Wadler, P. (1995). How to declare imperative. In J. Loyd (Hat¢rnational Logic Programming Symposium
MIT Press.

M. Ivanovic¢ received MSc degree in Computer Science from Novi Sad University in
1988 and PhD degree in Computer Science from the same university in 1992. Presently
she is an associate professor at Institute of Mathematics and Computer Science, Faculty of
Science, University of Novi Sad. Her scientific interests include programming languages,
agent oriented methodology, software engineering and comiplers.

V. Kun ¢ak recieved his BSc degree in Computer Science from University of Novi Sad
in 2000 with Best University Student Award. He is currently graduate student in Labo-
ratory for computer science of Massachusetts Institute of Technology. His main interests
include program analysis and verification, lambda calculus, and programming language
implementation and design.

Skaitmeny grupes kaip iSskirtinai funkcines duomen strukturos:
naujas pozuris

Mirjana IVANOVI C, Viktor KUNCAK

Straipsnyje nagri@jamos nuolat saugamisskirtinai funkcini duomen strukury projek-
tavimo, realizavimo ir verifikavimo problemos. Sias problemasosha spesti pasinaudojant
natriniy skatiu vaizdavimo poziciase skdiiavimo sistemose tmlu. Straipsnyje taip pat yra
pasilytas naujas atsitikties prieities graso realizavimo Umas, grindZziamas dvejetainiskait-
mery pasikartojadiu grupy panaudojimu. Naudojami 4 skaitmenys ir invariaatitalis, Sitaip
uztikrinant, kad darbo swasasiremis struktiromis operacijoms bus garantuotos fiksuotos blogiau-
siojo atvejo ribos ir logaritmies laiko anaudos paieskos bei atnaujinimo operacijoms. Atsitgtin
prieities @raso arySis su pozicine sk&iavimo sistema yra formalizuotas, straipsnyje parodyta,
kokius privalumus duoda Sitokia analogija.

