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Abstract
We present a new code assistance tool for integrated devel-
opment environments. Our system accepts as input free-form
queries containing a mixture of English and Java, and pro-
duces Java code expressions that take the query into account
and respect syntax, types, and scoping rules of Java, as well
as statistical usage patterns. In contrast to solutions based
on code search, the results returned by our tool need not
directly correspond to any previously seen code fragment.
As part of our system we have constructed a probabilistic
context free grammar for Java constructs and library invoca-
tions, as well as an algorithm that uses a customized natural
language processing tool chain to extract information from
free-form text queries. We present the results on a number
of examples showing that our technique (1) often produces
the expected code fragments, (2) tolerates much of the flex-
ibility of natural language, and (3) can repair incorrect Java
expressions that use, for example, the wrong syntax or miss-
ing arguments.

Categories and Subject Descriptors I.2.1 [Artificial Intel-
ligence]: Applications and Expert Systems—Natural lan-
guage interfaces; I.2.2 [Artificial Intelligence]: Automatic
Programming—Program synthesis

General Terms Algorithms, Languages, Theory

Keywords Program Synthesis, Natural Language Process-
ing, Autocompletion, Program Repair

1. Introduction
Application programming interfaces (APIs) are becoming
more and more complex, presenting a bottleneck when solv-
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ing simple tasks, especially for new developers. APIs con-
tain many types and declarations, so it is difficult to know
how to combine them to achieve a task of interest. Instead
of focusing on more creative aspects of the development, a
developer ends up spending a lot of time trying to under-
stand informal documentation or adapting the API examples
from developer forums or the documentation. Integrated de-
velopment environments (IDEs) help in this task by listing
declarations that belong to a given type but leave it to the
developer to decide how to combine the declarations.

On the other hand, on-line repository host services such
as GitHub [13], BitBucket [3], and SourceForge [30] are
becoming increasingly popular, hosting a large number of
freely accessible projects. Such repositories are an excellent
source of code examples that the developers can use to learn
API usage. Moreover, the large size and variety of code in
these repositories suggests that they can be leveraged to cre-
ate a more sophisticated IDE support. A natural first step
is to perform code search [32], though this still leaves the
user with the task of understanding context and adapting it
to their needs. Several researchers have pursued the problem
of generalizing from such examples in repositories, combin-
ing non-trivial program analysis and machine learning tech-
niques [27].

In this paper, we present a new approach that synthesizes
code appropriate for a given program point, guided by hints
given in free-form text. We have implemented our approach
in a system called anyCode and have found it to be useful
in our experience (see Figure 9 for evaluation results and
Figure 8 for examples used to configure anyCode). Our
approach builds a model of the Java language, based on
the corpus of code in repositories, and adapts the model
to a given text input. In that sense, our approach combines
some of the advantages of statistical programming language
models [27], but also of natural language processing of input
containing English phrases (which was previously done only
for restricted APIs [21]). A prototype of our approach was
presented in a short tool demonstration [14].

To construct type-correct expressions anyCode conceptu-
ally builds on our previous work, the InSynth tool [15, 16].
When using InSynth, a user indicates the desired result type
of an expression; InSynth then generates ranked expressions
of that type. In contrast, the input to anyCode has a much
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more flexible interpretation: it can represent any informa-
tion related to the expression and can refer to any part of an
expected expression. Furthermore, InSynth only uses the un-
igram language model [19, Chapter 4], which assigns a prob-
ability to a declaration based on its call frequency in a cor-
pus. anyCode, in addition to unigram, uses the more sophis-
ticated probabilistic context free grammar (PCFG) model
[19, Chapter 14] to synthesize and rank the expressions.

To synthesize expressions, anyCode performs the follow-
ing three key phases:

1. it uses natural language processing (NLP) tools [8, 24,
33] to structure input text and split it into chunks of words
based on their relationships in the sentence parse tree;

2. it uses the structured text and unigram model to select a
set of most likely API declarations, employing a set of
scoring metrics and applying the Hungarian method [20]
to solve the resulting assignment problem [5];

3. it uses the selected declarations, PCFG and unigram
model to unfold the declaration arguments. The result
is a list of ranked (complete or partial) expressions that
anyCode offers to the developer, using the familiar code
completion interface of Eclipse.

By introducing a textual input interface, we aim to au-
tomatically reduce the gap between natural languages and
programming languages. anyCode allows the developer to
formulate a query using a mixture of English and code frag-
ments. anyCode takes into account English grammar when
processing input text. To improve input flexibility and ex-
pressiveness we also consider word synonyms and other re-
lated words (hypernyms and hyponyms). We build a related
word map based on WordNet [11], a large lexical database
of English. We present a technique to make WordNet usable
in our context by automatically projecting it onto the API
jargon. We use these techniques along with the NLP tools to
support the natural language aspect in anyCode. The tech-
niques we implement in anyCode are inspired by stochastic
machine translation. However, in contrast to machine trans-
lation, we had to overcome the lack of a parallel corpus relat-
ing English and Java, as well as the gap between an informal
medium such as English and the rigorous syntax and type
rules of a programming language such as Java.

One of our aims is to free the developer from the con-
ventional rigid structure of a programming language when
describing their intention. Our view is that IDE tools should
allow a user to gloss over aspects such as the number and
the order of arguments in method calls, or parenthesis usage,
when these can be inferred automatically. The developers
can then focus more on solving important higher-level soft-
ware architecture and decomposition problems. Finally, we
also hope to lower the entry for users learning to program—
for whom syntax is often one of the first obstacles.

To achieve this, we find that a short text input that approx-
imately describes the structure of the desired expression is

the most convenient. To make the tool useful for program-
ming, we also allow user’s input to include literals and local
variable names. Using such input, anyCode manages to syn-
thesize valid Java code fragments. It can do that because it
does not impose any strict requirement on the input: it has
the ability to generate likely expressions according to the
Java language model, and uses as much of the information
from the input as it can extract to steer the expression gener-
ation toward the developer’s intention.

Contributions To summarize, our paper makes the fol-
lowing contributions, spanning several individual techniques
and areas:

• We present a unique pipeline of techniques that accepts
text input and synthesizes a ranked list of (possibly par-
tial) expressions. We combine customized natural lan-
guage processing tools, a text-to-declaration matching
algorithm, probabilistic context-free grammar (PCFG)
models for Java applications, and an algorithm to gen-
erate expressions based on this information. The imple-
mentation of a tool, anyCode, including these techniques
is publicly available [2].
• We describe a fast corpus analysis and extraction algo-

rithm as well as its implementation, designed for build-
ing probabilistic Java language models. The algorithm
extracts the occurrences of declaration compositions and
declaration frequencies and builds PCFG and unigram
models. We implemented and ran the algorithm on 1.8
million Java files to build a reusable probabilistic model
for Java applications.
• We introduce an efficient approach for relating text to

API declarations. Our approach prioritizes words based
on their importance and position, both in the input text
and inside declarations. To efficiently match text to decla-
rations, we create appropriate indices, reduce matching to
the assignment problem, and use the Hungarian method.
• We present a customized related-word map from each

word to its related words. To build it, we use relations
in WordNet and introduce a scoring technique that, for a
given word, ranks and finds the closest related words. We
use a set of API words to build the score and filter out
irrelevant words.
• We introduce a benchmark set consisting of 90 pairs

of free-form text input and Java expression output. Our
benchmarks can be used to evaluate tools that map free-
form text to Java expressions including API invocations.
• We present our experimental evaluation. We perform pa-

rameter tuning on 45 of the above examples and evaluate
the system on the remaining 45. Our results suggest that
our tool is helpful in practice. The evaluation also shows
that the individual techniques we employed are important
for obtaining such results.
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2. Examples
We next illustrate the main functionality of anyCode through
examples. The first example demonstrates anyCode’s inter-
active deployment, the text interface, and the use of program
context to guide the synthesis.

Figure 1. After the user inserts text input, anyCode sug-
gests five highest-ranked well-typed expressions that it syn-
thesized for this input.

2.1 Making a Backup of a File
Suppose that a user wishes to create a method that backs up
the content of a file. The method should take the file name
as a parameter and copy the content of the file to a new file
with an appropriately modified name. To implement such a
method, the user needs to identify the appropriate API, select
the set of its declarations (typically method calls) and com-
bine them into an expression. In practice, to perform this, an
inexperienced user might follow these steps manually:

1. search the Internet or API documentation (if it exists) to
find the examples of API use

2. select the most suitable example

3. copy-paste it into the working editor with code, and

4. edit the example to adapt it to the current program con-
text, using appropriate values in the program scope.

anyCode offers an automated approach as an alternative to
the above manual steps. Suppose that a user writes an in-
complete piece of code of the method that takes the param-
eter fname storing the file name, as shown in Figure 1, and
also introduces a local variable bname storing the name of
the backup file. When the user invokes anyCode, a pop-up
text field appears where she can insert the text. Assume she
enters the text “copy file fname to bname”, specifying her de-
sire to copy the file content. anyCode automatically extracts
the program context from Eclipse and identifies words fname

and bname in the input as values referring to a parameter
and a local variable. anyCode then uses this information to
generate and present several ranked expressions to the user.
When the user makes her choice, the tool inserts the chosen
expression at the invocation point. In this example, anyCode
works for less than 70 milliseconds (which is typical) and
then presents five solutions of which the first one copies the
file fname content to a file with name bname:

FileUtils.copyFile(new File(fname), new File(bname))

This is a valid solution; it uses the method FileUtils.copyFile

from the popular “Commons IO” library.

2.2 Obtaining Screen Refresh Rate
We next consider a scenario where a user wishes to deter-
mine a screen’s display refresh rate. The user can simply
invoke anyCode with the free-form query “get display refresh

rate”. In response, anyCode synthesizes and suggests the fol-
lowing expressions:

1 GraphicsEnvironment.getLocalGraphicsEnvironment()

.getDefaultScreenDevice().getDisplayMode()

.getRefreshRate()

2 Calendar.getInstance()

3 DisplayMode.REFRESH RATE UNKNOWN

4 Policy.getPolicy().refresh()

5 System.getProperty(‘‘?’’)

The first suggestion turns out to be the desired one. Note
that this suggestion is not the shortest possible one, and it
includes declarations that are not computed from the user’s
free-form input in any straightforward way. Whereas meth-
ods getRefreshRate and getDisplayMode all contain input
words (get, refresh, rate and display), the methods getDe-

faultScreenDevice and getLocalGraphicsEnvironment do not.
To determine the need to invoke getLocalGraphicsEnviron-

ment in the presence of getRefreshRate, we use probabilistic
language model for Java and its API calls, derived from a
corpus of code. The model allows us to favor more popular
declarations and declaration compositions, so it can deter-
mine that the additional methods are a common way to build
expressions containing the more obviously relevant meth-
ods.

2.3 Creating a Polygon
Suppose now that a developer wishes to obtain an instance
of the class Polygon. Let us say she already defined polygon
points using two equal-length integer arrays x and y, for x
and y coordinates, respectively. If the developer inserts the
following free-form query:

polygon x y

anyCode generates the following suggestions:

1 new Polygon()

2 new Polygon(x, y, 0)

3 new Polygon(y, x, 0)

4 new Polygon(x, y, y.length)

5 new Polygon(x, y, x.length)

This example shows the importance of presenting multiple
solutions to the user, and further illustrates some of the pref-
erence criteria built into anyCode. Note that suggestions 4
and 5 are both acceptable. The solutions 2 and 3 use integer
literal as a third argument. The composition of the Polygon
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constructor with the integer literal as the third argument is
more popular than the composition of the same constructor
and the length field that appears in the last two expressions.
For this reason, solutions 2 and 3 a have higher score than 4
and 5 (constant 0 as the third argument is merely a place-
holder, expected to be adapted by the developer). On the
other hand, solution 1 has the best score because the Polygon

constructor without parameters is more popular than the con-
structor with three parameters. Furthermore, solution 2 has
a better score than 3 and solution 4 has a better score than 5.
The reason is that 2 and 4 follow the order of local variables
x and y in the input query, where x comes before y. anyCode
uses this scoring technique to differentiate suggestions that
would otherwise have the same score.

2.4 Creating a New File
In the next example we demonstrate the use of semantically
related words. Suppose that the user wishes to discover how
to generate a new file on disk. She may use a query such as
“make file”. In response, anyCode generates the output:

1 new File(〈arg〉).createNewFile()

2 new File(〈arg〉).isFile()

3 new File(〈arg〉)
4 new FileInputStream(〈arg〉)
5 new FileOutputStream(〈arg〉)

Note that the word make does not appear among the solu-
tions, simply because API designers chose to use the re-
lated word create instead. anyCode succeeds in finding the
solution because it considers not only the words literally ap-
pearing in the input, but also words related to them, which,
in this case, includes create. anyCode uses a custom related
word map to compute the relevant words. We built this map
by automatically processing and adapting WordNet, a large
lexical semantic network of English words.

Additionally, all suggestions in this example represent
templates that include the symbol 〈arg〉 that marks the places
where local variables are often used. The main reason why
we present templates is that a user often enters incomplete
input, for which the best solution is an incomplete output,
i.e., a template. Had we insisted only on completed expres-
sions, we would miss many interesting solutions that are
more convenient for such an incomplete input. For this rea-
son, anyCode treats a textual input as potentially incomplete
and tries to find complete as well as incomplete solutions.

2.5 Checking File Permission
Consider the following input of a developer:

check file ‘‘text.txt’’ ‘‘read’’ permission

This example shows that the input may contain string literals
in quotation marks, which the tool may reuse in the gener-
ated code fragments (A user can also directly insert number
and boolean literals). For this input anyCode outputs:

1 AccessController.checkPermission(

new FilePermission(‘‘text.txt’’, ‘‘read’’))

2 AccessController.checkPermission(

new FilePermission(‘‘read’’, ‘‘text.txt’’))

3 new File(‘‘text.txt’’)

4 new FileInputStream(‘‘text.txt’’)

5 new FileInputStream(‘‘read’’)

The constructors File and FileInputStream are often used and
more popular than other declarations that appear among the
solutions. However, the expressions under 1 and 2 are ranked
higher than others because they have a higher usage of the
input text elements. For instance, solution 3 does not refer
to one of the string literals in the input, nor does it include
words check and permission. The synthesis algorithm and
our scoring techniques favor solutions with the greater input
coverage. In this example, the first expression performs the
desired task.

2.6 Reading from a File
In our final example we show that our input interface may
also accept an approximate Java-like expression. For in-
stance, if a user attempts to write an expression that reads
the file, in the first iteration she may write the expression:

readFile(‘‘text.txt’’,‘‘UTF−8’’)

Unfortunately, this expression is not well-typed according to
common Java APIs. Nevertheless, if anyCode takes such a
broken expression, it pulls it apart and recomposes it into a
correct one, suggesting the following solutions:

1 FileUtils.readFileToString(new File(”text.txt”))

2 FileUtils.readFileToString(new File(”UTF−8”))

3 FileUtils.readFileToString(〈arg〉)
4 FileUtils.readFileToString(new File(〈arg〉))

5 FileUtils.readFileToString(new File(”text.txt”),”UTF−8”)

anyCode first transforms the input by ignoring the language
specific symbols (e.g., parenthesis and commas). It then
slices complex identifiers, so called k-words, into single
words. Here, readFile is a 2-word that gets sliced into read

and file. Despite the loss of some structure in treating the in-
put, our language model gives us the power to recover mean-
ingful expressions from such information. This shows how
anyCode can be used as a simple expression repair system.
The desired solution is ranked fifth because it uses a ver-
sion of readFileToString method with two arguments, which
appears less frequently in the corpus than the simpler ver-
sions of the method. The repair functionality is not a pre-
engineered feature of our system, but rather a property that
emerges as a consequence of a robust interface for handling
text input.

We have evaluated our system on a number of examples.
Figure 9 shows 45 text queries and the code that we expected
to obtain in return. The “All” column indicates the rank on
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Figure 2. anyCode system overview. Offline system components run only once at tool setup time to produce the information
for the online system components. Online system components run continuously as a part of the Eclipse plugin.

which the expression was found with all features of our sys-
tem turned on, as discussed in Section 11. In addition to
these evaluation examples, we present another 45 examples,
in Figure 8, used to tune anyCode. For these examples any-
Code also successfully synthesizes expected expressions.

3. System Overview
In this section we give a high-level description of the main
components of our system. At the top level, we divide the
system into the online and the offline part (see Figure 2).

3.1 Online System
The online part of anyCode interactively suggests expres-
sions to a developer within the Eclipse IDE. Input to the on-
line part consists of: 1) a textual description, explicitly en-
tered by the developer, and 2) a partial Java program with a
position of the cursor, which anyCode extracts automatically
from Eclipse. anyCode uses the input to generate, rank, and
present expressions to the developer. The key components of
anyCode are: the input parser, the declaration search engine,
and the expression synthesizer. The method getExpressions

is the main method that performs these steps, as outlined in
Figure 3.

Parser The first goal of parsing is to identify structure of
the input text using a set of natural language processing
tools. anyCode uses the structure to group input words into
WordGroups. We group the words because we expect a user
to insert the text that corresponds to several declarations.
Grouping according to the rules of English helps the sys-
tem identify these declarations from multiple input words.
Next, to make the input more flexible, anyCode completes
the words given in the input with semantically related words
(Section 7). Finally, to complement natural language input
and to be able to accept broken Java-like expressions, any-

Code uses program context, a set of all local variables visi-
ble from the cursor point, to mark local variables in the input
text. Moreover, anyCode also identifies literals in the input
text. The parsing phase is implemented as the parse method;
Section 4 describes it in more depth.

getExpressions(text, partialProgram, N, M, S):

// Parsing

context ← extract(partialProgram)

(WordGroups, Literals, Locals) ← parse(text, context)

// Declaration Search

DeclGroups ← declSearch(WordGroups,API,Unigram,M)

// Expression Synthesis

ExPCFG ← extend(PCFG, Literals, Locals)

return synth(DeclGroups, ExPCFG , S, N)

Figure 3. A high level description of the online system.

Declaration Search Engine In the declaration search en-
gine, anyCode uses WordGroups to find a subset of API
declarations that are most likely to form the final expres-
sions. anyCode tries to match WordGroups against declara-
tions in our API collection. To perform matching, anyCode
extracts a list of words from declarations and matches them
against the words in WordGroups. anyCode estimates the
declaration matching score based on the number of words
that it matched. We use the matching score and declara-
tion Unigram [19, Chapter 4] score (representing the dec-
laration popularity or the frequency in the corpus) to cal-
culate total declaration score. anyCode then uses the score
to select top M declarations for each w ∈ WordGroups and
to form declaration groups DeclGroups. In summary, the
method declSearch transforms each word group into a dec-
laration group. This approach accounts for the ambiguity in
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the input text while mapping the input to expected declara-
tions (see Section 8 for further details).

Expression Synthesizer In the last phase anyCode uses
declaration groups, DeclGroups, and a probabilistic context
free grammar (PCFG) model [19, Chapter 14] to synthesize
expression. Our PCFG model contains the statistics on dec-
laration compositions pre-collected from a large Java source
code corpus hosted on GitHub. The compositions are en-
coded as production rules with appropriate probabilities. The
model determines how anyCode should compose declara-
tions to obtain expressions that are likely to occur in real-
world applications. To include literals and local variables
we extend PCFG in the method extend with the production
rules for literals and local variables, obtaining the extended
model ExPCFG. Next, for each declaration in DeclGroups, the
method synth tries to unfold declaration arguments following
the ExPCFG model in S steps. Given a declaration, ExPCFG

suggests the most likely declarations that fill in the argu-
ment places. Additionally, the method synth assigns scores
to synthesized expressions based on ExPCFG and declara-
tion scores. Finally, synth sorts all the expressions based on
the score and outputs the first N to the user. We describe this
phase in Section 6.

3.2 Offline System
Unlike the online system that runs interactively inside
Eclipse IDE, the offline system contains components that we
run once before a user starts interacting with anyCode. We
use the offline components to build necessary data structures
for anyCode to operate efficiently and effectively. These in-
clude: Word Declaration Map, which optimizes matching
between input words and declarations, Related Word Map,
which maps words to related API words, and, finally, PCFG
and Unigram models.

Declaration Map Builder To efficiently match Word-

Groups with API declarations in the declaration selection
phase we build the Word Declaration Map. We use a pre-
collected set of API declarations to create a map from each
word to the set of declarations that contain that word. In the
first step we collect API declarations from popular APIs and
packages. Next, we use the set of natural language process-
ing tools to extract words from each declaration. The words
belong to names as well as argument and return types of the
declarations. Finally, we use the words and declarations that
contain the words to build the Word Declaration Map.

Related Map Builder To make the input more flexible
we complement the input text with related words. For this
purpose, we build the Related Word Map that represents the
map of related words computed from WordNet [11], a large
lexical database of English. WordNet groups synonyms into
sets and defines other relations between those sets. We use
WordNet relations and our API collection to build Related
Word Map that maps words to related API words.

Model Extractor Model Extractor extracts PCFG and
Unigram models from the Java source corpus hosted on
GitHub. We built a lightweight compiler front-end for Java
to compile the files and the extractor to extract the model
from the compiled units. First, we use the compiler to build a
symbol table, in order to perform type checking and to build
approximate ASTs. The symbol table contains the informa-
tion on local symbols as well the information on API dec-
larations. Approximate ASTs, unlike complete ASTs, might
miss type and symbol information in some AST nodes. Sec-
ond, we extract as precisely as possible the statistics from the
approximate ASTs, obtaining PCFG and Unigram models.

4. Parsing
During the parsing process our system resolves some of the
ambiguity of the input text and identifies its deeper struc-
ture. The parsing helps us group the words from the input
text and also allows us to extract and group the words from
the declaration signatures (e.g., declaration names, argument
and return types). More specifically, we use parsing to struc-
ture the input text in the method parse (Figure 3) as well as
to process the API declaration in Declaration Map Builder.

In the next phase (Section 5), we use the input word
groups to match the declaration words and thus select the
most relevant API declarations. Parsing is an important step
that allows efficient declaration selection. It helps anyCode
to effectively use the input text and select only a few rele-
vant declarations from our API collection (with over 10,000
declarations), significantly reducing search space.

In the sequel, a k-word denotes a chain of k English
words connected without a whitespace or the underscore
between them as often used in Java identifiers. The words are
separated at places where the underscore appears or where a
small letter meets a capital letter. Often, declaration names
are k-words (e.g., “readFile” is a 2-word that contains the
words “read” and “file”). A 1-word is a single English word.
We say that a token is either a k-word, a literal or a local
variable name. Among literals, anyCode supports numbers,
strings, and booleans.

4.1 Input Text Parsing
To describe the parsing process, we use two examples, show-
ing different phases of the parse method in Figure 3.

In the first example, a user inserts ’copy file fname to ‘‘

C:/user/text2.txt’’’, as shown in the row zero of Figure 4
(fname is the local variable). We represent each phase of the
parsing by one of the rows 1-5 and 7. Each row contains a
name of a phase and an output. In the first phase we remove
Java symbols (e.g., commas and parenthesis) and whitespace
characters. In the second phase, we identify tokens and mark
literals as well as local variables with labels “Lit” and “Var”,
respectively. In our example, we identify one local variable
fname and one literal ‘‘C:/user/text2.txt’’. In the third phase,
row 3, we decompose k-words into single words. In Figure 4,
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Phase Name Word Type Output
0 Text Input copy file fname to “C:/user/text2.txt”
1 Removing Java Symbols copy file fname to “C:/user/text2.txt”
2 Tokenization copy file Var(fname) to Lit(“C:/user/text2.txt”)
3 Decomposing k-words copy file Var(fname) to Lit(“C:/user/text2.txt”)
4 Swap Literals & Locals copy file string to string
5 POS Tagging copy/Verb file/Noun string/Noun to/To string/Noun

7 Grouping

Group 1 Group 2 No Group Group 3 No Group
Primary copy/Verb file/Noun to/To
Secondary file/Noun, to/To string/Noun string/Noun

Figure 4. Phases of parsing the “copy file” example.

Phase Name Word Type Output
0 Text Input readFile(“text.txt”,“UTF-8”)
1 Removing Java Symbols readFile “text.txt” “UTF-8”
2 Tokenization readFile Lit(“text.txt”) Lit(“UTF-8”)
3 Decomposing k-words read file Lit(“text.txt”) Lit(“UTF-8”)
4 Swap Literals & Locals read file string string
5 POS Tagging read/Verb file/Noun string/Noun string/Noun

7 Grouping

Group 1 No Group No Group
Subgroup 1 Subgroup 2

Primary read/Verb file/Noun
Secondary string/Noun, string/Noun

Figure 5. Phases of parsing the “read file” example.

all words are already single words, thus the output remains
the same as in the previous phase.

Because we expect local variables and literals to appear
as arguments in an expression, we extract their types and
use them to search for the declarations with the same argu-
ment types. Therefore, in the next phase, row 4, we replace
literals and local variables with their types. Both fname and
“C:/user/text2.txt” are replaced by string.

In general, mapping the input words to the declarations
is ambiguous. For instance, each word can be mapped to
a distinct declaration (e.g., copy to the declaration with the
name copy, file to the declaration with the name file, etc.) or a
group of words can be mapped to the same declaration (e.g.,
copy and file can be mapped to the method with the name
copyFile, and file and string can be mapped to the constructor
new File(String)). Therefore, to resolve this ambiguity we
need to know what is the most likely word grouping so that
the words in the groups can be mapped to the most relevant
declarations. For this reason, we employ NLP tools to obtain
deeper structure in text and use it to effectively group the
words.

We thus continue with the fifth phase, row 5, where we
use the Stanford CoreNLP [8, 24, 33] tools to lemmatize
words, put them into their canonical form (e.g., “good” is
the lemma of “better”), and tag them with Part-of-Speech
(POS) tags. The POS tags are assigned based on the lexical
content of a word and its position in the sentence (the tags
can be Verb, Noun, Adjective, Adverb, etc.). We perform this
step for two reasons: (1) we observe that verbs mostly appear
in the API method names, where non-verb words appear
almost anywhere (in argument types as well in method and
constructor names), and (2) a POS-tagged sentence, a list of
POS-tagged words, is the input to the NL parser. In phase
6, we pass the tagged sentence to the Stanford NL parser

and obtain a semantic graph, shown on the right-hand side
of Figure 4 (in general a semantic graph is a directed acyclic
graph, but in our examples are a tree). The nodes are words
and the edges are relations. For instance, the edge that goes
from copy to file, denoted with “dobj”, says that file is a direct
object of copy. In the final phase, row 7, we use the graph to
group the words. For each word w, except for the literal and
local variable types (two “string” words), we form a group.
The group contains w and its children words. The children
words are the direct children of w at the opposite sides of its
outgoing edges. For instance, the first group contains words
copy as w, and file and to as w’s children.

We expect that some words in the group may match with
declaration names and others with types. For instance, the
second group contains the word file that may match the name
of the constructor new File(String) (the new File part) and
the word string that may match the constructor’s argument
type (the String part in the parenthesis). For this reason, we
make a distinction between the words in the word group.
Our primary alignment strategy is to match w with the words
from the declaration names. By the same strategy, we expect
w’s children to match with the words from the declaration
types. Although this is the primary strategy, it is not the only
one. For instance, an alternative strategy is that the children
words may also match the words from the declaration names.
This strategy is useful when we want the first group words
copy as w and file as w’s child, to match the name of the
copyFile declaration. We also referred to w as the primary
word. We call its children secondary words.

We expect that the user will more often insert declaration
name words than the type argument words. For instance, if
a user types a word file it is more likely that she refers to the
declaration that contains file in the name than to the declara-
tion that contains file only among the arguments. Although
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we consider all declarations during the matching phase, we
give priority to the declarations that have file in the name
over the declarations that have file only among the argument
types. One way to implement this is to give higher priority to
primary than to secondary words. In Section 8 we explain in
more detail our scoring and alignment model with different
strategies using primary and secondary words.

In our first example we have three different word groups
denoted with numbers 1-3. The group i contains all the
words below the number i. Therefore, Group 1 contains the
primary word copy and the secondary words file and to. We
do not create groups for the “string” literals because they are
expected to match argument types.

In the case of a k-word we also want to take into account
the suggested connection among the words that appear in the
k-word. In the second example, Figure 5, the most interest-
ing is phase 3, where we split the 2-word readFile into file

and read, and phase 7, where we form the groups based on
k-words. In the case of k-words, where k > 1, we create a
single group for the entire k-word to take the connection into
account. However, for every single word in k-words we cre-
ate a subgroup. For instance, Group 1 contains subgroups
Subgroup 1, with the primary word read, and Subgroup 2,
with the primary word file and its secondary words based
on the semantic graph (Figure 5). Subgroup 1 does not con-
tain any secondary words because the word file is already the
primary word of Subgroup 2.

To satisfy the constraint that verbs often appear in the dec-
laration names, we omit verbs from secondary words. Addi-
tionally, another important constraint that we consider is that
each group contains at least one non-verb word because we
observe that declaration signatures usually contain at least
one non-verb word.

4.2 Declaration Parsing
Previously, we demonstrated how we parse the text input
and obtain word groups. We use the word groups to select
the declarations. The natural way to do this is to match the
words from the groups against the words that appear in the
declarations (including the words that appear in the decla-
ration name, argument and return types). To obtain declara-
tion words we also use parsing in the pre-processing stage.
We extract the words from the declaration name and types.
We parse each declaration using the same parsing technique,
phases 1-5, we described before. However, we do not make
different group words, but only put declaration name words
into the set of primary declaration words, and type words
into the set of secondary declaration words. For instance,
the declaration copyFile(File, File):Unit will have the primary
group that contains copy and file and the secondary group
that contains words file two times and unit.

Our goal will be to maximize the matching score between
the input group words and the declaration words. Intuitively,
the score will be higher if the primary words from the input
group and the primary words from the declaration match,

Word Group 1
copy/Verb

file/Noun, to/To
Declaration Group 1
Name Type

copyFile (File, File):Unit
copyFileToDirectory (File,File):Unit

copyURLToFile (URL, File):Unit
copyOf (X[], int):X[]

copyFile (File, File, boolean):Unit

Figure 6. The declaration selection for “copy file”.

and if the secondary words from the input group and the
secondary words from the declaration match. Any deviation
from this will have a smaller matching score. In Section 8
we show the framework to calculate the matching score.

5. Declaration Selection
The previous section outlined how our system groups input
words using NLP techniques to obtain Word Groups. In the
next phase we use Word Groups to select the set of the most
relevant declarations.

The declarative description of the selection algorithm is
simple. For each word group in Word Groups we: (1) match
the word group with all declarations (words from the word
group are matched against the words in declarations), (2)
calculate the matching score, (3) use the matching score
and unigram score to calculate the declaration score (in
Section 8.1 we give more details about scoring), and (4)
select the M declarations with the top declaration score.

The challenge is to efficiently match the words from a
word group with the words in all API declarations. Matching
the entire collection of API declarations with a word group
is impractical because the collection contains over 10,000
declarations and matching score calculation is an expensive
operation. To reduce the number of calculations we built
in advance the Word Declaration Map, briefly mentioned in
Section 3.2, which maps a word w to the set of API decla-
rations D that contain w. In practice, D is much smaller than
the API collection. We use the parsing techniques previously
presented to identify and extract words from the declarations
and to build the map. In Figure 6 we present the result of the
selection using Groups 1 from Figure 4. The detailed de-
scription of the selection algorithm is given in Figure 10.

6. Expression Synthesis using PCFG model
In this section we describe the algorithm that synthesizes the
expressions using the PCFG model. Because the algorithm
relies on PCFG, we first explain the model and later the
expression synthesis.

6.1 Probabilistic Context Free Grammar Model
We use PCFG to guide the synthesis algorithm and to rank
the expressions. Our PCFG model consists of two parts: (1)
the incomplete PCFG extracted from the source corpus, and
(2) the extension with the PCFG production rules for local
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variables and literals which appear in the user’s local context
and input.

6.1.1 Incomplete Model from Corpus
We use PCFG model to encode API declaration composi-
tions from the source corpus. At the invocation site, the dec-
laration f may simultaneously compose many declarations
that appear in the argument places of f. Consider the expres-
sion f(a,b(c, e)). Here f composes simultaneously with a and
b, where b simultaneously composes with c and e. We re-
ferred to the simultaneous compositions f(a,b) and b(c,e) as
multi-compositions.

Let SType be the set of all simple ground API types. The
productions of our PCFG, that encode multi-compositions,
are described by the following grammar:

decl prod ::= ?Decl(d)
p−→ [hole.] d [(hole, ..., hole)]

hole :: = ?Decl(d) | ?Var(type) | ?Lit(type)

type ∈ STypes d ∈ Decls

We first introduce the notion of holes. We consider three
kinds of holes: a declaration hole, ?Decl(d), a local variable
hole, ?Var(type), and a literal hole, ?Lit(type). Each hole is
a nonterminal, which contains additional information at the
same time. A declaration hole stores declaration d, whereas
a local variable and a literal hole store type.

A declaration production rule, decl prod, encodes how a
declaration d is simultaneously composed with holes. Intu-
itively, each declaration production rule encodes one multi-
composition. For instance, f(a,b) is encoded as ?Decl(f)

p−→
f(?Decl(a), ?Decl(b)). First, note that declaration d appears
at both sides of the rule. On the left-hand side, it appears as
part of the hole and nonterminal ?Decl(d). On the right-hand
side, the same declaration d appears as terminal and can be
preceded by a hole which represents a receiver and can be
followed by argument holes. The argument holes can be a
local variable hole or a literal hole. In the PCFG model that
we extract from the source corpus, we do not keep rules for
local variable holes and literal holes. Finally, the probabil-
ity p says how frequently multi-composition occurs in the
corpus.

6.1.2 Model Extension from Local Context and Input
We complete the incomplete corpus model with rules for
variables and literals that belong to the users local context
and that appear in the input:

e prod ::= ?Var(type)
p−→ var | ?Lit(type)

p−→ lit

var ∈ Vars lit ∈ Literals

This way, we use the extension to allow local variables and
literals to appear in the synthesized expressions. Finally, we
include rules for the missing local variables and the default
values of the literals:

def prod ::= ?Var(type)
1−→ 〈arg〉 | ?Lit(type)

p−→ def literal

def literal ::= ”?” | 0 | false

The symbols 〈arg〉, ?, 0 and false are default termination
symbols. We include these rules to allow a developer to
modify the expressions after the synthesis.

6.2 Expression Synthesis
The goal of the synthesis algorithm is to use declarations
from the declaration groups to synthesize relevant expres-
sions. The algorithm should favor the expressions that are
more likely to appear in the real-world projects. For this
reason, we calculate expression scores which we explain in
more detail in Section 9.

We can describe the synthesis algorithm as follows. For
each declaration group DGi and for each declaration d ∈
DGi, we create hole ?Decl(d). Then, we use PCFG to unfold
?Decl(d). To unfold hole ?Decl(d), we use the production
rules from PCFG where d appears on the left-hand side,
i.e., all rules of the form ?Decl(d)

p−→ [hole.] d [(hole, ...,

hole)]. Then we substitute the hole with the right-hand side
[hole.] d [(hole, ..., hole)]. While unfolding holes, we create
partial expressions. Unlike complete expression, a partial
expression contains holes. We continue unfolding holes in
the partial expressions, creating new partial expressions. We
repeat this process some limited number of steps S. This
way, for each DGi, we create a partial expression group PEGi

which contains partial expressions synthesized using PCFG
starting from the declarations in DGi. If we encounter a local
variable hole or a literal hole we search for rules which have
?Var(type) and ?Lit(type) on the left-hand side, respectively.

The number of partial expressions in each new step can
grow exponentially and for this reason we apply a heuris-
tic search. To make the synthesis more efficient we use the
beam search algorithm. In every step, the algorithm takes all
the partial expressions PE from the previous step, and un-
folds a single hole per partial expression pe ∈ PE. This cre-
ates new partial expressions and only N with the best score
are passed on to the next step. As mentioned, we repeat this
process S times. The algorithm synthesizes expressions us-
ing beam search that does not guarantee an optimal solution.
Therefore, to make the algorithm more effective, we use an
approximation that synthesizes more expressions than the N

expressions that will be shown to a user. The system sorts the
larger set using the expression scores and outputs the best N

expressions to the user.
To build more interesting partial expressions that com-

pose partial expressions from different groups PEGi and
PEGj , we build the mechanism that first detects a hole
?Decl(d) in expression pei ∈ PEGi, that can be substituted
with expression pej ∈ PEGj . The hole ?Decl(d) can be sub-
stituted with pej if d is the topmost declaration of the
pej (e.g., f is the topmost declaration of f(a,b(c,e)) expres-
sion). The mechanism first replaces ?Decl(d) with connector
c(d, PEGj) that keeps enough information to be later substi-
tuted with pej . We use connectors because at the time we
create c(d, PEGj), the expression pej might not yet exist, but
we have enough information to efficiently obtain it in the fu-
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ture once it is constructed. This allows us to have a lot of
flexibility in which portions of the search space we explore
first. This is important for two reasons: (1) we can use the
scoring technique (Section 9) to navigate the search and syn-
thesis towards the most interesting parts of the search space,
and (2) we can efficiently parallelize the synthesis by con-
structing separately each PEGi in parallel. In the final phase,
our mechanism substitutes the connectors with concrete ex-
pressions to obtain complete expressions. Further details on
the synthesis algorithm, partial expressions, and connectors
are shown in Appendix A.2.

7. Related Word Map: Modifying WordNet
To support inputs that do not strictly follow the actual words
of API declarations, we use WordNet [11], a large lexi-
cal database of English words. WordNet groups words into
synsets, which are sets of synonyms. It also keeps different
relations between synsets which include antonyms, hyper-
nyms, and hyponyms. A single word can belong to many
different synsets. Each synset represents a different meaning
of the word. Moreover, WordNet keeps explicit textual de-
scription associated with every synset. The description is an
English text which describes the meaning of the synsets. We
use them to discover synsets that are close to the “program-
ming/API” application. On the other side, our API declara-
tion collection contains the words that are only a subset of
English. We referred to them as API words.

We decide to enrich each word group (Section 4) with re-
lated words of primary words. To find the related words effi-
ciently, we build Related Word Map that maps primary words
to the API words using WordNet synsets and relations. More
precisely, it maps the primary word w to the set of words R

with associated scores. The score says how related w and
wr ∈ R are. For instance, the table below shows the words
related to the verb “make”.

Word create press chop yield cut clear
Scorer 1.0 1.0 1.0 0.86 0.86 0.85

Based on the related score scorer, “create” is more related
to “make” than “clear”. We build the related score scorer
using the relation type and textual descriptions associated

with the synsets. There are two cases. In the first case, let
wsh belong to the same synset S as the primary word w. Then
wsh has scorers equal to the percentage of the API words
that appear in the description of S (first we remove frequent
words from the descriptions and later we calculate the score).
This way, we favor synsets whose descriptions have more
API and programming jargons. In the second case, let S be
in hypernym or hyponym relation with the synset Sh and let
the primary word w be in S and the word wsh ∈ Sh. Next, let
the score of S be again scorers and the score of Sh be scorerh.

Then the related score of wsh with respect to w is the product
of scorers and scorerh. To summarize:

scorer(wsh)=

{
scorers, wsh synonym of w
scorers · scorerh, wsh (hype/hypo)nym of w

8. Declaration Score
We would like to select declarations that are both well
matched with the input words and popular in the corpus.
Therefore, we compose the declaration score scored using
the matching score scorem and the declaration unigram (pop-
ularity) score scoreu in the following way:

scored = cm · scorem + cu · scoreu

In the rest of the section we explain how we build the scores
scorem and scoreu. Later, in Section 11.1, we explain how
we learn values for the coefficients cm and cu shown in
Figure 12 of the Appendix.

Figure 7. The example of matching the input group with
declaration createNewFile.

8.1 Matching Score
The matching score is the measure of the matching quality
between an input word group and a declaration. In Section 4
we showed that a word group has primary and secondary
words. We also mentioned that a declaration has primary
and secondary words. The primary belongs to the declaration
name and the secondary belongs to types of the declaration.

The matching can be represented as the matching in the
bigraph with the two disjoint sets DW and IWSG, as shown in
Figure 7 (note that we also use POS tags, but for simplicity
we omit them in the examples and this section). DW is the
set of declaration words, in the example this includes: 1)
primary words create, new and file, and 2) secondary words
boolean and file. IWSG contains the words from the input
word group. It groups them into subgroups. Each subgroup
contains a secondary word or a primary word with its related
words. This way, we include related words used to substitute
primary words when the substitution will result in greater
matching score. In the example, we have two subgroups.
One represented with the primary word make and its related
words and the other represented with the secondary word file.

Now, we describe the matching. A subgroup SG ∈ IWSG

can be matched with word w ∈ DW if there is word wsg ∈
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SG with the same lexical content like w. For instance, a sec-
ondary word file from SG2 has the same lexical content as
the primary and secondary words file in DW. Therefore, SG2

can be matched with any of the two words from DW. How-
ever, the matching quality between the two possible match-
ings might be different. Therefore, for each possible match-
ing pair (SG, w), w ∈ DW, we first calculate the matching
weight. Then, our matching problem is reduced to finding
a maximum weight matching in a weighted bipartite graph.
This is a well-known assignment problem [5] and to solve
it, we use Hungarian method [20]. Then, our matching score
scorem is the maximum matching score that we obtain. For
instance, as shown in Figure 7, the maximum matching is
represented with solid lines.

Now it remains to explain how we calculate matching
weight. We define the matching weight weightm between SG

and w ∈ DW as the maximum of matching scores between
all words from SG and w, i.e.:

weightm(SG, w) = max(weightm(wsg, w)), wsg ∈ SG

Between wsg ∈ SG and w ∈ DW, the matching weight
weightm is defined as the product of the word importance
weights and the word matching type weight:

weightm(wsg,w) = weighti(wsg)·weighti(w)·weightt(wsg,w)

Word Importance Weight We expect a user to most likely
insert words that denote declaration names. For this reason,
we favor primary over secondary and related words. Thus,
the importance weight weighti is defined as follows:

weighti(w)=


cp w is primary word

cs w is secondary word

cp · cr · scorer(w) w is related word

Note that we learn coefficients cp, cs and cr under the con-
straint cp > cs using methods in Section 11.1.

Word Matching Type Between the words in IWSG and
the words in DW there are four possible combinations of
matching that weightt(wsg, w) captures:

weightt(wsg,w) =

=


cpp both words are primary

cps wsg is primary and w is secondary word

csp wsg is secondary and w is primary word

css both words are secondary

Again, we learn coefficients cpp, cps, csp, and css using meth-
ods in Section 11.1. While tuning anyCode we would also
like to satisfy the constraint cpp > css > csp > cps(in our ex-
ample, due to css > csp, w2 is greater than w3). This con-
straint encodes our intuition that the primary-primary match-
ing is the most important and the primary-secondary is the
least important. The latter is the least important because we

do not want to use the primary input words to select the dec-
larations by matching them with secondary words. In con-
trast, we expect that secondary input words might appear
often in the names of declarations and for this reason they
might often match with primary declaration words.

8.2 Unigram Score
The unigram model [19, Chapter 4] assigns a probability to
each declaration based on the corpus occurrence frequency.
The higher the declaration frequency, the higher the proba-
bility. We smooth the model by assigning the minimal fre-
quency value (collected in the corpus) to a declaration that
does not appear in the corpus. The declaration unigram score
is equal to the logarithm of declaration probability.

9. Expression Score
We use the (partial) expression score, score(e), to guide the
synthesis algorithm and to rank the final expressions (see
Section 6.2). For a given (partial) expression e we calculate
score(e) as

scorepcfg(e) + scoredecls(e) − penrep(e) − pendis(e)

The PCFG score, scorepcfg(e), is proportional to product of
the probabilities from the production rules used to build e:

scorepcfg(e) = cpcfg · log
(∏

r∈Rules(e) prob(r)
)

The score scoredecls(e) is equal to the sum of the scores of all
declarations used to build e:

scoredecls(e) =
∑

d∈Decls(e) scored(d)

The repetition penalty, penrep(e), penalizes all repeated and
unnecessary declarations in e:

penrep(e) = crep · numOfReps(e)

The disarrangement penalty, pendis(e), penalizes the disar-
rangement among the local variables that do not appear in
the order given in the input text:

pendis(e) = cdis · numOfSwaps(e)

First, the functions Rules and Decls return the production
rules and declarations used in e, respectively. Second, the
overloaded function prob returns the probability of the rule r

or the declaration d. Third, the function numOfReps returns
the number of the repeated declarations in e. Finally, the
function numOfSwaps calculates the number of the swaps we
need to perform between the local variables in e to arrange
them as in the input text. We learn the values of the coeffi-
cients cpcfg and crep, shown in Figure 12, using the method
in Section 11.1. Note that we manually set the coefficient
cdis to a small real value.

10. Building PCFG and Unigram Models
We build both unigram and PCFG models by analyzing and
extracting data from the GitHub Java corpus [1] that contains
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Input Output Rank Time
NoPU NoP All [ms]

1 copy file fname to destination FileUtils.copyFile(new File(fname), new File(destination)) >10 >10 1 62
2 does x begin with y x.startsWith(y) >10 >10 1 63
3 load class ”MyClass.class” Thread.currentThread().getContextClassLoader() >10 >10 2 46

.loadClass(”MyClass.class”)
4 make file new File(<arg>).createNewFile() >10 >10 1 63
5 write ”hello” to file ”text.txt” FileUtils.writeStringToFile(new File(”text.txt”), ”hello”) >10 >10 1 62
6 readFile(”text.txt”,”UTF-8”) FileUtils.readFileToString(new File(”text.txt”), ”UTF-8”) >10 >10 5 47
7 parse ”2015” Integer.parseInt(”2015”) >10 >10 1 16
8 substring ”OOPSLA2015” 6 ”OOPSLA2015”.substring(6) >10 >10 1 46
9 new buffered stream ”text.txt” new BufferedReader(new InputStreamReader( >10 1 1 63

new BufferedInputStream(new FileInputStream(”text.txt”))))
10 get the current year new Date().getYear() >10 >10 6 125
11 current time System.currentTimeMillis() 1 1 1 31
12 open connection ”http://www.oracle.com/” new URL(”http://www.oracle.com/”).openConnection() >10 >10 1 31
13 create socket ”http://www.oracle.com/” 80 new Socket(”http://www.oracle.com/”, 80) >10 >10 5 47
14 put a pair (”Mike”,”+41-345-89-23”) into a map new HashMap().put(”Mike”, ”+41-345-89-23”) >10 9 1 125
15 set thread max priority Thread.currentThread().setPriority(Thread.MAX PRIORITY) 1 >10 1 93
16 set property ”gate.home” to value ”http://gate.ac.uk/” new Properties().setProperty(”gate.home”, ”http://gate.ac.uk/”) >10 >10 2 94
17 does the file ”text.txt” exist new File(”text.txt”).exists() >10 4 1 62
18 min 1 3 Math.min(1, 3) >10 9 1 31
19 get thread id Thread.currentThread().getId() 1 1 1 47
20 join threads Thread.currentThread().join() >10 1 2 16
21 delete file ”text.txt” new File(”text.txt”).delete() >10 1 1 62
22 print exception ex stack trace ex.printStackTrace() >10 >10 7 47
23 is ”text.txt” directory new File(”text.txt”).isDirectory() >10 >10 1 47
24 get thread stack trace Thread.currentThread().getStackTrace() 1 1 1 47
25 read line by line file ”text.txt” FileUtils.readLines(new File(”text.txt”)) >10 8 2 78
26 set time zone to ”GMT” Calendar.getInstance().setTimeZone(TimeZone.getTimeZone(”GMT”)) >10 >10 1 62
27 pi Math.PI 2 1 1 0
28 split ”OOPSLA-2015” with ”-” ”OOPSLA-2015”.split(”-”) >10 >10 1 31
29 memory Runtime.getRuntime().freeMemory() 3 2 1 16
30 free memory Runtime.getRuntime().freeMemory() 2 4 1 15
31 total memory Runtime.getRuntime().totalMemory() 2 2 1 32
32 exec ”javac.exe MyClass.java” Runtime.getRuntime().exec(”javac.exe MyClass.java”) >10 1 1 15
33 new data stream ”text.txt” new DataInputStream(new FileInputStream(”text.txt”)) >10 >10 4 47
34 rename file ”text1.txt” to ”text2.txt” new File(”text1.txt”).renameTo(new File(”text2.txt”)) >10 >10 1 47
35 move file ”text1.txt” to ”text2.txt” FileUtils.moveFile(new File(”text1.txt”), new File(”text2.txt”)) >10 >10 1 62
36 concat ”OOPSLA” ”2015” ”OOPSLA”.concat(”2015”) >10 9 1 63
37 read utf from the file ”text.txt” new DataInputStream(new FileInputStream(”text.txt”)).readUTF() >10 >10 7 46
38 java home SystemUtils.getJavaHome() 2 1 1 32
39 upper(text) text.toUpperCase() >10 >10 1 31
40 compare x y x.compareTo(y) >10 >10 1 15
41 BufferedInput ”text.txt” new BufferedInputStream(new FileInputStream(”text.txt”)) >10 >10 1 32
42 set thread min priority Thread.currentThread().setPriority(Thread.MIN PRIORITY) 1 1 1 93
43 create panel and set layout to border new Panel().setLayout(new BorderLayout()) >10 1 1 156
44 sort array Arrays.sort(array) >10 >10 1 31
45 add label ”Names:” to panel new Panel().add(new Label(”Names:”)) >10 >10 1 78

Figure 8. The table that shows the examples we use to tune anyCode.

over 14,500 Java projects containing over 1.8 million files.
The corpus includes the source files from the projects forked
at least once. Although GitHub contains over 600,000 Java
repositories, this criteria provides a quality corpus, filtering
out less popular repositories.

We decide to analyze each Java source file individually
to reduce analysis time. We are aware that building an en-
tire project using standard Java compiler results in a more
accurate model. However, this brings two problems: 1) long
analysis time, and 2) non-standardized building, using var-
ious scripts and resources if they are uploaded. The latter
usually includes manual intervention which becomes com-
pletely infeasible when building over 14,500 Java projects.
Although this reduces the quality of the model, it is compen-
sated by the fact that we can analyze many more projects.

We use Eclipse JDT parser [10] to parse each file. To
improve the model we build our own symbol table and type-
checker. The symbol table identifies API declarations in an
expression and the type-checker checks if the expression

type-checks against them. For each API declaration that we
find in corpus, we extract both the occurrence frequency
(to build unigram model) and a multi-composition and its
frequency (to build PCFG model). For each local variable
and literal used in the corpus, we abstract away names and
keep their types to improve PCFG model.

11. Evaluation
We first present a set of examples we use to tune anyCode
and explain our tuning technique. Next, we present a set
of examples we use to evaluate anyCode together with the
experimental results.

We ran all experiments on a machine with a quad-core
processor with 2.7Ghz clock speed and 16MB of cache. We
imposed a 8GB limit for allowed memory usage. Software
configuration consisted of Windows 7 (64-bit) and Java(TM)
Virtual Machine 1.7.0.55. We also set anyCode parameters
N and M to 10 and S to 5. By setting the small number of
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Input Output Rank Time
NoPU NoP All [ms]

1 write 2015 to data ouput stream ”text.txt” new DataOutputStream(new FileOutputStream(”text.txt”)).write(2015) >10 >10 >10 62
2 get date when file ”text.txt” was last time modified new Date(new File(”text.txt”).lastModified()).getTime() >10 >10 2 219
3 check file ”text.txt” ”read” permission AccessController.checkPermission(new FilePermission(”text.txt”, ”read”)) >10 >10 1 62
4 read lines with numbers from file ”text.txt” new LineNumberReader(new InputStreamReader( >10 >10 5 78

new FileInputStream(”text.txt”))).readLine()
5 StreamTokenizer(”text.txt”) new StreamTokenizer(new BufferedReader(new FileReader(”text.txt”))) >10 >10 6 16
6 read from console new BufferedReader(new InputStreamReader(System.in)).readLine() >10 >10 7 31
7 is file ”text.txt” data available new DataInputStream(new FileInputStream(”text.txt”)).available() >10 >10 1 78
8 SequenceInputStream(”text1.txt”, ”text2.txt”) new SequenceInputStream(new FileInputStream(”text1.txt”), >10 >10 >10 31

new FileInputStream(”text2.txt”))
9 get double value x Double.valueOf(x).doubleValue() >10 >10 >10 47
10 write object o to file output stream ”data.obj” new ObjectOutputStream(new BufferedOutputStream( >10 >10 1 78

new FileOutputStream(”data.obj”))).writeObject(o)
11 1 xor 5 new BitSet(1).xor(new BitSet(5)) >10 >10 >10 16
12 create bit set and set its 5th element to true new BitSet(5) >10 5 1 156
13 accept request on port 80 new ServerSocket(80).accept() >10 >10 5 46
14 ResourceStream(”text.txt”) ClassLoader.getSystemResourceAsStream(”text.txt”) >10 >10 1 32
15 gaussian new Random(System.currentTimeMillis()).nextGaussian() 4 4 3 15
16 thread group Thread.currentThread().getThreadGroup() 1 1 1 <1
17 create panel and set layout to grid new Panel().setLayout(new GridBagLayout()) >10 1 1 125
18 get screen size Toolkit.getDefaultToolkit().getScreenSize() 2 1 1 62
19 get splash screen graphics SplashScreen.getSplashScreen().createGraphics() >10 3 3 47
20 get v’s 10th element v.elementAt(10) >10 >10 1 63
21 polygon x y new Polygon(x, y, x.length) >10 >10 5 15
22 dialog ”Welcome!” JOptionPane.showMessageDialog(null, ”Welcome!”) >10 >10 1 31
23 get display refresh rate GraphicsEnvironment.getLocalGraphicsEnvironment() >10 >10 1 63

.getDefaultScreenDevice().getDisplayMode().getRefreshRate()
24 make obj’s string using reflection ToStringBuilder.reflectionToString(obj) 1 5 1 125
25 get obj’s hash code using reflection HashCodeBuilder.reflectionHashCode(obj) 3 4 1 109
26 are x and y equal with respect to reflection EqualsBuilder.reflectionEquals(x, y) >10 >10 7 109
27 get keystroke modifiers KeyEvent.getKeyModifiersText(keystroke.getModifiers()) >10 >10 3 47
28 generate ”RSA” private key KeyPairGenerator.getInstance(”RSA”).generateKeyPair().getPrivate() 4 8 1 31
29 get ”MyClass.class” source code Class.forName(”MyClass.class”).getProtectionDomain().getCodeSource() >10 >10 5 62
30 new x instance Class.forName(x).newInstance() >10 >10 >10 32
31 add mouse press to robot robot.mousePress(InputEvent.BUTTON1 MASK) >10 >10 6 46
32 reverse list Collections.reverse(list) >10 >10 >10 32
33 convert prop ExtendedProperties.convertProperties(prop) 1 1 1 15
34 intersection of rectangle 4 5 with rectangle 3 2 new Rectangle(5, 4).intersection(new Rectangle(3, 2)) >10 >10 2 78
35 set cursor over label to hand label.setCursor(Cursor.getPredefinedCursor(Cursor.HAND CURSOR)) >10 >10 1 78
36 read big integer from console new Scanner(System.in).nextBigInteger() >10 >10 6 47
37 delete file ”text.txt” when JVM terminates new File(”text.txt”).deleteOnExit() >10 4 2 47
38 if blank(x) ”2015” else x StringUtils.defaultIfBlank(x, ”2015”) >10 >10 5 47
39 get date instance for Germany DateFormat.getDateTimeInstance(DateFormat.MEDIUM, >10 >10 1 46

DateFormat.MEDIUM, Locale.GERMANY)
40 processors Runtime.getRuntime().availableProcessors() 3 2 1 <1
41 set command ”enable” to formatted text field x new JFormattedTextField(x).setActionCommand(”enable”) >10 >10 1 156
42 does map include value 1 map.containsValue(1) >10 >10 >10 63
43 move x to y FileUtils.moveFile(x, y) >10 >10 1 47
44 writeBytes(bytes, fname) FileUtils.writeByteArrayToFile(new File(fname), bytes) >10 >10 2 31
45 new horizontal slider 0 50 25 new JSlider(JSlider.HORIZONTAL, 0, 50, 25) >10 >10 >10 78

Figure 9. The table that shows the results of the comparison of the different anyCode configurations.

synthesis steps we intend to limit anyCode’s execution time
and make it responsive.

11.1 Tuning Technique
The goal of the tuning is to learn the coefficients cx for the
declaration and the expression scores. For this purpose, we
wrote 45 examples, shown in Figure 8. Each example con-
sists of a textual description and local variables as input (col-
umn Input) and an expected expression as output (column
Output). We say that anyCode successfully synthesizes the
expected expression exp if, for a given textual description,
anyCode lists exp among the top N synthesized expressions.

Let us formally define what our tuning objectives are. For
a given example e, let Rank be the function that returns the
rank of the expected expression. If anyCode cannot synthe-
size the expression Rank returns +∞. Now, let us define the
indicator function IN and the function FN as follows:

IN(e) =

{
1 Rank(e) ≤ N

0 Rank(e) > N

FN(e) =

{
Rank(e) Rank(e) ≤ N

0 Rank(e) > N

Then, our objective functions are as follows:

S(E) =
∑

ei∈E IN(ei) R(E) =
∑

ei∈E FN(ei)

The function S(E) returns the number of successfully synthe-
sized expected expressions for some set of examples E. R(E)

returns the sum of ranks, but only ranks that are smaller than
N. Given those functions and the set of tuning examples E,
our goal is to maximize S(E) and minimize R(E).

To efficiently tune the system, we use the bounded ap-
proach, where for each coefficient we define the set of pos-
sible values (typically ten equidistant values between zero
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and one). Then, for some limited number of steps, the tun-
ing algorithm 1) randomly chooses a coefficient, 2) iterates
through all values of the value set for the coefficient, 3) runs
for each value anyCode on the entire set of training exam-
ples, and 4) keeps the value that satisfies objectives the best.
While iterating through the values for the chosen coefficient,
the other coefficients are set to their best values. To avoid lo-
cal maximums and minimums we rerun the entire algorithm
several times. Each time, we set initial coefficients’ values
randomly, using values from the value sets. Finally, we com-
pare the results of each run and keep the configuration that
maximizes S(E) the most. If there are many such configura-
tions, we choose the one with the smallest R(E) result. Using
this method, we manage to learn values for the coefficients
as shown in Figure 12.

11.2 Measuring Efficiency and Effectiveness
To measure efficiency and effectiveness of anyCode we
wrote another set of 45 examples as shown in Figure 9. The
examples are given in the same form as the tuning examples.
Again, we measure the ability of anyCode to successfully
synthesize expected expressions and to list them among the
top 10 solutions.

The results are shown in Figure 9. The Input column rep-
resents the textual descriptions, and the Output column rep-
resents the expected expressions. The column Rank represent
the ranks of the expected expressions after we run anyCode.
With >10 we mark the case where the expected expression
is not among the top ten synthesized expressions. The Rank

column is split in three sub-columns. Each column relates to
a different anyCode configuration. The first, NoPU, denotes
anyCode that does not use unigram and PCFG models. In
this setting all declarations have the same unigram score and
all PCFG productions have the same probability. The sec-
ond, NoP, denotes anyCode that uses unigram but not PCFG
model. In this setting, the tool uses unigram model to select
declarations, but all PCFG productions still have the same
probability. The last, All, denotes anyCode that uses both un-
igram and PCFG to guide the synthesis algorithm and to rank
expressions. The results show that the system without both
models generates only 8 (18%) expected expressions among
the top ten solutions and the system with unigram model
generates 12 (27%). The system with both models recovers
37 (82%) expected expressions and in 20 (44%) examples
the expected expression appears as the top solution. Finally,
the column Time shows the times needed to synthesize the
top ten expressions for the anyCode with both models turned
on. All times are between 1 and 219 milliseconds, with an
average of 60 milliseconds.

In summary, the results show that anyCode can efficiently
synthesize the expressions in a small period of time (in less
that 220 milliseconds).

12. Limitations
The limitations of our tool are partly a reflection of the vast
gap between free-form text including English phrases and
Java code that needs to compile correctly.

The first limitation is related to our set of examples. While
fairly large by the standards of previous literature, it may not
be representative of general results. This limitation comes
from the fact that there is no standardized set of benchmarks
for the problem that we examine. A parallel corpus with free-
form queries as input and desired declarations and expres-
sions as output would be ideal for configuring the parameters
and performing the evaluation, yet no such corpus exists.

The second limitation is related to the complexity of the
code snippets we synthesize. It comes from the fact that we
synthesize only expressions, excluding local variable decla-
rations and other statements. This means that we do not gen-
erate control flow constructs like loops and conditional state-
ments (that said, anyCode performs copy propagation when
applicable to better interpret the corpus when constructing
PCFG, which captures data-flow). To support the synthesis
of control-flow constructs we might need to use a similar ap-
proach to Macho [7], which combines natural language input
with input-output examples, or to combine our work with ap-
proaches such as Prime [25], which suggest temporal order
among declarations and naturally fits in the context of IDE-
based code synthesis. We believe that such approaches may
lead to efficient synthesis of code fragments whose complex-
ity goes up to the complexity of method bodies.

13. Related Work
We start by discussing related work that combines NLP and
program synthesis techniques, then present program synthe-
sis tools with similar goals as anyCode, and, finally, compare
anyCode with those approaches and tools.

SmartSynth [21] generates smartphone automation
scripts from natural language descriptions. It uses NLP tech-
niques to infer components and their partial dataflow from
NL description. Next, it uses type based synthesis to con-
struct the scripts. Macho [7] transforms a natural language
description into a simple program using a natural language
parser, corpus, and input-output examples. It maps English
into database queries, then selects the candidate solutions,
combines them, and tests them using input-output examples.
Little and Miller [22] built a system that translates a small
number of keywords, provided by the user, into a valid ex-
pression. It selects declarations using the keywords. Next,
it combines them trying to increase the number of the key-
words that appear in declarations. SNIFF [6] uses natural
language to search for code examples. It collects a corpus,
code examples, and uses API documentation to annotate the
examples and method calls with keywords. NaturalJava [26]
allows a user to create and manipulate Java programs using
natural language input. It requires the user to think and ex-
plicitly describe commands at the syntactical level of Java.
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Metafor [23] transforms a story (in natural language) into a
program template. It tries to obtain program structure by in-
terpreting nouns as program objects, verbs as functions and
adjectives as properties. Several tools [28, 31] search and
synthesize code fragments using input-output examples. An-
other tool [17] uses genetic programming approach with dif-
ferent degrees of human guidance which includes names of
library functions and test cases. The tool grows a new func-
tionality using user suggestions and grafts it into the existing
code.

InSynth [16] asks a user to specify the desired type and
produces a set of ranked expressions, instances of the de-
sired type. InSynth ranks the solutions based on the decla-
ration unigram model. SLANG [27] takes a program with
holes and produces the most likely completions, sequences
of method calls. It uses an N-gram language model to pre-
dict and synthesize a likely method invocation sequence
as well as method arguments. CodeHint [12] is a dynamic
synthesis tool that uses a runtime information and unigram
model to generate and filter candidate expressions. A user
provides tests and specification and the tool generates can-
didates and checks them against the tests and specification.
XSnippet [29] takes a user query to extract Java code from
the sample repository. XSnippet ranks solutions based on
their length, frequency, as well as context sensitive and in-
dependent heuristics. The user needs to initiate additional
queries to fill in the method arguments. Strathcona [18] au-
tomatically extracts a query based on the structure of the
developed code. It does not allow a user to explicitly de-
scribe their needs. PARSEWeb [32] uses the Google code
search engine to get relevant code examples. The solutions
are ranked by length and frequency. Several code comple-
tions tools [4, 9] propose declarations and code templates.
Both systems use API declaration call statistics from the ex-
isting code examples to present solutions with appropriate
statistical confidence value. Unlike the tools mentioned in
this paragraph, anyCode uses textual description, PCFG and
unigram models to synthesize meaningful expressions.

anyCode has a number of differences with the previous
tools mentioned above. First, the mentioned tools that use
textual input apply a simple mapping model which maps
verbs to methods (actions) and nouns to arguments (objects).
We observe that such a mapping model can be further re-
fined, for example, to support the observation that both verbs
and nouns appear in method names and can be used to select
methods. For this reason, we build the model described in
Sections 4, 5 and 8 that 1) uses NLP tools to slice the in-
put into word groups and extract words from declarations;
2) takes into account the type and position of words, in in-
put and in declarations to calculate the matching score; 3)
uses unigram model to select the most popular declarations.
Second, to our knowledge we are the first to build the re-
lated world map that maps English words to the related API
words and use it successfully. The purpose of this map is

to make the input more flexible. To build the map we use
the novel technique, described in Section 7, which discov-
ers the most relevant word relations in WordNet in the “pro-
gramming/API” domain. Third, we use the PCFG model, ex-
tracted from the large code corpus, to guide the synthesis al-
gorithm and rank solutions, as described in Section 6. To the
best of our knowledge, we are the first to use PCFG model
in the code synthesis context.

14. Conclusions
We presented anyCode, a tool for code synthesis that com-
bines unique flexibility in both its input and output. On one
hand, anyCode performs parsing of the free-form text input
that may contain a mixture of English and code fragments.
On the other hand, anyCode automatically constructs valid
Java expressions for a given program point and is able to
generate combinations of methods not encountered previ-
ously in the corpus. Ensuring this flexibility required a new
combination of natural language processing, mapping text
to code elements, and code synthesis based on probabilistic
grammar. Our experience with evaluating tool on 45 diverse
examples suggests that there are a number of scenarios in
which such functionality can be useful for developers.
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A. Appendix
A.1 Declaration Search Algorithm
The algorithm that searches for the most relevant declara-
tions is shown in Figure 10. From each word group it takes
words and selects declarations which contain the words.
Then, for every selected declaration it calculates the score.
Finally, for every word group it forms declaration groups.

fun declSearch(WordGroups, API, Unigram, M)

size ← WordGroup.length

DeclarationGroups ← new DeclarationGroup[size]

foreach(i = 1 to size)

WordGroup ← WordGroups[i]

DeclarationGroup ← ∅
foreach(w ∈ WordGroup)

DeclarationGroup ← WordDeclarationMap(w)

foreach(d ∈ DeclarationGroup)

setScore(dscore(d, wordGroup, Unigram)))

DeclarationGroups[i] ← keepBest(DeclarationGroup, M)

return DeclarationGroups

Figure 10. The method that selects the most likely set of
declarations based on input words.

A.2 Expression Synthesis Algorithm
Formally, we define a partial expression pe using the follow-
ing grammar:

pe ::= [pe.] d [(pe, ..., pe)] | literal | local | hole | c(d,PEG)

hole :: = ?Decl(d) | ?Lit(type) | ?Var(type)

type ∈ STypes literal ∈ Literals local ∈ Locals

d ∈ Decls PEG ∈ PEGS

First, the partial expression pe might contain a declaration
d, which can be preceded by another partial expression (re-
ceiver) and can also be followed by a list of partial expres-
sions (arguments). Second, a partial expression can be either
a literal (string, boolean or number) or a local variable that
a user provides at input. Third, a partial expression can be a
hole or a connector.

The algorithm takes an array of declaration groups DGS

and PCFG and returns the ranked list of N best expressions,
described in synth function, in Figure 11. It is executed in
two phases. In the first phase, for each declaration group DG

, we take the declaration d ∈ DG and invoke function unfold.
The function unfold takes the declaration, PCFG and returns
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fun synth(DGS, PCFG, S, N)

//Unfold declaration arguments

size ← DGS.length; PEGS ← new PES[size]

foreach(i = 1 to size)

DG ← DGS(i)

foreach(d ∈ DG)

PEGS[i]← PEGS[i] ∪ unfold(d,i,PCFG,DGS,PEGS,S,N)

PEGS[i] ← keepBest(N, PEGS[i])

//Merge partial expressions

foreach(PEG ∈ PEGS)

foreach(pe ∈ PEG) Snippets ← merge(pe, S, N)

return keepBest(N, Snippets)

Figure 11. The synthesis algorithm.

N partial expressions that have d as the topmost declaration.
To limit the execution time we introduce a bound S on the
maximal number of steps in unfold. We collect all partial
expressions generated from one declaration group DGS[i]

and put them in a partial expression group PEGS[i]. In the end
we pass all partial expression groups to the second phase.

In the second phase, for each partial expression pe, from
the partial expression group PEG, we call merge method. It
uses connectors to connect pe with partial expressions in
other groups. We collect all expressions that merge returns
and present only the top N to the user. To find the top
expressions we use score(pe) introduced in Section 9.

for unfold(d, i, PCFG, DGS, PEGS, S, N)

PESS ← new PES[S+1]

PESS[1] ← {?Decl(d)}
for(j = 1 to S)

Step ← ∅
foreach(pe ∈ PESS[j])

hole ← findFirstHole(pe)

if (comp(hole, i, DGS, PEGS) ∧ j>1)

//postpone unfolding till merge phase

foreach(PEG ← findAllComp(hole, i, DGS, PEGS))

Step←Step ∪ applySub(pe,hole→c(decl(hole),PEG))

else

if (∃ prod ∈ PCFG s.t. hole = leftSide(production))

//unfold using PCFG

foreach(prod ∈ PCFG(hole))

Step ← Step ∪ applySub(pe, hole → righSide(prod))

PESS[j+1] ← keepBest(Step, N)

return keepWithoutHoles(PESS)

We explain in more depth unfold and merge methods.
First, the method unfold wraps the declaration d into the hole
?Decl(d). We use PESS as a working list to store the results.
It is an array of partial expression sets with length S+1 which
denote the number of the steps we will perform in unfold. In

each step, the method takes the partial expression pe from
PESS[j], calculates new partial expressions by unfolding pe
hole, and stores them into PESS[j+1]. hole either becomes

a connector or is substituted by the right-hand side of a
production prod ∈ PCFG(hole).

We substitute hole with the connector if hole = ?Decl(d)

and d is in one of DGS[k], where k 6= i. This is checked by the
method comp. If the condition is true, we substitute the hole
with a connector c(d, PEG) (decl(hole) returns a declaration
of a declaration hole). If the condition is not satisfied, we
check if there are appropriate productions in PCFG for the
hole. PCFG contains the production for a given hole if the
production’s left-hand side matches with the hole. For each
such a production we use its right-hand side as a partial
expression that substitutes the hole. Using this method, we
create new partial expressions and leave only the top N with
the highest score. Also, note that we do not substitute a hole
with a connector in the first iteration (condition j>1). This
condition allows us to unfold each initial hole at least one in
the first phase of synth. In the second phase, this allows us to
replace each connector with a partial expression.

for merge(pe, NeighborsMap, S, N)

PESS ← new PES[S+1]

PESS[1] ← {pe}
for(i = 1 to S){

Step ← ∅
for(pe ∈ PES[i])

c(d, PEG) ← findFirstConnector(pe)

for(cpe ∈ findAll(PEG, d))

Step ← Step ∪ applySub(pe, c(d, PEG) → cpe)

PESS[i+1] ← keepBest(Step, N)

return keepBestWithoutConnectors(PESS, N)

The method merge is similar to unfold. The main difference
is that we substitute the connectors with partial expressions
instead of unfolding holes using PCFG. Thus, in each step,
we find a connector in a partial expression, then substitute
it with the corresponding partial expression from PEG that
starts with d. Finally, we return the first N expressions with-
out connectors.

Coefficient Value Coefficient Value
cm 0.7 cu 0.3
cp 0.7 cs 0.3
cr 0.9 cdis 10−6

cpp 0.7 css 0.5
csp 0.3 cps 0.4

cpcfg 0.6 crep 0.9

Figure 12. The learned values of anyCode’s coefficients
and the value of cdis that we set manually.
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